Abstract:
La présente invention porte sur un ensemble de propulsion d'un aéronef comprenant une turbine (15), au moins une soufflante (10) et un mécanisme de transmission de puissance entre la turbine et la soufflante, caractérisé par le fait que le mécanisme de transmission de puissance comprend un réducteur de vitesse (20) avec une entrée et une sortie de mouvement, l'entrée étant dans le prolongement de l'axe (16) de la turbine et la sortie reliée à la soufflante.
Abstract:
A structural panel for use with a gas turbine engine includes a first exterior wall, a second exterior wall, and interior walls. The first exterior wall includes a first exterior surface and a first interior surface parallel to the first exterior surface. The second exterior wall includes a second exterior surface and a second interior surface parallel to the second exterior surface. The interior walls extend from the first interior surface to the second interior surface. The interior walls are arranged to form a pattern of hexagonal cells. The pattern of hexagonal cells includes cell groups having a variation in structural strength such that at least one of the cell groups has a structural strength that is not the same as the remaining cell groups.
Abstract:
In one exemplary embodiment, an airfoil for a turbine engine includes pressure and suction sides extending in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil geometry corresponds to tangential leading and trailing edge curves and a tangential stacking offset curve. The airfoil extends from a root. A zero tangential reference point corresponds to tangential center of the root. Y LE corresponds to a tangential distance from a leading edge to the reference point at a given span position. Y TE corresponds to a tangential distance from a trailing edge to the reference point at a given span position. Yd corresponds to a tangential stacking offset at a given span position. (Y LE -Y d )/(Y d -Y TE ) at 40% span position is about 1.5 and (Y LE -Y d )/(Y d -Y TE ) at 20% span position is about 2.
Abstract:
A pivoting turbine vane has an airfoil, an inner bearing race and an outer bearing race, with the inner and outer bearing races on a pivot axis of the pivoting turbine vane. There are cooling air passages through at least one of the inner and outer bearing races to provide cooling air from a remote facing face of at least one of the inner and outer bearing races to an airfoil facing face of at least one of the inner and outer bearing races. A turbine section is also disclosed.
Abstract:
A gas turbine engine includes a core housing that includes an inlet case and an intermediate case that respectively provide an inlet case flow path and an intermediate case flowpath. A shaft provides a rotational axis. A hub is operatively supported by the shaft. A rotor is connected to the hub and supports a compressor section. The compressor section is arranged in a core flow path axially between the inlet case flow path and the intermediate case flow path. The core flowpath has an inner diameter and an outer diameter. At least a portion of inner diameter has an increasing slope angle relative to the rotational axis. A bearing is mounted to the hub and supports the shaft relative to one of the intermediate case and the inlet case.
Abstract:
A separate propulsion unit incorporating a free turbine and a fan receives gases from a plurality of core engines. The core engines each include a compressor, a turbine and a combustion section. The core engines in combination pass gases across the free turbine. A method is also disclosed.
Abstract:
A turbine section (16) having a plurality flow path components forming a plurality of guide vane rings (30 a-d) and ring segments (32 a-d) arranged in axial succession to define a boundary of a hot gas duct (28). A vane carrier (36) located around the gas duct, and sealing elements (40) extend radially between circumferentially extending grooves (50) in the vane carrier and respective grooves (54) in the flow path components. The sealing elements include radially inner and outer edges (58, 60), and at least one axially facing side (62, 64) defining a chamfered portion (66, 68) extending to one of the edges to accommodate axial movement of the sealing element about the one edge within a respective groove.
Abstract:
Compresseur (10) de turbomachine, comprenant un carter (12) dont une paroi interne définit une surface aérodynamique de référence délimitant une veine de passage de gaz, et dans lequel est montée une roue à aubes (14) équipée d'aubes (18) radiales. Une saignée circonférentielle est formée dans la paroi interne du carter. Sa forme est définie de l'amont vers l'aval par trois surfaces, respectivement des surfaces amont, médiane et aval, sensiblement coniques. La surface amont s'étend en amont du bord d'attaque des aubes. La surface médiane est sensiblement parallèle à ladite surface aérodynamique de référence. La surface aval s'étend vers l'aval au moins jusqu'au bord de fuite des aubes. La jonction entre les surfaces médiane et aval est située entre 30% et 80%, et de préférence entre 50 et 65%, de la longueur axiale des aubes (18) à partir du bord d'attaque.