Abstract:
Beschrieben wird ein Verfahren zur Herstellung eines kristallinen Halbleiterwerkstoffs, bei dem Partikel aus dem Halbleiterwerkstoff und/oder einer Vorläuferverbindung des Halbleiterwerkstoffs in einen Gasstrom eingespeist werden, der eine ausreichend hohe Temperatur aufweist, um die Partikel aus dem Halbleiterwerkstoff aus dem festen in den flüssigen und/oder gasförmigen Zustand zu überführen und/oder um die Vorläuferverbindung thermisch zu zersetzen. In einem weiteren Schritt wird flüssiger Halbleiterwerkstoff aus dem Gasstrom auskondensiert und/oder abgetrennt und in einen festen Zustand überführt unter Ausbildung von mono- oder polykristallinen Kristall strukturen.
Abstract:
A single crystal composition includes an alkali halide crystal doped with a divalent element in the amount of 0.5 to 5 weight percent, the doped crystal having an optical transmission of at least 45% at at least one wavelength. An alkali halide doped with at least one of europium and ytterbium is particularly useful as a scintillator.
Abstract:
A main crucible of molten semiconductor is replenished from a supply crucible maintained such that there are always two phases of solid and liquid semiconductor within the supply crucible. Heat added to melt the solid material results in the solid material changing phase to liquid, but will not result in any significant elevation in temperature of the liquid within the supply crucible. The temperature excursions are advantageously small, being less than that which would cause problems with the formed product. The solid product material acts as a sort of temperature buffer, to maintain the supply liquid temperature automatically and passively at or very near to the phase transition temperature. For silicon, excursions are kept to less than 90°C, and even as small as 50°C. The methods also are useful with germanium. Prior art silicon methods that entirely melt the semiconductor experience excursions exceeding 100°C.
Abstract:
Techniques for the formation of silicon ingots and crystals using silicon feedstock of various grades are described. A common feature is adding a predetermined amount of germanium to the melt and performing a crystallization to incorporate germanium into the silicon lattice of respective crystalline silicon materials. Such incorporated germanium results in improvements of respective silicon material characteristics, including increased material strength and improved electrical properties. This leads to positive effects at applying such materials in solar cell manufacturing and at making modules from those solar cells.
Abstract:
Techniques for the formation of silicon ingots and crystals using silicon feedstock of various grades are described. Common feature is adding a predetermined amount of germanium to the melt and performing a crystallization to incorporate germanium into the silicon lattice of respective crystalline silicon materials. Such incorporated germanium results in improvements of respective silicon material characteristics, mainly increased material strength. This leads to positive effects at applying such materials in solar cell manufacturing and at making modules from those solar cells. A silicon material with a germanium concentration in the range (50-200) ppmw demonstrates an increased material strength, where best practical ranges depend on the material quality generated.
Abstract:
A method can include deadsorbing an impurity from an initial material to form a deadsorbed material, melting the deadsorbed material to form a melt within the crucible, and growing a crystal from the melt. In an embodiment, growing is performed at a growth rate that is at least 1.1 times a growth rate of a different crystal formed from a melt of the initial material using a same crystal growth technique, having a same cross-sectional shape, size, and crystal orientation, and a same haze level. In another embodiment, the method can include crushing an initial material to reduce closed porosity before or during deadsorbing impurities.
Abstract:
Techniques for the formation of silicon ingots and crystals using silicon feedstock of various grades are described. Common feature is adding a predetermined amount of germanium to the melt and performing a crystallization to incorporate germanium into the silicon lattice of respective crystalline silicon materials. Such incorporated germanium results in improvements of respective silicon material characteristics, mainly increased material strength. This leads to positive effects at applying such materials in solar cell manufacturing and at making modules from those solar cells. A silicon material with a germanium concentration in the range (50-200) ppmw demonstrates an increased material strength, where best practical ranges depend on the material quality generated.
Abstract:
Beschrieben wird ein Verfahren zur Herstellung eines monokristallinen Halbleiterwerkstoffs, bei dem ein Halbleiterwerkstoff als Ausgangsmaterial bereitgestellt wird, das Ausgangsmaterial in eine Heizzone überführt wird, in der eine Schmelze aus dem Halbleiterwerkstoff mit dem Ausgangsmaterial gespeist wird und die Schmelze aus der Heizzone abgesenkt wird und/oder die Heizzone angehoben wird, so dass sich am unteren Ende der Schmelze eine Erstarrungsfront ausbildet, entlang derer der Halbleiterwerkstoff in der gewünschten Struktur kristallisiert, wobei das Ausgangsmaterial aus dem Halbleiterwerkstoff in flüssiger Form bereitgestellt und flüssig in die Schmelze eingespeist wird. Weiterhin wird eine Anlage zur Herstellung eines monokristallinen Halbleiterwerkstoffs beschrieben, die eine Quelle für einen als Ausgangsmaterial dienenden flüssigen Halbleiterwerkstoff, Heizmittel zum Herstellen und/oder Aufrechterhalten einer Schmelze aus dem Halbleiterwerkstoff und bevorzugt auch Mittel zum kontrollierten Einspeisen des als Ausgangsmaterial dienenden flüssigen Halbleiterwerkstoffs in die Schmelze umfasst.
Abstract:
This invention includes a system and a method for growing crystals including a batch auto-feeding mechanism. The proposed system and method provide a minimization of compositional segregation effect during crystal growth by controlling growth rate involving a high-temperature flow control system operable in an open and a closed loop crystal growth process. The ability to control the growth rate without corresponding loss of volatilize-able elements enables significantly improvement in compositional homogeneity and a consequent increase in crystal yield. This growth system and method can be operated in production scale, simultaneously for a plurality of growth crucibles to further the reduction of manufacturing costs, particularly for the crystal materials of binary or ternary systems with volatile components, such as Lead (Pb) and Indium (In).