Abstract:
Processes and associated reaction systems for the oxidative dehydrogenation of an alkane containing 2 to 6 carbon atoms, preferably ethane or propane, more preferably ethane, are provided. In particular, a process is provided that comprises supplying a feed gas comprising the alkane and oxygen to a reactor vessel that comprises an upstream and downstream catalyst bed; contacting the feed gas with an oxidative dehydrogenation catalyst in the upstream catalyst bed, followed by contact with an oxidative dehydrogenation/oxygen removal catalyst in the downstream catalyst bed, to yield a reactor effluent comprising the alkene; and supplying an upstream coolant to an upstream shell space of the reactor vessel from an upstream coolant circuit and a downstream coolant to a downstream shell space of the reactor vessel from a downstream coolant circuit.
Abstract:
The invention relates to a process for preparing a catalyst, which comprises: mixing a copper salt containing solution with a silicate salt containing composition resulting in a precipitated solid; and subjecting the precipitated solid to a temperature in the range of from 150 to 500°C. Further, the invention relates to a copper containing catalyst obtainable by said process. Still further, the invention relates to a hydrogenation process wherein such copper containing catalyst is used, more in particular a process wherein methyl phenyl ketone is hydrogenated into methyl phenyl carbinol.
Abstract:
The present disclosure relates to methods, processes, and systems for utilizing the dehydrogenation of 2-butanol for hydrogen consuming reactions of biomass or biomass-derived molecules. The present invention relates to methods, processes, and systems for utilizing the dehydrogenation of 2-butanol for hydrogen consuming hydrogenation, hydrogenolysis, or hydrodeoxygenation reactions of biomass or biomass-derived molecules.
Abstract:
Providing a catalyst and a process for the preparation of butadiene, and the catalyst comprising Hf and two or more further catalytically active metals M1 and M2, wherein the two or more further catalytically active metals M1 and M2 are selected from the group consisting of Zr, Zn, Cu and combinations of two or more thereof, and wherein M1 is different from M2.
Abstract:
본 발명은 연속 반응-재생 및 유동식 올레핀 제조방법에 관한 것으로, 상세 하게는 탄화수소 반응부; 공기 반응부; 탄화수소 공급부; 촉매 공급부; 및 분리부; 를 포함하는 연속 반응-재생 방식 유동화 올레핀 제조장치를 이용한 연속 반응-재 생 및 유동식 올레핀 제조방법에 있어서, 촉매가 촉매 공급부를 통하여 탄화수소 반응부로 공급되고, 탄화수소가 탄화수소 공급부를 통하여 탄화수소 반응부로 공급 되며, 상기 탄화수소 반응부 내의 촉매 및 탄화수소의 접촉시간이 0.5 내지 10 초 가 되도록 올레핀을 제조하는 단계(단계 1); 상기 단계 1에서 반응한 촉매와 상기 단계 1에서 생성된 올레핀이 분리부에서 분리되고, 상기 반응한 촉매가 공기 반응 부로 공급되어 재생되는 단계(단계 2); 및 상기 단계 2에서 재생된 촉매 및 공기 반응부에서 발생한 열에너지를 촉매 공급부를 통해 탄화수소 반응부로 재공급하는 단계(단계 3);를 포함하는 연속 반응-재생 및 유동식 올레핀 제조방법을 제공한다.
Abstract:
The present invention relates to a catalyst composition suitable for the dehydrogenation of alkanes having 2-8 carbon atoms comprising zinc and/or manganese aluminate, optionally further comprising sodium (Na), potassium (K), caesium (Cs), rubidium (Rb), strontium (Sr), barium (Ba), magnesium (Mg), calcium (Ca), gallium (Ga), germanium (Ge),tin (Sn), copper (Cu), zirconium (Zr), cobalt (Co), tungsten (W) or mixtures thereof, wherein said catalyst composition preferably is essentially platinum free. Furthermore, a method for preparing said catalyst composition and a process for dehydrogenating alkanes having 2-8 carbon atoms, preferably isobutane, comprising contacting the said catalyst composition with said alkanes is provided.
Abstract:
In a process for producing ethanol, acetic acid is contacted with hydrogen in a reaction zone in the presence of a hydrogenation catalyst to form a crude ethanol product comprising ethanol, hydrogen and carbon monoxide. At least a portion of the crude ethanol product is separated to yield a vapor stream and a liquid stream, wherein the vapor stream comprises hydrogen and carbon monoxide, and wherein the liquid stream comprises ethanol. At least a portion of the vapor stream is contacted with a methanation catalyst under conditions such that carbon monoxide reacts with hydrogen in the vapor stream portion to produce a treated stream comprising methane, hydrogen and less carbon monoxide than the vapor stream. At least a portion of the treated stream is returned directly or indirectly to the reaction zone and ethanol is recovered from the liquid stream.
Abstract:
A catalyst composition is provided for use in the conversion of carbon oxide(s) to saturated hydrocarbons. The catalyst composition comprises a carbon oxide(s) conversion catalyst; and a dehydration/hydrogenation catalyst comprising a silicoalumino phosphate (SAPO) molecular sieve and a metal M, for example Pd. In one embodiment, the target saturated hydrocarbons include LPG, the SAPO comprises SAPO-5 and/or SAPO-37.
Abstract:
A modified catalyst is described which can be used as a dehydration/hydrogenation catalyst in a multi-stage catalyst system for the catalysed production of saturated hydrocarbons from carbon oxides and hydrogen. The modified catalyst comprises: an acidic substrate comprising an M1 -zeolite or M1- silicoalumino phosphate (SAPO) catalyst, where M1 is a metal; and a modifier including a metal M2. M2 comprises an alkali metal or alkaline earth metal. In examples described the modifier includes a Group II metal, for example Ca.
Abstract:
The present invention relates to a pillared silicate compound comprising a layered silicate structure, and bridging metal atoms located between adjacent silicate layers of the silicate structure, wherein said bridging metal atoms form at least one covalent bond to each of the adjacent silicate layers, as well as a process for the preparation of a pillared silicate compound, and further includes a pillared silicate compound obtainable and or obtained according to said process, as well as the use of any of the aforementioned pillared silicate compounds.