Abstract:
A structured light projection system includes an array of light emitting elements operable, collectively, to emit a regular pattern of light. A first optical element is configured to alter the pattern of light emitted by the array of light emitting elements to generate a first irregular pattern of light, and a second optical element is configured to receive the irregular pattern of light generated by the first optical element and to produce a pattern comprising multiple instances of the first irregular pattern.
Abstract:
The method for manufacturing a multitude of devices comprises: - providing a replication tool comprising a tool material; - conditioning the replication tool, wherein the conditioning comprises applying a treatment to the tool material, wherein the treatment comprises exposing the tool material to a conditioning material. And it further comprises, after the conditioning: - carrying out one or more replication processes, wherein in each of the one or more replication processes, one or more of the devices are produced from a replication material by replication using the replication tool. The treatment can comprise dimensionally changing the tool material by the exposure of the tool material to the conditioning material. Before carrying out the replication processes, the conditioning material can be hardened and removed.
Abstract:
Optoelectronic modules, such as proximity sensors, two-dimensional and three- dimensional cameras, structured- or encoded-light emitters, and projectors include optical assemblies and active optoelectronic components that are light sensitive or emit light. The optical assemblies are aligned to the active optoelectronic components via alignment spacers and adhesive. The alignment spacers include surfaces operable to limit the lateral migration of adhesive thereby preventing the contamination of the active optoelectronic components with adhesive. In some instances, small optoelectronic module footprints can be maintained without compromising the integrity of the adhesive.
Abstract:
A distance acquisition method comprising: initializing an optical ranging system, the optical ranging system including a plurality of pixels operable to covert incident light to electrical charges; collecting electrical charges with the plurality of exposed pixels over an integration time, each pixel collecting electrical charges with an amplification and a sensitivity; correlating the electrical charges collected in each pixel to an exposure value for each pixel, the exposure value corresponding to being adequately exposed, over-exposed, or under-exposed; identifying each exposure value for each pixel as being either valid or invalid, wherein a valid exposure value corresponds to an adequately exposed pixel and an invalid exposure value corresponds to an over-exposed or under-exposed pixel; totalling the number of valid exposure value pixels; totalling the number invalid exposure value pixels; determining an exposure ratio, the ratio being the number of pixels with valid exposure values divided by the number of pixels with invalid exposure values; totalling the number of over-exposed pixels; totalling the number of under-exposed pixels; determining an invalid exposure ratio, the invalid exposure ratio being the number of over-exposed pixels divided by the number of under-exposed pixels; and determining an average valid exposure value, the average valid exposure value being the average of the valid exposure values. The method additionally comprises: using the exposure ratio, the invalid exposure ratio and the average valid exposure to optimise the integration time; using the exposure value for each pixel to optimise the amplification and sensitivity for each pixel; and determining distance data from electrical charges collected from at least one of the plurality of pixels.
Abstract:
This disclosure relates to illumination modules operable to increase the area over which an illumination source, such as a vertical-cavity surface-emitting laser or light-emitting diode, illuminates. Such illumination modules include a substrate having electrical contacts, an illumination source electrically connected to the substrate, a collimation assembly operable to collimate the light generated from the illumination source, a translation assembly operable to translate light over an area, and a mask assembly. In various implementations the illumination source may be rather small in area, thereby reducing the cost of the illumination module. Some implementations of the illumination module can be used for the acquisition of three-dimensional data in some cases, while in other cases some implementations of the illumination module can be used for other applications requiring projected light.
Abstract:
This disclosure describes optical assemblies that can be fabricated, for example, using wafer-level processes. The process can include providing a wafer stack that includes an optics wafer, and molding spacers directly onto the surface of the optics wafer. The spacers can be molded, for example, using a vacuum injection technique such that they adhere to the optics wafer without adhesive.
Abstract:
First and second stereo images are acquired. The first image is partitioned into multiple segments, wherein each segment consists of image elements that share one or more characteristics in common. A segmentation map is generated in which each of the image elements is associated with a corresponding one of the segments to which it belongs. A respective disparity value is determined for each of the segments with respect to a corresponding portion of the second image, and the disparity value determined for each particular segment is assigned to at least one image element that belongs to that segment. A disparity map indicative of the assigned disparity values can then be generated. Generating the disparity map in this manner can, in some instance, help reduce edge and/or feature thickening.
Abstract:
The method for manufacturing optical light guide elements comprises a) providing a plurality of initial bars, each initial bar extending along a respective initial-bar direction from a first bar end to a second bar end and having a first side face extending from the first bar end to the second bar end, the first side face being reflective; b) positioning the initial bars in a row with their respective initial-bar directions aligned parallel to each other and with their respective first surfaces facing towards a neighboring one of the initial bars; c) fixing the plurality of initial bars with respect to each other in the position achieved in step b) to obtain a bar arrangement. The method further comprises at least one of the following steps d), d'), d''): d) segmenting the bar arrangement into bars referred to as prism bars each of which comprises a portion of at least two different ones of the plurality of initial bars, by conducting a plurality of cuts through the bar arrangement; in particular wherein the cuts are parallel cuts; d') segmenting the bar arrangement into bars referred to as prism bars by separating the bar arrangement into parts along cut lines, wherein the cut lines are at an angle with the initial-bar directions; d'') segmenting the bar arrangement into bars referred to as prism bars by separating the bar arrangement into sections by creating cut faces which are at an angle with respect to the initial-bar directions. And the method further comprises e) segmenting the prism bars into parts.
Abstract:
The present disclosure describes broadband optical emission sources that include a stack of semiconductor layers, wherein each of the semiconductor layers is operable to emit light of a different respective wavelength; a light source operable to provide optical pumping for stimulated photon emission from the stack; wherein the semiconductor layers are disposed sequentially in the stack such that a first one of the semiconductor layers is closest to the light source and a last one of the semiconductor layers is furthest from the light source, and wherein each particular one of the semiconductor layers is at least partially transparent to the light generated by the other semiconductor layers that are closer to the light source than the particular semiconductor layer. The disclosure also describes various spectrometers that include a broadband optical emission device, and optionally include a tuneable wavelength filter operable to allow a selected wavelength or narrow range of wavelengths to pass through.
Abstract:
An optoelectronic module includes a light guide arranged to receive light, such as ambient light or light reflected by an object. The light guide has a diffractive grating that includes multiple sections, each of which is tuned to a respective wavelength or narrow band of wavelengths. The module further includes multiple photosensitive elements, each of which is arranged to receive light diffracted by a respective one of the sections of the diffractive grating. The module can be integrated, for example, as part of a spectrometer or other apparatus for optically determining characteristics of an object.