Abstract:
A space-based solar power station, a power generating satellite module and/or a method for collecting solar radiation and transmitting power generated using electrical current produced therefrom is provided. Power transmitters can be coordinated as a phased array and the power generated by the phased array is transmitted to one or more power receivers to achieve remote wireless power generation and delivery. In many embodiments, a reference signal is distributed within the space-based solar power station to coordinate the phased array. In several embodiments, determinations of the relative locations of the antennas in the array are utilized to evaluate the phase shift and/or amplitude modulation to apply the reference signal at each power transmitter.
Abstract:
An integrated optical linewidth reduction system detects/estimates the phase noise of an incoming optical signal and subtracts the detected phase noise from the phase noise of the incoming signal. A first coupler/splitter of the linewidth reduction system may split the incoming signal into first and second optical signals travelling through first and second optical paths. A second coupler/splitter may split the second optical signal into third and fourth optical signals travelling through third and fourth optical paths. The third optical path has a longer propagation delay than the fourth optical path. Two different coupling ratios of the third and fourth optical signals are used to generate an electrical signal representative of the phase noise of the incoming signal. A phase detector/estimator estimates the phase noise from the electrical signal. A phase modulator subtracts the detected/estimated phase noise from the phase noise of the incoming signal.
Abstract:
A feedforward error-compensated receiver for minimizing undesired odd-order nonlinear distortion products. The receiver includes a first receiver path configured to receive an input signal. The first receiver path outputs a signal including at least one baseband (BB) frequency. At least one second receiver path is configured to receive the input signal and to provide a second receiver path output signal. The second receiver path includes at least one odd-order nonlinear distortion reference generator. The at least one odd-order nonlinear distortion reference generator and the mixer are configured to generate a synthetic odd-order nonlinear distortion signal. A combining element is configured to receive the output signal from the first path and the output signal from the second receiver path output and to combine the signals such that the odd-order nonlinear distortion signals are substantially attenuated at an output of the combining element.
Abstract:
An apparatus and method for driving an output signal in a high speed integrated circuit. The apparatus and methods enable the output voltage swing from the driver to exceed the breakdown voltage of any individual element in the output driver. A high speed driver can utilize one or more transistors in a stacked configuration, such that the breakdown voltage of the entire stacked configuration is based on the number of transistors in the stack. The driver is configured to distribute the output voltage substantially equally among each of the stacked transistors, such that the driver is able to source an output voltage swing that is greater than the breakdown voltage of any individual transistor in the driver.
Abstract:
A method for sending a data from an electromagnetic radiator by polarization modulation of an electromagnetic wave includes radiating from the radiator first and second electromagnetic waves including first and second polarizations respectively, the first polarization being different than the second polarization. The first and second electromagnetic waves form a third electromagnetic wave having a third polarization different from the first or second polarization. The method includes modulating the third polarization responsive to the data by modulating one or more parts of the third electromagnetic wave. The data is sent in the third polarization. A system for sending a data includes an oscillator adapted to generate an oscillating signal, and a phase shifter coupled to the oscillator and adapted to generate a first phase-shifted oscillating signal having a first phase. The phase shifter is adapted to vary the phase difference across a predefined range in response to the data.
Abstract:
An integrated Multi-Port Driven (MPD) antenna that can be driven at many points with different signals. An integrated MPD radiating source utilizing an 8-phase ring oscillator and eight power amplifiers to drive the MPD antenna at 161GHz with a total radiated power of -2dBm and a single element EIRP of 4.6dBm has been demonstrated in silicon with single lobe well behaved radiation patterns closely matching simulation.
Abstract:
Devices having an electromagnetic detector for the detection of analytes are disclosed. The devices include an electromagnetic detector, including effective inductance-change magnetic detectors, and a binding moiety. The device can include an electromagnetic material that can be detected by the detector. The device is configured such that binding of an analyte to the binding moiety changes the relationship between the electromagnetic detector and the electromagnetic material such that a change in electromagnetic field is detected by the electromagnetic detector.
Abstract:
A fully integrated CMOS multi-element phased-array transmitter (transmitter)includes, in part, on-chip power amplifiers (PA) (262), with integrated output matching. The transmitter is adapted to be configured as a two-dimensional 2-by-2 array or as a one dimensional l-by-4 array. The transmitter uses a two step up-conversion architecture with an IF frequency of 4.8GHz. Double-quadrature architecture for the up-conversion stages attenuates the signal at image frequencies. The phase selectors (252, 254) in each transmitter path have independent access to all the phases of the VCO (202). The double quadrature architecture results in two sets of phase selectors for each path, one for the in-phase (1) and one for the quadrature phase (Q) of the LO signal. The phase selection is done in two stages, with the first stage determining the desired VCO differential phase pair and the next stage selecting the appropriate polarity. An on-chip Balun is used for differential to single-ended conversion.
Abstract:
A space-based solar power station, a power generating satellite module and/or a method for collecting solar radiation and transmitting power generated using electrical current produced therefrom is provided. Each solar power station includes a plurality of satellite modules. The plurality of satellite modules each include a plurality of modular power generation tiles including a photovoltaic solar radiation collector, a power transmitter and associated control electronics. The power transmitters can be coordinated as a phased array and the power generated by the phased array is transmitted to one or more power receivers to achieve remote wireless power generation and delivery. Each satellite module may be formed of a compactable structure capable of reducing the payload area required to deliver the satellite module to an orbital formation within the space-based solar power station.
Abstract:
An optical phased array (OPA) receiver selectively detects, measures and differentiates between the amplitudes and directions of signals received from different directions. Because the OPA changes the direction that it looks toward electronically and without the use of any mechanical movements, the OPA is fast, has an enhanced sensitivity, and can be used in a wide variety applications, such as lens-free imaging systems. The OPA is adapted to dynamically control the array of optical elements and focus on the area of interest. The OPA achieves a higher numerical aperture compared to imaging systems that use conventional lens, thereby effectively maintaining a relatively large field of view and collection area concurrently. The OPA may be readily scaled by increasing its array size. Furthermore, because the OPA is relatively flat, it is ideally suited for small form factor applications such as cell phones and tablets.