Abstract:
A mems scanner package and a scanning projector including the same are disclosed. The MEMS scanner package includes a MEMS scanner including a mirror surface for reflecting light, a magnet disposed behind the MEMS scanner, a lower case having an accommodation space formed therein to accommodate the magnet, an upper case having an opening formed therein to pass light, reflected from the MEMS scanner, therethrough, and a transparent cover unit for covering the opening. The transparent cover unit is embodied as a transparent member, and is coupled to the upper case while being inclined at a predetermined inclination angle with respect to the MEMS scanner.
Abstract:
Die Erfindung betrifft ein mikromechanisches Bauteil mit einer Aktoreinrichtung, welche dazu ausgelegt ist, ein verstellbares Element (10) in eine erste Verstellbewegung (20a) um eine erste Rotationsachse (20) und in eine zweite Verstellbewegung (28a) um eine geneigt zu der ersten Rotationsachse (20) ausgerichtete zweite Rotationsachse (28) zu versetzen; wobei die Aktoreinrichtung mindestens einen an einem ersten Federelement (12a) angeordneten ersten Permanentmagneten (16a) und mindestens einen an einem zweiten Federelement (12b) angeordneten zweiten Permanentmagneten (16b) umfasst, wobei der mindestens eine erste Permanentmagnet (16a) zu einer ersten Translationsbewegung geneigt zu der ersten Rotationsachse (20) und geneigt zu der zweiten Rotationsachse (28) und der mindestens eine zweite Permanentmagnet (16b) zu einer der ersten Translationsbewegung entgegen gerichteten zweiten Translationsbewegung anregbar sind, wodurch die zweite Verstellbewegung (28a) des verstellbaren Elements (20) um die zweite Rotationsachse (28) bewirkbar ist. Ebenso betrifft die Erfindung ein Verfahren zum Verstellen eines verstellbaren Elements.
Abstract:
Systems, methods, and apparatus for providing electromagnetic radiation sensing. The apparatus includes a radiation detection sensor including a plurality of micromechanical radiation sensing pixels having a reflecting top surface and configured to deflect light incident on the reflective surface as a function of an intensity of sensed radiation. In some implementations, the apparatus has equal sensitivities for at least some of the sensing pixels. In some implementations, the apparatus can provide adjustable sensitivity and measurement range. The apparatus can be utilized for human detection, fire detection, gas detection, temperature measurements, environmental monitoring, energy saving, behavior analysis, surveillance, information gathering and for human-machine interfaces.
Abstract:
A scanning device (64, 220, 230) includes a substrate (68), which is etched to define an array of two or more parallel rotating members (102) and a gimbal (72, 232) surrounding the rotating members. First hinges (106, 234) connect the gimbal to the substrate and defining a first axis of rotation, about which the gimbal rotates relative to the substrate. Second hinges (74) connect the rotating members to the support and defining respective second, mutually-parallel axes of rotation of the rotating members relative to the support, which are not parallel to the first axis.
Abstract:
A reaction compensated tilt platform assembly comprises a support base, and a reaction mass, pivotally coupled to the support base. A tilt platform which can function as or support a mirror is pivotally coupled to the support base. At least two linear actuator coil assemblies are carried by the reaction mass. At least two linear actuator magnet assemblies are carried by the tilt platform and are disposable within the at least two linear actuator coil assemblies. The linear actuator magnet assemblies taper from a larger diameter toward a center of the magnet assembly to a smaller diameter toward an end of the magnet assemblies. Actuation of the linear actuator magnets results in pivotal movement of the tilt platform relative to the reaction mass.
Abstract:
A method for fabrication of a device (206) from a wafer (170) of semiconductor material includes locally thinning the wafer in an area of the device to a predefined thickness by removing the semiconductor material from at least a first side of the wafer using a wet etching process, and etching through the thinned wafer in the area of the device so as to release a moving part (202) of the device. Other methods and systems for fabrication are also described.