Abstract:
The present disclosure relates to a cemented carbide with a Fe-Cr based metallic binder, a method for manufacturing the cemented carbide and a use of the cemented carbide as a cutting tool, a wear part, a seal ring, a bushing, a component e.g. automotive, a die or a tool for handling radioactive parts.
Abstract:
Provided is a simple, fast, scalable, and environmentally benign method of producing a graphene-reinforced inorganic matrix composite directly from a graphitic material, the method comprising: (a) mixing multiple particles of a graphitic material and multiple particles of an inorganic solid carrier material to form a mixture in an impacting chamber of an energy impacting apparatus; (b) operating the energy impacting apparatus with a frequency and an intensity for a length of time sufficient for peeling off graphene sheets from the graphitic material and transferring the graphene sheets to surfaces of solid inorganic material particles to produce graphene coated or graphene-embedded inorganic particles inside the impacting chamber; and (c) forming graphene-coated or graphene-embedded inorganic particles into the graphene-reinforced inorganic matrix composite. Also provided is a mass of the graphene-coated or graphene-embedded inorganic particles produced by this method.
Abstract:
L'invention concerne un procédé de mise en forme d'un alliage comprenant principalement du Ti en phase β ou proche b, comprenant les étapes de : - préparation d'un mélange homogène de poudre de particules comprenant des particules micrométriques de Ti pur et des particules nanométriques d'au moins un élément additionnel ou composé favorisant la phase béta du Ti lors de son refroidissement à partir de sa température de transition de phase a/b - exposition dudit mélange de poudre de particules à une source d'énergie focalisée qui vient chauffer sélectivement au moins une partie d'un lit dudit mélange homogène de poudre à une température comprise entre 850 et 1850°C refroidissement de la partie ayant subi cette exposition avec conservation de la phase b du Ti.
Abstract:
Induced material segregation methods of manufacturing a polycrystalline diamond compact (PDC) cutter result in formation of a polycrystalline diamond/tungsten carbide (WC) composite material having a smooth compositional gradient from maximum WC concentration at one face to maximum diamond concentration at another face. Because the compositional gradient is smooth, very little or no mismatch of coefficient of thermal expansion occurs, which improves a service lifetime of the PDC cutter.
Abstract:
A methodology is disclosed to produce nanostructured carbon particles that act as effective reinforcements. The process is conducted in the solid state at close to ambient conditions. The carbon nanostructures produced under this discovery are nanostructured and are synthesized by mechanical means at standard conditions. The benefit of this processing methodology is that those carbon nanostructures can be used as effective reinforcements for composites of various matrices. As example, are to demonstrate its effectiveness the following matrices were including in testing: ceramic, metallic, and polymeric (organic and inorganic), as well as bio-polymers. The reinforcements have been introduced in those matrices at room and elevated temperatures. The raw material is carbon soot that is a byproduct and hence abundant and cheaper than pristine carbon alternatives (e.g. nanotubes, graphene).
Abstract:
The present invention relates to a method of making a powder composition, which is suitable for production of a cBN composite material comprising cBN grains, a metallic binder phase and a ceramic binder phase. The method comprises a step of providing at least one ceramic binder phase forming powder in a milling device. Thereafter the at least one ceramic binder phase forming powder is subjected to a milling operation in the milling device to form a milled powder with 0.1 μm 50 ≤ 1.40 μm of the aluminium powder. The invention also relates to a method of making a cBN composite material.
Abstract:
Der Werkstoff mit mehrphasigem Gefüge umfassend wenigstens eine erste feste Phase und wenigstens eine zweite feste Phase, zeichnet sich dadurch aus, dass die erste Phase und die zweite Phase jeweils ein Metall, eine Metalllegierung, ein keramisches Material oder Kombinationen hiervon in Form eines Verbundwerkstoffs sind, die Phasen des Gefüges makroskopisch voneinander unterscheidbar sind, das mehrphasige Gefüge als Einlagerungsgefüge oder als dreidimensionales Durchdringungsgefüge ausgebildet ist, wobei das Einlagerungsgefüge die erste Phase als in drei Raumdimensionen kontinuierlich auftretende Matrixphase und die zweite Phase als diskontinuierliche, statistisch verteilte Einlagerungsphase aufweist, und wobei die erste Phase durch Sintern hergestellt ist.