Abstract:
Ein Verfahren zur Werkstückbearbeitung hat folgende Schritte: Bereitstellen eines einen Taststift aufweisenden Messtasters in einer Aufnahme einer numerisch gesteuerten Werkzeugmaschine, wobei der Messtaster dazu eingerichtet ist, ein einer Auslenkung seines Taststifts zumindest bereichsweise wenigstens annähernd proportionales Ausgangssignal abzugeben, und wobei der Verlauf des Ausgangssignals eine Kontur eines Werkstücks zumindest annähernd wiedergibt; Bestimmen, in einer Vorbereitungsphase, wenigstens einer Korrekturfunktion zumindest eines Bereichs der Ausgangssignale bezogen auf die zugehörige Auslenkung des Taststifts des Messtasters; und Ablegen charakteristischer Größen dieser wenigstens einen Korrekturfunktion in dem Messtaster oder einer der Werkzeugmaschine zugeordneten Maschinensteuerung; zumindest abschnittsweise kontinuierliches Abtasten der Kontur, in einer Abtastphase, eines in der Werkzeugmaschine eingespannten, noch nicht fertig bearbeiteten Werkstücks mit dem Taststift des in der Aufnahme der Werkzeugmaschine bereitgestellten Messtasters; Korrigieren des Ausgangssignals des Messtasters unter Verwendung der charakteristischen Größen der Korrekturfunktion; Bereitstellen der korrigierten Ausgangsdaten an die der Werkzeugmaschine zugeordnete Maschinensteuerung; Verrechnen der korrigierten Ausgangsdaten mit Maschinenkoordinaten der zu fertigenden Kontur für die Bearbeitung des in der Werkzeugmaschine eingespannten Werkstücks um Steuerungsbefehle für die Werkzeugmaschine zu erhalten; und Bearbeiten des in der Werkzeugmaschine eingespannten Werkstücks mit einem in der Aufnahme der Werkzeugmaschine bereitgestellten Werkzeug.
Abstract:
Die Erfindung betrifft ein Verfahren zur Korrektur eines vorgegebenen Schneidwegs zum Schneiden einer Blechplatine aus einem in eine Transportrichtung (x) kontinuierlich transportierten Blechband, welches fehlerhaft nicht parallel zum Bandweg eingespannt ist. Zur Bestimmung dieser Schieflage wird die Position (x1y1) eines Punkts (P) erfasst und nachdem das Blechband um einen vorgegebenen ersten Abstand (dx1) in Transportrichtung (x) bewegt worden ist, wird die Position (x2y2) des Punkts erneut erfasst. Die Differenz der y-Koordinaten (y1-y2) wird zur Ermittlung des Korrekturwerts (Ky1) zur Korrektur des Schneidweges verwendet. Das Blechband kann auch eine Säbeligkeit bzw. Krümmung seiner Kante aufweisen. Zur Bestimmung der Säbeligkeit wird eine dritte Position (x3y3) erfasst. Die Differenz der y-Koordinate (y2-y3) wird zur Ermittlung des Korrekturwerts (Ky2) zur Korrektur eines Schneidweges verwendet.
Abstract:
The invention relates to a tool breakage detection system capable of easily detecting any possible breakage of even one of a plurality of blades provided on a tool. The system comprises an observer (710) for calculating a disturbance load torque of a spindle motor from a torque command value and a speed feeback value, a band cutoff filter (2) for removing a particular frequency component of the disturbance load torque determined by the number of the blades of the tool and the number of revolutions of the tool, and a comparator (3) for comparing an output signal of the band cutoff filter (2) with a predetermined reference value to output a signal indicating that the tool has been broken when the output signal exceeds the reference value. When the blade or blades of the tool having a plurality of blades are damaged, there is produced a signal which cannot be removed by the band cutoff filter (2), and so the signal is monitored by the comparator (3).
Abstract:
The invention relates to a method for machining a workpiece, comprising the following steps: providing, in a receiving portion of a numerically-controlled machine tool, a measuring probe that comprises a stylus, said measuring probe being configured to emit an output signal that is at least partially and at least approximately proportional to a deflection of its stylus, and the progression of said output signal at least approximately reproducing a contour of a workpiece; determining, in a preparation phase, at least one correction function for at least one section of the output signals relating to the associated deflection of the measurement probe stylus; storing characteristic variables of said at least one correction function in the measurement probe or a machine control unit associated with the machine tool; at least partially continuously tracing the contour, in a tracing phase, of a workpiece clamped in the machine tool but not yet fully machined, using the stylus of the measurement probe provided in the receiving portion of the machine tool; correcting the output signal of the measurement probe using the characteristic variables of the correction function; supplying the corrected output data to the machine control unit associated with the machine tool; calculating the corrected output data with machine coordinates of the contour to be produced, for machining the workpiece clamped in the machine tool, such that control commands for the machine tool are received; and machining the workpiece clamped in the machine tool using a tool that is provided in the receiving portion of the machine tool.
Abstract:
A method for machining and inspecting a workpiece (12) includes steps of: supporting the workpiece (12) with a workpiece support (16); moving a machining tool (46) relative to the workpiece (12) with a tool positioning system (48), and machining a workpiece feature (78) into the workpiece (12) with the machining tool (46) as a function of reference geometry data; moving a measuring device (60) relative to the workpiece (12) with a measuring device positioning system (62) that is independent of the tool positioning system (48), and mapping a geometry of the workpiece feature (78) with the measuring tool (60) to provide workpiece geometry data indicative thereof; and processing the workpiece geometry data and the reference geometry data with a processor (22) to compare the geometry of the workpiece feature (78) to a reference geometry.
Abstract:
A method for conforming components may comprise measuring a first component using a conforming tool, and recording position data for the first component based on the measuring. A path for the conforming tool may be provided using the position data, and a second component may be modified by moving the same conforming tool based on the provided path.
Abstract:
A workpiece inspection system is disclosed for determining measurements of a workpiece on a machine tool. The system utilises a measurement device which outputs data relating to the workpiece (
Abstract:
The invention relates to a method for controlling the process during rough grinding of a workpiece (2) in which, according to the invention, the workpiece (2) is measured during grinding by a sensor (13) to ascertain an actual size, and the measured actual size is corrected in a continuously automatic manner to attain a predetermined specified size according to grinding time. The invention also relates to a grinding machine which is provided for carrying out the method and which comprises a grinding wheel (10) for rough grinding a workpiece (2) on a grinding spindle head. The grinding machine also has a sensor (13) for detecting a ground workpiece dimension, and comprises a machine control, whereby the workpiece (2) is held between a workpiece spindle (1A) and a tail spindle (4A). According to the invention, the sensor (13) is arranged primarily in a plane formed by the contact area of the grinding wheel (10) which turns on the workpiece (2), and during rough grinding, said sensor continuously transmits measurement signals to the machine control. Said machine control controls the grinding wheel (10) based on these signals in such a way that the grinding process can be executed as an in-process control.
Abstract:
The invention relates to a method for correcting a predetermined cutting path for cutting a sheet metal blank from a metal strip continuously transported in a transport direction x, which is tensioned incorrectly, non-parallel to the strip path. In order to determine said angled position, the position (x1y1) of a point (P) is detected and then the metal strip can be moved about a predefined first distance (dx1) in the direction of transport (x), the position (x2y2) of the point is detected again. The difference of the y-coordinates (y1-y2) is used to determine the correction value (Ky1) for correcting the cutting path. Said metal strip can also have a curvature and/or bend about the edge. In order to determine the curvature, a third position (x3y3) is determined. The difference of the y-coordinate (y2-y3) is used to determine the correction value (Ky2) for correcting a cutting path.