Abstract:
Ein Verfahren bezieht sich insbesondere auf die Ausbesserung einer Feuerfestauskleidung eines metallurgischen Gefässes (10) im heissen Zustand. Diese Ausbesserung erfolgt dabei mittels einer Auftragevorrichtung (15). Zudem wird mittels einer Einrichtung (20) eine Erfassung zumindest der verschlissenen Bereiche und eine Überwachung der Ausbesserung durchgeführt. Dabei wird vor, während und/oder nach dem Auftragen zumindest ein Teilbereich der auszubessernden Stellen (13) der Feuerfestauskleidung (12) des Gefässes (10) bzw. der Spritzstrahl (18) fotographisch mit Visualisierung der Temperaturbereiche (26, 27, 28) erfasst und daraus erfolgt eine Auswertung hinsichtlich verschiedener Parameter, wie Eigenschaften, Schichtdicke und/oder Verteilung des Auftragsmaterials. Es hat sich herausgestellt, dass durch diese Visualisierung der Temperaturbereiche der auszubessernden Stellen bzw. des Feuerfestmateriais beim Auftragen verschiedene Parameter sehr genau festgestellt werden können und sich daraus eine optimales Beschichten der Ausmauerung erzielen lässt.
Abstract:
The present embodiments are directed toward a system for measuring a refractory layer of a gasifier. In one embodiment, the gasifier includes a first refractory layer disposed about a gasification chamber, a second refractory layer disposed about the first refractory layer, and a temperature sensor disposed between the first refractory layer and the second refractory layer. The temperature sensor may collect temperature data for use in determining thickness of the first refractory layer.
Abstract:
Various systems and method for acoustic monitoring of smelting furnaces and similar devices are disclosed. Acoustic sensors (and optionally other sensors) are mounted to the furnace. Acoustic emission events generated in the furnace are analyzed to identify conditions that exceed one or more thresholds. The location of acoustic emissions may be identified and reported. Output signals may be generated in response to acoustic emissions. The location of acoustic emissions may be used to identify the location of potential failures in the furnace.
Abstract:
A method of a method for measuring wear in the lining of a metallurgical melting vessel such as a steel converter, by a laser scanner. A laser having a contouring system on a cart can be moved between measurements. The laser contouring system references three permanent marks behind the cart and two temporary marks positioned near the vessel. The distances from the movable cart to each of the five marks is determined during an initial measurement by the contouring system. Every time the cart is moved and a new measurement is taken, the contouring system scans the vessel and the two temporary marks but not the permanent marks .
Abstract:
Some embodiments of the present invention provide systems, methods and apparatus for more accurately determining the thickness of a refractory lining included in an operating metallurgical furnace. Specifically, in some embodiments a transient propagated stress wave is used to determine the condition of a refractory lining, and additionally, provide a systematic way to include the affect that temperature has on the velocity of a compressive wave through a heated refractory material and/or accretions. As identified in aspects of the present invention, and contrary to the common understanding in the art, the velocity of a stress wave, at each frequency and in a refractory material, is not necessarily constant over a temperature range. In accordance with aspects of some specific embodiments of the invention, a scaling factor α can be calculated for each refractory material to adjust for the presumed velocity of the stress wave through each refractory material.
Abstract:
A furnace wall observation device for observing the surfaces of the opposed furnace walls of a coke oven carbonizing chamber and a furnace wall shape measuring device for measuring the shape of the surfaces of the furnace walls, wherein a light beam radiation device and an imaging device are stored in an insulated container, a mirror surface is disposed on the outside of the insulated container, and the images of the surfaces of the furnace walls reflected in the mirror surface are imaged by the imaging device.
Abstract:
The invention relates to a method for the recording of an object space, which works with an opto-electronic distance sensor, by the signal propagation time method and a scanning device for sweeping the optical axes of the transmitter and receiver device. Furthermore, an evaluation unit is provided, which determines distance values from the propagation time or the phase angle of the emitted optical signal. A part of the light beam is split off from the light path of the transmission and/or receiver device after the scanning device and fed to receiver diodes, or similar and an image element determined from the resulting signal. Each image element has a corresponding distance value and solid angle, whereby the receiver device comprises sensors, preferably diodes, which work in one or several defined spectral regions, preferably infra-red and determine a temperature value from the signal from said sensors. A thermal image with the same coverage as the distance image is thus generated in parallel.
Abstract:
Ein Verfahren dient insbesondere zur Bestimmung des Zustandes der feuerfesten Auskleidung eines die Metallschmelze enthaltenden Gefässes (10). Es werden dabei umfassend Pflegedaten, Produktionsdaten, Wandstärken nach dem Einsatz eines Gefässes (10) zumindest bei Stellen mit dem grössten Abnützungsgrad sowie weitere Prozessparameter eines jeweiligen Gefässes (10) gemessen bzw. ermittelt. Sodann werden diese Daten gesammelt und in einer Datenstruktur gespeichert. Daraus wird aus zumindest einem Teil der gemessenen bzw. ermittelten Daten bzw. Parametern ein Rechenmodeli erstellt, mittels dem diese Daten bzw. Parameter durch Berechnungen und daraus folgenden Analysen ausgewertet werden. Damit können zusammenhängende bzw. ganzheitliche Ermittlungen und daraus Analysen erfolgen, aus denen Optimierungen sowohl in Bezug auf die Gefässauskleidung als auch auf den gesamten Prozessablauf der Metallschmelze im Gefäss erzielt werden.
Abstract:
The life of a Blast Furnace is determined by the condition of the Hearth. Numerous thermocouples are embedded in the refractory lining and the temperature readings are monitored for sudden temperature increases. These provide warnings about the approach of the hot metal body to the periphery of the Blast Furnace presaging refractory wear leading to failure. Because of the fatal nature of the consequences, the temperature readings have to be interpreted correctly. This invention describes a method whereby the left out refractory lining profile is estimated as well as the thickness of the protective skull. It serves as a guide to continue operation of the furnace, to direct repair work to the critical areas, as well as to suggest replacement of faulty sensors. In the effect, this method serves to increase the working life of Blast Furnaces.
Abstract:
1. The present invention concerns a gas purging plug (1) for blowing gas into a metallurgical vessel comprising: 2. (a) An elongated body (2) made of a first refractory material and extending from a first, inlet end (2a) to a second, outlet end (2b) over a distance, H, measured along a central longitudinal axis (X1) comprising, 3. (b) At least one gas flow path (3) fluidly connecting a gas inlet (3a) located at said first inlet end of said elongated body to a gas outlet (3b), located at the opposite second, outlet end; 4. (c) A final visual wear indicator (5) in the form of an elongated core extending from the first inlet end (2a) to a first distance, h1, measured along the central longitudinal axis (X1), which is less than the length, H, of the elongated body, h1