摘要:
An air inlet for a flight vehicle engine includes at least one fin, at least partially upstream of a throat of the engine. The fin protrudes into a flow channel, extending beyond a boundary layer into the main airstream in the inlet. The fin causes mixing in the flow, bringing high-momentum flow into areas of the flow channel containing low-momentum flow by aggregating the boundary layer and causing it to lift from the surface. The fin may have a width and/or height that varies along its length in the flow direction, which may allow it to shape the flow around it in predictable ways, without resulting in excessive drag.
摘要:
Preheating of fuel and injection into a plasma torch plume fro adjacent the plasma torch plume provides for only ignition with reduced delay but improved fuel -air mixing and fuel atomization as well as combustion reaction enhancement. Heat exchange also reduced erosion of the anode of the plasma torch. Fuel mixing atomization, fuel mixture distribution enhancement and combustion reaction enhancement are improved by unsteady plasma torch energization, integral formation of the heat exchanger, fuel injection nozzle and plasma torch anode in a more compact, low-profile arrangement which is not intrusive on a highspeed air flow with which the invention is particularly effective and further enhanced by use of nitrogen as a feedstock material and inclusion of high pressure gases in the fuel to cause effervescence during injection.
摘要:
Preheating of fuel and injection into a plasma torch plume fro adjacent the plasma torch plume provides for only ignition with reduced delay but improved fuel -air mixing and fuel atomization as well as combustion reaction enhancement. Heat exchange also reduced erosion of the anode of the plasma torch. Fuel mixing atomization, fuel mixture distribution enhancement and combustion reaction enhancement are improved by unsteady plasma torch energization, integral formation of the heat exchanger, fuel injection nozzle and plasma torch anode in a more compact, low-profile arrangement which is not intrusive on a highspeed air flow with which the invention is particularly effective and further enhanced by use of nitrogen as a feedstock material and inclusion of high pressure gases in the fuel to cause effervescence during injection.
摘要:
Described is a propulsion system (1) for hypersonic aircraft, having an air inlet (10) of a fluid (110), a containment duct (20) and an exhaust nozzle (30). The propulsion system (1) comprises a bypass duct (40) for a flow (100) of fluid (110), an air-breathing engine (22) and a rocket (23) configured for processing respective flows (22a, 23a) of fluid (110). The bypass duct (40), the air-breathing engine (22) and the rocket (23) are operatively associated with each other in such a way as to generate a thermodynamic-fluid interaction in a same portion of space (33) between the respective flows (40a, 22a, 23a) processed in an operating configuration of the propulsion system (1) and wherein the portion of space (33) is inside the containment duct (20).
摘要:
A propulsion system for a supersonic aircraft includes an engine, a compression surface upstream of the engine, a shroud surrounding the engine configured to direct airflow passing over the compression surface towards the engine, and a plurality of vortex generators positioned upstream of the engine. The vortex generators have a height such that when the supersonic aircraft is flown at a predetermined speed, the plurality of vortex generators create a plurality of vortices that propagate partially outside of a boundary layer formed proximate a surface of a supersonic inlet. The vortices cause a high-velocity portion of the airflow to move towards a portion of the engine having a higher sensitivity to changes in stagnation pressure and a low-velocity portion of the airflow to move away from the portion of the engine having the higher sensitivity to changes in stagnation pressure prior to the airflow reaching a face of the engine.
摘要:
Light weight fan blades for turbofan jet engines are disclosed. The fan blades may be fabricated from an aluminum alloy. To enhance the hardness of the leading edge of the fan blade, a titanium sheath may be attached to the leading edges of the fan blades. To prevent galvanic coupling between the titanium and the aluminum, a polymeric liner may be disposed between the protective titanium sheath and the aluminum fan blade. The liner may be fabricated from a polymer material, such as a polyimide or another high performance polymer.
摘要:
A ramjet engine (3, 4, 5), flying at Mach 3 has 64% efficiency, and at Mach 4 has 76% efficiency. Ramjet engines are currently only used for supersonic flight and have not been used as stationary engines with mechanical output. The present invention, in addition to subsonic flight, can be operated as a stationary engine, and can expand the use of the ramjet engine for mechanical output in vehicles, power plants, and in generator sets for large buildings, homes, and industry. The present invention provides the means to use ramjet engines as stationary engines by building nearly adiabatic compressors (1, 2, 12, 13, 14, 15) and expanders (6, 7, 8, 9, 10, 11) capable of (de-)compression ratios up to about 92: 1 to supply the high energy gas/air required by ramjet engines, and shows how to replace de Laval nozzles with sonic converters (49, 50, 51) that convert supersonic to subsonic flow and sonic convertors (45, 46, 47) that convert subsonic to supersonic flow without having choke areas.
摘要:
A rotary ramjet engine (E) is provided operating with a very low axial flow component. The engine has a rotor (210), shaft (204), a plurality of ramjet combustors mounted on the periphery of the rotor (210). A set of spaced helical strakes extend from the outside surface of the rotor toward the interior wall of the engine case, less a running clearance therefrom. A centerbody (36) is provided for each ramjet engine. The centerbody is disposed parallelto the strakes and includes leading edge structure (34), opposing sidewalls, a shaped cavity, and a rear end wall.