摘要:
An optical transceiver may include pairs of lasers, each laser of a particular pair generating light at the same wavelength and each pair of lasers generating light at different wavelengths. The light from the lasers may be demultiplexed onto a pair of outputs, with each output receiving light from different lasers of each pair of lasers.
摘要:
The invention describes an integrated photonics platform comprising a plurality of at least three vertically-stacked waveguides which enables light transfer from one waveguide of the photonic structure into another waveguide by means of controlled tunneling method. The light transfer involves at least three waveguides wherein light power flows from initial waveguide into the final waveguide whilst tunneling through the intermediate ones. As an exemplary realization of the controlled tunneling waveguide integration, the invention describes a photonic integrated structure consisting of laser guide as upper waveguide, passive guide as middle waveguide, and modulator guide as lower waveguides. Controlled tunneling is enabled by the overlapped lateral tapers formed on the same or different vertical waveguide levels. In the further embodiments, the controlled tunneling platform is modified to implement wavelength-(de)multiplexing, polarization-splitting and beam-splitting functions.
摘要:
In an example, a coupled system includes a first waveguide, at least one second waveguide, and an interposer. The first waveguide has a first refractive index n1 and a tapered end. The at least one second waveguide each has a second refractive index n2. The interposer includes a third waveguide having a third refractive index n3 and a coupler portion, where n1 > n2 > n3. The tapered end of the first waveguide is adiabatically coupled to a coupler portion of one of the at least one second waveguide. A tapered end of one of the at least one second waveguide is adiabatically coupled to the coupler portion of the third waveguide of the interposer. The coupled system is configured to adiabatically couple light between the first waveguide and the at least one second waveguide and between the at least one second waveguide and the third waveguide.
摘要:
An optical demultiplexer/multiplexer, comprising : a multimode interference waveguide; at least one first coupling waveguide which meets the multimode interference waveguide at at least one first location and a plurality of second coupling waveguides which meet the multimode interference waveguide at a plurality of second locations which are spaced in a direction of transmission in relation to the at least one first location, with the at least one first coupling waveguide and the second coupling waveguides together with the multimode interference waveguide providing a first angled multimode interferometer which operates to demultiplex a first optical signal having optical channels of a plurality of wavelengths or multiplex optical signals of a plurality of wavelengths into a first optical signal having optical channels of the plurality of wavelengths; at least one third coupling waveguide which meets the multimode interference waveguide at at least one third location and a plurality of fourth coupling waveguides which meet the multimode interference waveguide at a plurality of fourth locations which are spaced in a direction of transmission in relation to the at least one third location, with the at least one third coupling waveguide and the plurality of fourth coupling waveguides together with the multimode interference waveguide providing a second angled multimode interferometer which operates to demultiplex a second optical signal having optical channels of a plurality of wavelengths or multiplex optical signals of a plurality of wavelengths into a second optical signal having optical channels of the plurality of wavelengths; whereby the demultiplexer/multiplexer provides for the demultiplexing/multiplexing of first and second optical signals having optical channels of a plurality of wavelengths.
摘要:
An optical device comprising a single-photon device, which is coupled to a planar waveguide is described. The planar waveguide comprises a nanostructured section, which includes a longitudinal extending guiding region with a first side and a second side, a first nanostructure arranged on the first side of the guiding region, and a second nanostructure arranged on the second side of the guiding region. The nanostructured section comprises a slow-mode section, in which the single-photon device is positioned or embedded, and in which the first nanostructure and second nanostructure suppress spontaneous emission into other modes. The planar waveguide further comprises a fibre coupler for coupling light out of the planar waveguide and into an optical fibre, the fibre coupler preferably being adapted to match a field profile of an optical fibre.
摘要:
Periodic high-index-contrast photonic crystal (PhC) structures such as two- dimensional arrays of air holes in dielectric slabs inhibit light propagation in bands of frequencies and confine light in dislocations where the lattice periodicity is broken. The present invention is a conceptually different approach to photon localization in PhC structures. The disclosed design concept introduces structural perturbations uniformly throughout the fabricated crystal by deliberately changing the shape or orientations of elements that form the lattice. Optimized introduction of such random structural perturbations produces optical nanocavities with ultra-small modal volumes and high quality (Q) factors of over 250,000. Applications of such disordered photonic crystal structures are disclosed for optical sensing systems and random nano-lasers.
摘要:
An integrated photonic apparatus (200) that includes a glass substrate having a major surface (213), a first waveguide segment (221) and a second waveguide segment (223), and a folded evanescent coupler (284) connecting the first waveguide segment to the second. The folded evanescent coupler is formed by a first length of the first waveguide segment and an equivalent length portion of the second waveguide running parallel and adjacent to the first waveguide segment. The first length is substantially equal to one half of an evanescent-coupler length needed to transfer a first wavelength in a non-folded evanescent coupler. A reflector (251) (e.g., dielectric mirror that is highly reflective to light of the first wavelength and also highly transmissive to light of a second wavelength) is located at an end of the folded evanescent coupler. The first length is selected to transfer substantially all light of a first wavelength. The evanescent coupler (282) is used for transfering pump light (71) waveguide segment (222) into the other waveguide segment (224) for optical amplification of the signal light (91).
摘要:
An embossed optical waveguide for light transmission and a method for creating a master and for generating the embossed optical waveguide therefrom. Optical elements (142, 143, 145) can be formed in a layer of polymer (133) after it is cured by reactive ion etching or ion beam milling. The polymer layer (133) which has an index of refraction of 1.55 or greater is bonded to a substrate (135), which is preferably polypropylene, having an index of refraction of preferably 1.50 or less. Since the refractive index of air is approximately 1.0, the polymer layer is sandwiched between two layers of low refractive material. The differences between the indices of refraction cause light projected into the polymer layer (133) to be guided in the polymer layer by total internal reflection. Furthermore, once the optical elements (142, 143, 145) have been formed in the polymer layer, it can be used as a master for generating embossments. The embossments are preferably generated by placing liquid polymer in contact with the master, curing it, and separating the cured polymer embossment from the master.