Abstract:
There is disclosed a method of preparing a photovoltaic device. In particular, the method comprises integrating epitaxial lift-off solar cells with mini-parabolic concentrator arrays via a printing method. Thus, there is disclosed a method comprising providing a growth substrate; depositing at least one protection layer on the growth substrate; depositing at least one sacrificial layer on the protection layer; depositing at least one photoactive cell on the sacrificial layer; etching a pattern of at least two parallel trenches that extend from the at least one photoactive cell to the sacrificial layer; depositing a metal on the at least one photoactive cell; bonding said metal to a host substrate; and removing the sacrificial layer with one or more etch steps. The host substrate can be a siloxane, which when rolled, can form a stamp used to integrate solar cells into concentrator arrays. There are also disclosed a method of making a growth substrate and the growth substrate made therefrom.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von elektronischen Bauteilen auf einem transparenten Substrat. Mit der vorliegenden Erfindung wird das Ziel verfolgt, elektronische Bauteile auf Substraten herzustellen, ohne auf preiswerte und daher technisch einfache Substrate angewiesen zu sein. Zur Lösung der Aufgabe wird ein Substrat bereitgestellt, welches für Licht eines eingesetzten Lasers durchlässig ist. Auf das Substrat wird eine durch Laserlicht schmelzbare oder verdampfbare Schicht, vorzugsweise eine Metalischicht und zwar beispielsweise eine aus Silber bestehende Schicht oder eine aus Aluminium bestehende Schicht, aufgetragen. Hierauf werden weitere Schichten aufgetragen, die für die Herstellung des gewünschten elektronischen Bauteils erforderlich sind. Nach der teilweisen oder vollständigen Herstellung des elektronischen Bauteils auf dem Substrat wird die durch Laserlicht schmelzbare oder verdampfbare Schicht von dem Substrat abgelöst und zwar durch Licht des eingesetzten Lasers, welches durch das Substrat hindurch auf die durch Laserlicht schmelzbare oder verdampfbare Schicht gelenkt wird, um so die durch Laserlicht schmelzbare oder verdampfbare Schichtabzutrennen.
Abstract:
A process for assembling a thin-film optoelectronic device is disclosed. The process may include providing a growth structure comprising a wafer having a growing surface, a sacrificial layer, and a device region. The process may further include providing a host substrate and depositing a first metal layer on the device region and depositing a second metal layer on the host substrate. The process may further include bonding the first metal layer to the second metal layer by pressing the first and second metal layers together at a bonding temperature, wherein the bonding temperature is above room temperature and below the lower of a glass transition temperature of the host substrate and a melting temperature of the host substrate.
Abstract:
The present disclosure generally relates to thin film liftoff processes for use in making devices such as electronic and optoelectronic devices, e.g., photovoltaic devices. The methods described herein use a combination of epitaxial liftoff and spalling techniques to quickly and precisely control the separation of an epilayer from a growth substrate. Provided herein are growth structures having a sacrificial layer positioned between a growth substrate and a sacrificial layer. Exemplary methods of the present disclosure include forming at least one notch in the sacrificial layer and spalling the growth structure by crack propagation at the at least one notch to separate the epilayer from the growth substrate.
Abstract:
Provided are methods and systems for treating shunts on solar cell substrates. Also provided are solar cells including such substrates. A shunt detected on a substrate proximate to a metallized grid pattern (404) is electrically disconnected from at least the bus portion of the grid, which reduces shunt's impact on performance on the solar cell. An antireflective layer may be disposed between the shunt and a portion of the grid extending over the shunt. The exposure pattern (402) of a photoresist used to form the antireflective layer may be adjusted accordingly to achieve this result. In some embodiments, the metallized grid may be modified by adjusting the exposure pattern (404) of a photoresist used to form this grid. The grid may be modified to avoid any contact between the grid and the shunt or to disconnect a portion of the grid contacting the shunt from the bus portion area of the grid.
Abstract:
Methods of producing single-junction or multi-junction InP-based solar cells grown latticed-matched on a InP substrate or grown on metamorphic layers on a GaAs substrate, with the substrate subsequently removed in a nondestructive manner via the epitaxial lift-off (ELO) technique, and devices produced using the methods are described herein.
Abstract:
A stressor layer used in a controlled spalling method is removed through the use of a cleave layer that can be fractured or dissolved. The cleave layer is formed between a host semiconductor substrate and the metal stressor layer. A controlled spalling process separates a relatively thin residual host substrate layer from the host substrate. Following attachment of a handle substrate to the residual substrate layer or other layers subsequently formed thereon, the cleave layer is dissolved or otherwise compromised to facilitate removal of the stressor layer. Such removal allows the fabrication of a bifacial solar cell.
Abstract:
There is disclosed ultrahigh-efficiency single- and multi-junction thin-film solar cells. This disclosure is also directed to a substrate-damage-free epitaxial lift-off ("ELO") process that employs adhesive-free, reliable and lightweight cold-weld bonding to a substrate, such as bonding to plastic or metal foils shaped into compound parabolic metal foil concentrators. By combining low-cost solar cell production and ultrahigh- efficiency of solar intensity-concentrated thin-film solar cells on foil substrates shaped into an integrated collector, as described herein, both lower cost of the module as well as significant cost reductions in the infrastructure is achieved.
Abstract:
Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects as well as Fabrication methods and structures for forming thin film back contact solar cells are described.