摘要:
Exemplary embodiments are directed to devices and method for operating a charge pump. A method may include activating a first switch coupled between a capacitor and a ground voltage over a first period of a charging phase. The first period may coincide with a non-overlapping time between the charging phase and an output phase. The method may also include activating a second switch coupled between the capacitor and an input voltage over a second period of the charging phase, wherein the first period begins prior to the second period. Further, the method may include deactivating the second switch over a third period of the charging phase and deactivating the first switch over a fourth period of the charging phase, wherein the third period begins prior to the fourth period.
摘要:
Schaltung (1) zum Verbinden und Trennen eines zuschaltbaren elektrischen Systems (2), insbesondere zur Erzeugung und/oder Speicherung elektrischer Energie, und eines elektrischen Netzes (3) eines Fahrzeuges, wobei die Schaltung (1) zumindest einen mechanischen Haupttrennschalter (4) zum Trennen und Verbinden des zuschaltbaren elektrischen Systems (2) mit dem elektrischen Netz (3) des Fahrzeuges sowie zumindest eine zu dem Haupttrennschalter (4) parallel geschaltete Vorladeeinheit (5) mit zumindest einen steuerbaren Halbleiterschalter (6) aufweist, wobei die Vorladeeinheit (5) zumindest einen mechanischen Trennschalter (7) zum Trennen und Verbinden des zuschaltbaren elektrischen Systems (2) und des elektrischen Netzes (3) des Fahrzeuges aufweist, wobei der Halbleiterschalter (6) in Serie mit dem mechanischen Trennschalter (7) geschaltet ist
摘要:
A method for rendering a half-bridge circuit containing normally on switches such as junction field effect transistors (JFETs) inherently safe from uncontrolled current flow is described. The switches can be made from silicon carbide or from silicon. The methods described herein allow for the use of better performing normally on switches in place of normally off switches in integrated power modules thereby improving the efficiency, size, weight, and cost of the integrated power modules. As described herein, a power supply can be added to the gate driver circuitry. The power supply can be self starting and self oscillating while being capable of deriving all of its source energy from the terminals supplying electrical potential to the normally on switch through the gate driver. The terminal characteristics of the normally on switch can then be coordinated to the input-to-output characteristics of the power supply.
摘要:
Techniques are provided for trimming drive current in output drivers to compensate for process variations, model inaccuracies, and/or an off-target process. The actual output drive current is measured on the integrated circuit (IC) at wafer sort or during a final test. Based on the measured output drive current, the total transistor width that is required in the output driver to meet an I/O standard is calculated. A control block controls trimming transistors that are coupled in parallel with main output drive transistors. The control block adjusts the total width of the output drive transistors to bring the total width as close as possible to the desired width. Each I/O driver on a die can be adjusted individually based on its own drive current characteristics. All I/O drivers on a die can be adjusted by the same transistor width based on a single I/O measurement or on multiple I/O measurements.
摘要:
A value to better match a termination circuit to a characteristic impedance of a bus signal line is determined. A determination is also made as to when a bus, that includes the line and that is being used by a bus agent in its normal mode of operation, will be available for adjusting the termination circuit in a Quiet Cycle, based at least on knowledge of the bus protocol and tracking of certain bus protocol events. The termination circuit is adjusted according to the determined value, during the Quiet Cycle.
摘要:
A method and apparatus for reducing a magnitude of a rate of current change of an integrated circuit are provided. The apparatus uses a counter stage controlled by a control stage to sequentially disable a plurality of transistors that are used to source current from a power supply. By sequentially disabling the plurality of transistors, a reduction of an amount of current occurs gradually, effectively reducing the magnitude of the rate of current change. Further, the method uses a plurality of transistors controlled by a finite state machine, such as a counter, to gradually reduce current sourced from a power supply. The finite state machine is controlled by a micro-architectural stage that determines when the integrated circuit needs to be powered down.
摘要:
A method and apparatus for compensating system components based on system topology. The present invention provides a method and apparatus for performance optimization through topology dependent compensation. In one embodiment, one or more components of a computer system are coupled to a bus (210) via self-compensated buffer(s) (220). The self-compensated buffer(s) (220) allow operating characteristics to be set via external signals (650, 651, 655, 656, 660, 661, 665, 666, 670, 671, 675, 676) such as voltage levels. System components have compensation units (230) that receive external signals (650, 651, 655, 656, 660, 661, 665, 666, 670, 671, 675, 676) from a configuration unit (240) to configure the operating characteristics of the self-compensated buffer(s) (220). In this manner a system designer may set operating characteristics for various system components based on the topology of the specific system rather than designing for a worst-case scenario.
摘要:
An output driver circuit is described which offers control and logic level adjustment for high speed data communications in a synchronous memory such as a synchronous dynamic random access memory (SDRAM). Level adjustment is obtained by resistive division between a termination resistor and controllable impedances between an output node and VDD and VSS power supplies. Control functions include slew rate modification of the signal at the output node, by sequentially turning on or off output transistors in response to a transition in an input signal. Different schemes of weighting the output transistors obtain different characteristics of the output signal. Load matching circuitry and voltage level forcing circuitry are described for improving high frequency operation.