Abstract:
A space-based solar power station, a power generating satellite module and/or a method for collecting solar radiation and transmitting power generated using electrical current produced therefrom is provided. Each solar power station includes a plurality of satellite modules. The plurality of satellite modules each include a plurality of modular power generation tiles including a photovoltaic solar radiation collector, a power transmitter and associated control electronics. The power transmitters can be coordinated as a phased array and the power generated by the phased array is transmitted to one or more power receivers to achieve remote wireless power generation and delivery. Each satellite module may be formed of a compactable structure capable of reducing the payload area required to deliver the satellite module to an orbital formation within the space-based solar power station.
Abstract:
Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.
Abstract:
An engine module for attachment to a selected target spacecraft should be designed such that the overall need for processing resources and power may be further reduced. According to the invention, the engine module comprises a number of sensors adjusted to pick up measured values of a number of physical Parameters of the target spacecraft, said sensors being connected with a Converter unit which is set up to convert a time profile of the measured values into a set of processable data.
Abstract:
Control moment gyros in an array (48) are rotated to reorient a satellite (52). A pseudo inverse (36) control is employed that adds a term to a Moore-Penrose pseudo inverse (36) to prevent a singularity.
Abstract:
A pair of fiber optic rate sensors are shown, one of which is connected to sense the rate of rotation of the gimbal of a control moment gyro and the other of which is connected to sense the rate of rotation of the frame of the control moment gyro, the relative rate therebetween being determined by a difference circuit receiving the outputs of the fiber optic rate sensors for use in a feedback loop for the control moment gyro.
Abstract:
A method for determining the attitude of a spacecraft (1) by observing stars (2) within a starfield (3). A detector (13), camera electronics (14), and computer (15) located on board the spacecraft (1) are used to generate a set of star match groups by matching pairs of stars observed by the detector (13) with pairs of guide stars from a stored database (18) of guide stars. Match groups having small numbers of stars are eliminated. Non-eliminated match groups are validated. Redundant match groups are eliminated. A match group having the largest number of stars is selected. Finally, the attitude of the spacecraft (1) is derived from positions of guide stars within the selected match group. The guide star database (18) can be broken into an acquisition guide star database (8) and a supplementary guide star database (9). The field of view (20) of detector (13) can be broken into a grid of pixels overlaid by a grid of superpixels (21). The guide star pairs are preferably presorted in order of increasing angular separation. An identification matrix (IDGRP) can be used to speed the star identification process.
Abstract:
Apparatus and methods for performing satellite proximity operations such as inspection, recovery and life extension of a target satellite through operation of a "Satellite Inspection Recovery and Extension" ("SIRE") spacecraft which can be operated in the following modes (teleoperated, automatic, and autonomous). The SIRE concept further consists of those methods and techniques used to perform certain (on-orbit) operations including, but not limited to, the inspection, servicing, recovery, and lifetime extension of satellites, spacecraft, space systems, space platforms, and other vehicles and objects in space, collectively defined as "target satellites". The three basic types of SIRE proximity missions are defined as "Lifetime Extension", "Recovery", and "Utility". A remote cockpit system is provided to permit human control of the SIRE spacecraft during proximity operations.
Abstract:
A method for determining the attitude of a spacecraft (1) by observing stars (2) within a starfield (3). A detector (13), camera electronics (14), and computer (15) located on board the spacecraft (1) are used to generate a set of star match groups by matching pairs of stars observed by the detector (13) with pairs of guide stars from a stored database (18) of guide stars. Match groups having small numbers of stars are eliminated. Non-eliminated match groups are validated. Redundant match groups are eliminated. A match group having the largest number of stars is selected. Finally, the attitude of the spacecraft (1) is derived from positions of guide stars within the selected match group. The guide star database (18) can be broken into an acquisition guide star database (8) and a supplementary guide star database (9). The field of view (20) of detector (13) can be broken into a grid of pixels overlaid by a grid of superpixels (21). The guide star pairs are preferably presorted in order of increasing angular separation. An identification matrix (IDGRP) can be used to speed the star identification process.