Abstract:
Acier, dont la composition est, en pourcentages pondéraux : 10,0% ≤ Ni ≤ 24,5%; 1,0% ≤ Mo ≤ 12,0%; 1,0% ≤ Co ≤ 18,0%; 14,0% ≤ Mo + Co + Si + Mn + Cu + W + V + Nb + Zr + Y + Ta + Cr + C + Al + B + Ti + N ≤ 29,0%; 21,5% ≤ Ni + Co + Mo ≤ 40,0%; traces ≤ Al ≤ 4,0%; traces ≤ Ti ≤ 0,1%; traces ≤ N ≤ 0,010%; traces ≤ Si ≤ 4,0%; traces ≤ Mn ≤ 13,0%; traces ≤ C ≤ 0,03%; traces ≤ S ≤ 0,0020%; traces ≤ P ≤ 0,005%; traces ≤ B ≤ 0,01%; traces ≤ H ≤ 0,0005%; traces ≤ O ≤ 0,03%; traces ≤ Cr ≤ 5,0%; traces ≤ Cu ≤ 4,0%; traces ≤ W ≤ 6,0%; traces ≤ Zr ≤ 4,0%; traces ≤ Ca ≤ 0,1%; traces ≤ Mg ≤ 0,8%; traces ≤ Nb ≤ 4,0%; traces ≤ V ≤ 4,0%; traces ≤ Ta ≤ 4,0%; traces ≤ Y ≤ 4,0%; le reste étant du fer et des impuretés résultant de l'élaboration, et la population inclusionnaire, observée par analyse d'image sur une surface polie de 650 mm² si l'acier est sous forme d'une pièce transformée à chaud ou d'une tôle laminée à chaud, et de 800 mm² si l'acier est sous forme d'une tôle laminée à froid, ne comporte pas d'inclusions non- métalliques de diamètre équivalent supérieur à 10 μm. Produit réalisé en cet acier tel qu'une tôle ou une bande, et son procédé de fabrication.
Abstract translation:钢,其组成以重量百分比表示:10,0%≤Ni≤24,5%; 1.0%≤Mo≤12.0%; 1.0%≤Co≤18.0%; 14.0%≤Mo+ Co + Si + Mn + Cu + W + V + Nb + Zr + Y + Ta + Cr + C + Al + B + Ti +N≤29.0% 21.5%≤Ni+ Co +Mo≤40.0%; 痕量≤Al≤4.0%; 痕量≤Ti≤0.1%; 痕迹≤N≤0.010%; 痕迹≤如果≤4.0%; 痕量≤Mn≤13.0%; 痕量≤C≤0.03%; 痕量≤S≤0.0020%; 痕量≤P≤0.005%; 痕迹≤B≤0.01%; 痕量≤H≤0.0005%; 痕迹≤0≤0.03%; 痕量≤Cr≤5.0%; 痕量≤Cu≤4.0%; 痕量≤W≤6.0%; 痕量≤Zr≤4.0%; 痕量≤Ca≤0.1%; 痕量≤镁≤0.8%; 痕量≤Nb≤4.0%; 痕量≤V≤4.0%; 痕量≤Ta≤4.0%; 痕量≤Y≤4.0%; 在650mm²的抛光表面上通过图像分析观察到由显影产生的铁和杂质的剩余部分以及包含物群; 如果钢材是一件家具的形式,这是一种转化剂; 热的或来自层压制品公司的...你可以自己做 热,800毫米² 如果钢是层压钢的形式; 冷,没有比平均直径更大的非金属夹杂物; 10微米。 产品实现ó 在这种钢铁,如手提包或胶带,及其过程; 的制造。 p>
Abstract:
A method of carburizing a steel component having a composition of Fe-16.3Co-7.5Ni-3.5Cr-1.75Mo-0.2W-0.11C-0.03Ti-0.02V includes generating a low pressure vacuum in a carburization furnace having the steel component therein, heating the steel component to an optimal carburization temperature while in the low pressure vacuum, performing a boost cycle to introduce carbon rich gas into the carburization furnace while the steel component is at the optimal carburization temperature and in the low pressure vacuum, and performing a diffuse cycle by ceasing introduction of the carbon rich gas into the carburization furnace to allow for diffusion of the carbon into the steel component to occur and while the steel component is at the optimal carburization temperature and in the low pressure vacuum. The boost cycle and the diffuse cycle are repeated to achieve a carbon content at a surface of the steel component of between 0.40 wt. % and 0.55 wt. %.
Abstract:
A conductor that resists plastic deformation is provided for an electronic signal-carrying or electric power-carrying cable, cable assembly, or device. The conducting element itself has favorable mechanical properties and therefore combines plastic deformation resistance with conductance. In one embodiment, the superelastic conductor is fabricated using a shape memory alloy such that the transformation temperature of the superelastic conductor is set outside the useful operating range of the conductor. In another embodiment, the conductor is fabricated using a shape memory alloy that is nominally in a martensitic phase under stress free conditions. In both embodiments, the conductor microstructures are able to accommodate externally applied strain, bending, deformation, or other external displacement through mechanisms which do not involve plastic deformation.