摘要:
Die Erfindung betrifft ein Verfahren zur Herstellung eines maßgeschneiderten warmumformbaren Blechhalbzeugs, bei dem mindestens zwei Stahlbleche (1, 2') unterschiedlicher Werkstoffgüte und/oder Dicke im Stumpfstoß durch Laserschweißen gefügt werden, wobei mindestens eines der Bleche aus presshärtbarem Stahl gefertigt ist und eine metallische Beschichtung (1.1, 2.1) auf Aluminium- oder Aluminium-Silizium-Basis aufweist. Die Stahlbleche (1, 2') werden erfindungsgemäß mit einem von ihren miteinander zu verschweißenden Kanten begrenzten, eine durchschnittliche Breite (b) von mindestens 0,15 mm aufweisenden Spalt (G) aneinander geschweißt, wobei in den Spalt (G) so viel Material des Zusatzdrahtes (8) eingebracht wird, dass das Verhältnis von in den Spalt (G) eingebrachtem Zusatzdrahtvolumen zu dem Volumen des mittels Laserstrahls aufgeschmolzenen Stahlblechmaterials mindestens 20 % beträgt. Das erfindungsgemäße Verfahren erfordert keine vorherige Entschichtung des Randes der zu verschweißenden Blechkanten und bietet somit erhebliche Kostenvorteile.
摘要翻译:该激光焊接接头是具有设置在多个钢板之间的焊接金属的激光焊接接头,其中焊接金属具有预定部件的化学组成,焊接金属的平均硬度为维氏硬度为350-540,分布密度 焊接金属中直径为2-50μm的孔隙率为5.0个/ mm 2以下,焊接金属中的直径为3μm以上的氧化物夹杂物的分布密度为0.1〜8.0个/ mm 2。
摘要:
The disclosure provides a material that includes a stainless steel layer with a consistent composition diffusion bonded to a carbon steel substrate. The material can have the corrosion resistance associated with the explosively welded stainless steel and the deep diffusion bonding observed typical of chromizing applications.
摘要:
The present invention concerns a new metal powder which is useful for coating cast iron parts. The invention also relates to a method for coating cast iron parts by using the new metal powder. Of special importance is the possibility to use the metal powder for coating the surfaces of glass moulds. The invention also relates to metal parts, such as cast iron parts, or glass moulds which are coated by the metal powder.
摘要:
Weld metals and methods for welding ferritic steels are provided. The weld metals have high strength and high ductile tearing resistance and are suitable for use in strain based pipelines. The weld metals are comprised of between 0.03 and 0.08 wt% carbon, between 2.0 and 3.5 wt% nickel, not greater than about 2.0 wt% manganese, not greater than about 0.80 wt% molybdenum, not greater than about 0.70 wt% silicon, not greater than about 0.03 wt% aluminum, not greater than 0.02 wt% titanium, not greater than 0.04 wt% zirconium, between 100 and 225 ppm oxygen, not greater than about 100 ppm nitrogen, not greater than about 100 ppm sulfur, not greater than about 100 ppm phosphorus, and the balance essentially iron. The weld metals are applied using a power source with pulsed current waveform control with 2 and
摘要:
A filler wire (consumable) (140, 140A, 140C, 240) for depositing wear-resistant materials (142) in a system (100, 1400) for any of brazing, cladding, building up, filling, hard-facing overlaying, welding, and joining applications is provided. The consumable (140, 140A, 140C, 240) is composed of base filler materials (141) consistent with commonly known compositions. For example, the base filler material (141) can comprise standard materials used in many standard mild steel wires. In addition to the base filler materials, the consumable includes wear-resistant materials (142). The wear-resistant materials (142) include at least one of amorphous metallic powder, diamond crystals (142), diamond powder (143), tungsten carbide, and alu- minides.
摘要:
Weld metals and methods for welding ferritic steels are provided. The weld metals have high strength and high ductile tearing resistance and are suitable for use in strain based pipelines. The weld metal contains retained austenite and has a cellular microstructure with cell walls containing lath martensite and cell interiors containing degenerate upper bainite. The weld metals are comprised of between 0.02 and 0.12 wt% carbon, between 7.50 and 14.50 wt% nickel, not greater than about 1.00 wt% manganese, not greater than about 0.30 wt% silicon, not greater than about 150 ppm oxygen, not greater than about 100 ppm sulfur, not greater than about 75 ppm phosphorus, and the balance essentially iron. Other elements may be added to enhance the properties of the weld metal. The weld metals are applied using a power source with current waveform control which produces a smooth, controlled welding arc and weld pool in the absence of C0 2 or oxygen in the shielding gas.