Abstract:
An apparatus to detect more than one analyte in a solution comprising at least one electrode in contact with the solution, at least two dyes including a first dye and a second dye, and an electrochemically active agent, where the solution has a pH, the electrode is configured to modulate the pH of the solution by oxidizing or reducing the electrochemically active agent, the first dye and the second dye fluoresce at different pH levels, fluorescence of the first dye is used to indicate the presence of a first analyte, and fluorescence of the second dye is used to indicate the presence of a second analyte. Methods of detecting multiple analytes in a solution are also provided.
Abstract:
At least one electrode is integrated on a lab on a chip cartridge in a sample preparation chamber of the cartridge, a DNA hybridization chamber of the cartridge, a protein assay chamber of the cartridge, and/or a detection chamber of the cartridge, for example, where the electrode is used to generate pH electrochemically in order to activate, deactivate, or intermediately attenuate an enzyme's activity on demand, in order to increase the fidelity of analyte detection, for cell lysis, for protein extraction, for DNA dehybridization, for primer hybridization control, for sample pre concentration, and/or for washing to remove non target species.
Abstract:
The present invention relates to a method for detecting or quantifying CTP in a cell sample comprising at least two nucleotide triphosphates by cationic ion pairing chromatography coupled to mass spectrometry, to a method for detecting or quantifying CTP synthase activity based on the method for detecting or quantifying CTP, and to their use in methods for screening potential immunosuppressive or anti-cancer compounds and in methods for determining the appropriate dose of an immunosuppressive or anti-cancer compound inhibiting CTP synthase activity for a treated subject.
Abstract:
The present invention relates to a kit and a device for measuring nucleic acid amplification through colour differentiation wherein said kit contains at least one pH indicator dye, one or more contained amplification reagents. The kit and device of the present invention also are used to detect, measure and/or record enzymatic reactions that result in pH changes. The kit and device provide a mechanism to detect pH change by utilizing a pH indicator dye, thus making it observable with the un-aided eye. The kit contains a device for carrying out said reactions. The device contains at least one container, reagents, a pH indicator, a heating or cooling means where needed and a magnetic component.
Abstract:
A method and kit for detecting a target nucleic acid is provided wherein combining an amplified nucleic acid with a particle such as a paramagnetic bead form a flocculated complex which can be detected by visual inspection. The volume of nucleic acid sample that can be detected is as low as a few microlitres. The method can be applied to in-the-field or point-of-care diagnosis for a rapid determination of the presence or absence of the target nucleic acid. The methylation status of a target nucleic acid can also be determined. The method and lit may have general applicability to detecting diseases in plants and animals, environmental testing and testing for contamination of foods and other edible products.
Abstract:
The present invention provides methods of extracting target nucleic acids from a biological sample using divalent salts and acidic conditions.
Abstract:
An embodiment of a method for sequencing a species of nucleic acid template using pH inert reference sensors is described that comprises the steps of: introducing a nucleotide species to an array of wells where a plurality of the wells comprise a species of nucleic acid template and a plurality of the wells comprise a plurality of functional groups with a high pH buffering characteristic, and in at least a first well a polymerase species incorporates the nucleotide species into a plurality of strands complementary to the species of nucleic acid template disposed in the first well and results in a release of a plurality of hydrogen ions; detecting a signal in the first well that is responsive to the hydrogen ions and one or more noise sources; detecting a signal in a second well comprising the functional groups with the high pH buffering characteristic that is responsive to the one or more noise sources; and subtracting the second well signal from the first well signal to generate a corrected signal associated with the detected hydrogen ions.
Abstract:
A method of detection of a target nucleic acid is provided. The method includes fractionating a sample into a plurality of sample volumes wherein more than 50% of the fractions contain no more than 1 target nucleic acid molecule per sample volumes, and subjecting the plurality of sample volumes to conditions for amplification. The method further includes detecting a change in ion concentration in a sample volume wherein a target nucleic acid is present, counting the number of fractions with an amplified target nucleic acid, and determining the quantity of target nucleic acid in the sample.
Abstract:
The present invention provides methods, immunoassays, kits and devices pertaining to the detection of multiple biomolecules from single cells or other biological entities. It also enables the highly parallel detection of interacting biomolecules from such entities.