Abstract:
The invention relates to a method of manufacturing a shaped tray or plate of fibrous material. The method comprises the steps of(i) providing a fibrous pulp, in which the fibres substantially consist of at least 85 wt-% of softwood fibres having an average fibre length of at least 2.0 mm and at most 15 wt-% of broke having a fibre length of about 0.05 mm to 1.0 mm, (ii) turning the pulp into a foamed suspension, (iii) supplying the foamed suspension from a headbox to a forming fabric of a board machine to form a fibrous web, (iv) drying the web to obtain a dried web having a compressibility in the thickness direction of at least 20 %, and(v) including the web as a layer in a board, which is turned to said tray or plate by thermopressing or deep-drawing. The invention even covers shaped trays and plates produced by use of the method.
Abstract:
The present invention relates to an arrangement for and a method of manufacturing a fibrous web, i.e. paper or board. The present invention relates specifically to so-called foam formation of a fibrous web. A further feature of the present invention is the possibilityto produce precipitated calcium carbonate (PCC) in the paper or board making stock simultaneously, i.e. in-line with theformation of fibrous foam.
Abstract:
The present invention relates to a nonwoven web comprised of metal or refractory fibers with nylon as a binder. The nonwoven web is prepared by forming a foam furnish by agitating the fibers in a foamed medium, and passing the foam furnish onto a screen and defoaming the furnish. It is preferred that the nylon binder is added to the foam furnish in the form of fibers. Once the furnish is defoamed to form a nonwoven web, the sheet is dried at a temperature sufficient to melt the nylon binder.
Abstract:
A unitary absorbent composite having a plurality of strata is disclosed. In the composite, adjacent strata are separated by a transition zone integrally connecting the strata. Each stratum includes fibers and a binder, and the transition zone includes fibers from adjacent strata. Method for forming the unitary composite are also disclosed.
Abstract:
A printed circuit board is made from at least one non-woven sheet or web layer comprising at least 50 % by weight acrylic fibers, with any balance substantially electrically non-conductive fibers, filler, and binder. The sheet or web is preferably made by the foam process, and may contain 60-80 % straight polyacrylonitrile fibers and 40-20 % fibrillated (pulp) ones. The web or sheet is preferably compressed by thermal calendering so that it has a density of about 0.1-1 grams per cubic centimeter; and the web or sheet may have a basis weight of between about 20-120 grams per square meter. The web or sheet may also have a 1-40 % of substantially electrically non-conductive organic or inorganic binder, or may be substantially binder free. A printed circuit board made using the layers of these non-woven webs or sheets is otherwise conventional, including a pre-preg material, electrically conductive circuit elements, and electronics, and has improved properties compared to woven glass and non-woven aramid products, including improved fiber consolidation, easy board construction, and improved MD/CD ratio and stability.
Abstract:
The invention concerns a method of manufacturing paper or board, the paper or board obtained by the method, and a method of producing a tray from the board. In a fibrous stock for papermaking is incorporated an amount of polymer coated fibrous particles, which even have a foaming agent such as moisture contained therein. A web is formed from the fibrous stock on a forming fabric of a paper or board machine, followed by pressing and drying to a finished paper or board. As the paper or board is sufficiently heated the foaming agent within the particles evaporates, causing expansion and foaming of the polymer coating, which adds to malleability of the board as it is moulded into a shaped article such as a board tray. The invention even covers production of doubly coated fibrous particles for use in said methods, the inner coating layer being of a foamable polymer with a higher melt flow rate and the outer coating layer being of a non-foaming polymer of a lower melt flow rate.
Abstract:
A method for producing an aerogel and/or foam for manufacturing of paper or paper board, and products thereof, wherein said paper or paper board is manufactured in a papermaking machine, wherein the aerogel and/or foam is formed from gas bubbles having a having a diameter of less than 0.5 micrometer.
Abstract:
The invention relates to growing medium structures comprising Sphagnum moss, to a foam-laid method for their manufacture and to the use thereof in horticulture, landscaping and forestry applications.
Abstract:
The present invention relates to a method of forming a moulded fibrous product, comprising the steps of foaming (1) an aqueous suspension of natural fibres, optionally in combination with synthetic fibres, to provide a first fibrous foam, a surfactant may be added to aid the foaming, feeding the fibrous foam into a mould, mechanically withdrawing a part of the water (2) contained in the foam to produce a solidified, moist fibrous composition, and evaporating water (3) from the solidified, moist fibrous composition to produce a dry fibrous product.
Abstract:
The invention relates to a fibrous web product such as paper, and a method for the preparation of such fibrous web. According to the method microfibrillated cellulose (MFC) together with a pulp of a greater fibre length, such as chemithermomechanical pulp (CTMP), are mixed with a foam of water and a sur- factant, the foam is supplied to a forming fabric of a paper or board machine, dewatered by suction of air through the forming fabric, and dried to the final web product. The method brings a high bulk in combination with a high Scott bond value, to provide improved wet and dry tensile strength for the paper and board products.