Abstract:
Überfüllsicherung (101, 301, 401, 501) zur Speicherung verflüssigter Gase in einem Tankbehälter (102), umfassend ein Gehäuse (103), in welches zur Befüllung des Tankbehälters (102) die Befüllleitung mündet, einen Verschluss (113), welcher zwischen einer die Befüllung unterbindenden Verschlussstellung und einer die Befüllung freigebenden offenen Stellung bewegbar angeordnet ist, und einen Schwimmer (124), welcher Schwimmer (124) mit einem Auslösemechanismus gekoppelt ist. Der Auslösemechanismus ist in Abhängigkeit von dem Flüssigkeitsniveau im Tankbehälter (102) von dem Schwimmer (124) zwischen einer Eingriffsposition und einer Freigabeposition bewegbar, wobei in der Eingriffsposition der Auslösemechanismus in den Verschluss (113) eingreift und den Verschluss (113) an dem Gehäuse (103) abstützend in der offenen Stellung hält, und wobei in der Freigabeposition der Auslösemechanismus den Verschluss (113) frei gibt, wodurch der Verschluss (113) von dem strömenden verflüssigten Gas in die Verschlussstellung bewegbar ist.
Abstract:
measurement device for monitoring the level of liquefied gas in a canister is described. The device comprises an array of at least three temperature sensors, configured to be mounted externally of the canister to extend from a first position on the canister to a second position on the canister. The device also comprises detection circuitry for detecting, when gas is released from the canister causing a temperature drop at the liquid-gas interface within the canister, a subset of the temperature sensors measuring a lower temperature than the remainder of the temperature sensors, and for identifying a current level of the liquefied gas in the canister based on the position within the array of the subset of the temperature sensors detected as measuring a lower temperature. This arrangement can be retrofitted to any canister, without the need to modify the canister or change the valve arrangement.
Abstract:
The invention relates to a method for estimating the characteristic parameters of a cryogenic tank (1), in particular geometric parameters, including: a step comprising the measurement of the pressure differential between the upper and lower parts of the tank prior to filling DP mes_before ; a step comprising the measurement of the pressure differential between the upper and lower parts of the tank after filling DP mes_after ; a step comprising the determination of the mass of liquid delivered (m delivered) during filling; and a step comprising the calculation of a first geometric parameter (R) of the tank, namely the radius (R) which is calculated from equation (I), wherein g is the Earth's gravitational acceleration and MAVO is a density coefficient that is a function of the density of the liquid and the gas in the tank and optionally in the pressure measuring pipes (11) when the pressure differential is measured by at least one remote pressure sensor connected to the upper and lower parts of the tank via respective measuring tubes (11).
Abstract:
A valve unit with a level indicator for containers, in particular containers for liquefied gases, comprising; a valve body having external dimensions and an external geometry compatible with filling equipment used for similar valve bodies, without a level indicator, and having a substantially axial gas duct, a piston shutter which may be axially displaced in the valve body to and from a valve seat in order selectively to intercept the gas duct, a control rod of a floating actuator extending into the gas duct and into an axial cavity of the piston, a primary magnet which may be displaced axially in the axial cavity of the piston under the action of the control rod in response to a variation of the level in the container, a level indicator including a moving assembly subject to the magnetic field of the primary magnet in order to display the gas level detected by the floating actuator, the level indicator comprises a housing for the moving assembly which is secured to the valve body independently from the piston shutter.
Abstract:
Liquefied natural gas is stored, for example, on board ship, in a battery 2 of storage tanks 4, 6, 8 and 10. Submerged pumps 16 are used to transfer the LNG to secondary storage vessel 22. The pressure of the LNG is raised and it is transferred from the secondary vessel 22 to a forced vaporiser 36, in which it is vaporised. The outlet pressure of each submerged pump 16 may be relatively low and the apparatus may be operated either intermittently or continuously.
Abstract:
Procédé d'estimation de paramètres caractéristiques d'un réservoir (1) cryogénique et notamment de paramètres géométriques comprenant : une étape de mesure du différentiel de pression entre les parties haute et basse du réservoir avant un remplissage DP mes_before , une étape de mesure du différentiel de pression entre les parties haute et basse du réservoir après ledit remplissage DP mes_after , une étape de détermination de la masse de liquide livrée ( m delivered ) au cours dudit remplissage, une étape de calcul d'un premier paramètre géométrique ( R ) du réservoir constitué par le rayon ( R ) étant calculé selon l'équation (I) dans laquelle g est l'accélération de la pesanteur terrestre et MAVO est un coefficient de masse volumique fonction de la masse volumique du liquide et du gaz dans le réservoir et éventuellement dans des conduits (11) de mesure de pression lorsque la mesure du différentiel de pression est réalisée par au moins un capteur de pression déporté relié aux parties haute et basse du réservoir via des tuyaux (11) de mesure respectifs.
Abstract:
The device comprises a discoidal body (1) with a flat circular face for sealed coupling with an opening of the tank, there being produced in the discoidal body: a gas inlet nozzle equipped with a non-return valve and with a limit valve controlled by a float (18) to limit filling of the tank; a level indicator (25) of the liquid contained in the tank; and an outlet nozzle provided with shut-off members for a pipe for use. The float (18) of said limit valve is hinged to the body (1) of the device by means of a rod (15) pivoted in the body (1) according to an axis (X-X) parallel to said flat face (IB) of the body (1) of the device and approximately coplanar therewith.
Abstract:
An anti-overfill protector is mounted in LPG tanks, including a state module and an open-close module. The state module comprises a floating rod that contacts with the lower cover and links a magnet ring frame. The magnet ring is mounted in the magnet ring frame that is mounted in a ring groove of the lower cover. The lower cover comprises a round hole pipe in which the core rod of the valve is mounted. The magnet core is mounted at the end of the core rod of the valve. The polarity of the pole of the magnet core is the same as that of the magnet ring. The open-close module comprises a cylinder on which there is a valve port linking through a radial hole. Axial inlet holes are provided around the valve port. The piston gasket on the top of the piston is mounted in the bottom of the chamber of the valve port, and the gasket faces the valve pole correctly. The piston is sealed in the inner hole of the cylinder, and the both are glide-fit each other. The radial hole in the chamber of the piston links through the chamber of the cylinder. The bottom of the cylinder is connected with the lower cover. The state module is operated by means of the theory of the magnetic repulsion, and the operation is completed at the magnetic pole instantaneously, and the position of the magnetic pole is transformed accurately. The open-close module is operated rapidly and reliably by means of the theory of the pressure difference caused by the liquid velocity between the big and small hole, and the module is suitable for the accurate minim control and has good sealability.
Abstract:
Disclosed is an alarm device for sensing an amount of gas within a pressure vessel (10) in which high pressure liquefied gas or liquid is charged such as, for example, an LPG tank used in general housings, a gas tank installed on LPG vehicles, a tank lorry for storing or carrying high pressure gas, a liquefied oxygen tank, a refrigerating pressure vessel and the like, to thereby inform a user that the pressure vessel (10) should be exchanged or recharged to be previously supplied with the shortage of the liquefied gas. The alarm device includes: a sensing unit (20) (a unit serving as a proximity switch, a photo-electric switch, an optical sensor, a magnetic sensor, an optical fiber, an oscillator and so on, or a unit being capable of performing other sensing operations) which is installed within a pressure vessel (10), for sensing an amount of gas stored in the pressure vessel (10); a transmission line (30) which is connected to the sensing unit (20), for transmitting a sensing result of the sensing unit (20); and an alarm unit (40) which is connected to the transmission line (30), for generating an alarm in response to an output signal of the transmission line (30).