Abstract:
A method of manufacturing a polycrystalline abrasive construction comprises providing a plurality of particles of a superhard material, the particles coated with a first matrix precursor material, providing a plurality of second matrix precursor particles having an average size less than 2 micron, the second matrix precursor particles including a liquid phase sintering agent, mixing together the plurality of particles of superhard material with particles of the second matrix precursor material and consolidating and sintering the particles of superhard material and the particles of matrix precursor material.A polycrystalline abrasive construction comprises a particles of a superhard material dispersed in a matrix material comprising a material derived from a liquid phase sintering aid and chemical barrier particles having an average particle size of less than 100nm dispersed in the matrix. Greater than 50% of the chemical barrier particles are located substantially at boundaries between superhard particles and the matrix.
Abstract:
A composition of a sintered superhard compact is provided. The sintered superhard compact body comprises superhard particles cubic boron nitride and titatium diboride. A binder phase may bond the superhard particles together. The binder phase comprises a titanium compound and a balance aluminum compound. The titanium compound may be formed during the high pressure high temperature condition. The sintered superhard compact body may have an amount of the titanium compound in order to have a mixed wear and toughness application.
Abstract:
A process for producing a silicon-containing CMC article. The process entails depositing one or more coating layers on silicon carbide (SiC) fibers, drawing the coated SiC fibers through a slurry to produce slurry-coated fiber material, and then processing the slurry-coated SiC fiber material to form unidirectional prepreg tapes. The tapes are stacked and then fired to yield a porous preform. The porous preform is then further densified by infiltrating the porosity therein to yield a CMC article. Infiltration can be achieved by a series of polymer infiltration and pyrolysis (PIP) steps, by melt infiltration (MI) after filling the porosity in the preform with carbon or one or more refractory metal, by chemical vapor infiltration (CVI), or by a combination of these infiltration techniques.
Abstract:
The present invention relates to a method of making a cBN material comprising the steps of: -providing a powder mixture comprising cBN grains, aluminum and a Ti(C x N y O z ) a powder, -subjecting the powder mixture to a milling to form a powder blend, -subjecting the powder blend to a forming operation to form a green body, - subjecting said green body to a pre-sintering step, at a temperature between 650 to 950°C, to form a pre-sintered body, - subjecting said pre-sintered body to a HPHT operation to form the cBN material; where the Ti(C x N y O z ) a powder is stoichiometric so that 0.05 2 O 3 phase, a binder phase of TiC, TiN and/or TiCN, W and Co, whereby a quotient Q is
Abstract translation:本发明涉及一种制备cBN材料的方法,包括以下步骤: - 提供包含cBN晶粒,铝和Ti(C x N y O z)粉末的粉末混合物, - 将粉末混合物喷射至研磨以形成粉末混合物, - 将所述粉末混合物喷射到成型操作以形成生坯, - 在650至950℃之间的温度下对所述生坯进行预烧结步骤以形成预烧结体, - 对所述预烧结体进行处理, 烧结体进行HPHT操作以形成cBN材料; 其中Ti(C x N y O z)a粉末是化学计量的,使得0.05
Abstract:
A process for producing a silicon-containing CMC article. The process entails depositing one or more coating layers on silicon carbide (SiC) fibers, drawing the coated SiC fibers through a slurry to produce slurry-coated fiber material, and then processing the slurry-coated SiC fiber material to form unidirectional prepreg tapes. The tapes are stacked and then fired to yield a porous preform. The porous preform is then further densified by infiltrating the porosity therein to yield a CMC article. Infiltration can be achieved by a series of polymer infiltration and pyrolysis (PIP) steps, by melt infiltration (MI) after filling the porosity in the preform with carbon or one or more refractory metal, by chemical vapor infiltration (CVI), or by a combination of these infiltration techniques.
Abstract:
A method for forming a stand-alone wafer or a coating on a substrate uses a composite of cubic boron nitride (cBN) particles and other materials, such as nitrides, carbides, carbonitrides, borides, oxides, and metallic phase materials. The wafer or coating may be formed of a thickness up to about 1000 microns for improved wear life. The density of material within the wafer or coating may be varied according to desired parameters, and a gradient of particle sizes for the cBN may be presented across the thickness of the material.
Abstract:
A cutting tool formed by a coating layer on a substrate has cutting edges that feature serrations. The linear dimensions of the serrations may vary from a few nanometers up to 10 microns. The serrations result in a smoother cut edge on the workpiece, particularly when the workpiece is formed of certain materials that are seen as particularly difficult to cut, such as hardened steels.
Abstract:
Einsatzbereite durch Sintern eines Rohlings hergestellte keramische Schneidplatte (1), als Wendeschneidplatte, mit einer Ober- und Unterseite (2, 3), die jeweils eine Auflagefläche (4) für den Einbau in einen Klemmhalter eines Schneidwerkzeuges aufweisen, mit die Ober- und Unterseite (2, 3) verbindenden Seitenflächen (5) und mit Schneidkanten (6) zur spanenden Bearbeitung von Werkstücken. Damit eine Nachbearbeitung nach dem Sintern zumindest teilweise vermieden ist und die Vorteile der fertiggepressten / fertiggesinterten Kontaktflächen zwischen der Schneidplatte und dem Werkstück genützt werden und ein optimales Aufliegen der Schneidplatte gewährleistet ist, damit Vibrationen mit den damit verbundenen Mikroausbrüchen/Verschleiß verhindert ist, wird vorgeschlagen, dass angrenzend an die Schneidkanten (6) eine umlaufende Spanfläche (7) angeordnet ist und die Spanfläche (7) die Auflagefläche (4) umgrenzt, wobei die Seitenflächen (5), die Schneidkanten (6) und die Spanflächen (7) aus der beim Sintern entstandenen Sinterhaut bestehen und keine Schädigung durch eine materialabtragende Bearbeitung erfahren haben und ausschließlich die Auflagefläche (4) einer materialabtragenden Bearbeitung unterzogen wurde und nicht aus der beim Sintern entstandenen Sinterhaut besteht.