Abstract:
A bias circuit (101) that provides biasing for a differential circuit (103). The bias circuit (101) includes first and second transistors (Q3, Q4), first and second impedance devices (R1, R2), a reference current source (201) and an amplifier (203). The first and second transistors (Q3, Q4) each have a control input and a current path coupled between a first node (V1) and ground, where the control inputs of the first and second transistors receive the differential signal (VIN). The impedance devices (R1, R2) are each coupled between a control input of one of the first and second transistors and a second node (V2). The reference current source (201) provides a reference current (IREF) for the first node (V1) and the amplifier (203) has an input coupled to the first node (V1) and an output coupled to the second node (V2). The transistors (Q3, Q4), (Q1, Q2) of the bias circuit and the differential circuit, respectively, may be matched, NPN bipolar junction transistors with emitters connected to ground. A filter capacitor (C1) may be coupled between the first node (V1) and ground and operates as a low pass filter.
Abstract:
A comparator has a simple high frequency signal path from input to output formed by two differentially connected transistors (Q1, Q2) with an output transistor (Q8, Q3) connected to each. A current control circuit maintains a constant total current flowing through the differentially connected transistors (Q1, Q2). The ratio of currents flowing through the differentially connected transistors (Q1, Q2) is initially set by a control circuit (I1, I2), so that the output of the comparator is predictable when powered up. The control circuit then gradually releases control, so that there is a smooth transfer to control by a reference signal input to the comparator.
Abstract:
Problems associated with using bipolar differential circuits over a wide common mode voltage range are solved using first and second amplifier circuits (3 and 5), respectively operating over first and second voltage sub-ranges. The low voltage differential signal (LVDS) (1) is applied across a pair of series connected resistors (7 and 9), and to the inputs of the amplifiers (3 and 5). The common mode voltage signal (11) is fed to the inputs of third and fourth amplifiers (15 and 17). The third and fourth amplifiers (15 and 17) ensure that the LVDS receiver has a constant linear transfer characteristic over the differential input signal range and over the full common mode range, especially over the amplifier transition region.
Abstract:
A comparator has a simple high frequency signal path from input to output formed by two differentially connected transistors (Q1, Q2) with an output transistor (Q8, Q3) connected to each. A current control circuit maintains a constant total current flowing through the differentially connected transistors (Q1, Q2). The ratio of currents flowing through the differentially connected transistors (Q1, Q2) is initially set by a control circuit (I1, I2), so that the output of the comparator is predictable when powered up. The control circuit then gradually releases control, so that there is a smooth transfer to control by a reference signal input to the comparator.
Abstract:
A multi-stage current feedback amplifier having a first stage and a second stage. The multi-stage amplifier comprises a transistor device (Q4') having a base, an emitter, and a collector, as well as a replicating device (Q5') having a base, an emitter, and a collector. The base of the replicating device (Q5') is coupled to the base of the transistor device, wherein a voltage in the emitter of the transistor device (Q4') is substantially replicated in the emitter of the replicating device (Q5'). Further, the inventive multi-stage feedback amplifier comprises a current mirror circuit (Q7' and Q8') having a current mirror circuit input and a current mirror circuit output, which current mirror circuit (Q7' and Q8') input is coupled to the collector of the replicating device (Q5'). The current mirror circuit output is coupled to the collector of the transistor device (Q4').
Abstract:
Ein Empfanger in einem Busknoten eines Busnetzes, insbesondere eines EIB-Netzes, der an eine Buslinie (Bus+, Bus-) gekoppelt ist, welche dem Empfänger ein aus Bitpulsen gebildetes Signal zur Verfügung stellt, mit einem Differenzverstärker (Q1A, Q1B, Q2A, Q2B), welcher einen ersten Eingang (E1) und einen zweiten Eingang (E2) und mindestens einen Ausgang (RxD) aufweist, ist dadurch gekennzeichnet, dass an dem ersten Eingang (E1) eine Referenzspannung (Uref) anliegt und an dem zweiten Eingang (E2) eine das Signal tragende Spannung anliegt, die so ausgelegt ist, dass nur dann ein Signal am Ausgang (RxD) erscheint, wenn der Absolutwert der Spannung am zweiten Eingang (E2) größer ist als der Absolutwert der Referenzspannung (Uref) am ersten Eingang.
Abstract:
Die vorliegende Erfindung betrifft eine Schaltungsanordnung zum Betreiben mindestens einer LED, wobei die Schaltungsanordnung einen selbstschwingenden Spannungswandler (12) mit einer Wandlerdrossel (L1A;L1), einer Wandlerdiode (D5) und einem Wandlerschalter (V5); und eine Steuervorrichtung für den Wandlerschalter (V5) umfasst. Erfindungsgemäss wird zur Steuerung des Schalttransistors eine bevorzugt aus diskreten Bauelementen aufgebaute Schaltungsanordnung vorgesehen, bei der einerseits während der Aufmagnetisierung der Drossel der Strom durch den Wandlerschalter gemessen wird, um bei Erreichen eines vorgebbaren Maximalwerts für diesen Strom ein Ausschalten des Transistors zu ermöglichen, und bei der andererseits die Abmagnetisierung der Drossel schaltungstechnisch erfasst wird, um ein sofortiges Wiedereinschalten des Transistors zu erreichen.
Abstract:
Integrated circuit systems and semiconductor devices for generating, transmitting, receiving and manipulating clock and/or data signals. Semiconductor device including clock circuit having FETs and clock driver circuit having BJT. System and devices may include translator circuit translating signals with lower voltage swing into signals with higher voltage swing and circuit block operating at higher voltage swing. Wiring networks for communicating signals between individual circuits or system components. Integrated circuit device can include a BJT having first base electrode comprising semiconductor material doped to first conductivity type formed on and in contact with surface of semiconductor substrate and separated from emitter electrode by separation space. First base region can be formed in substrate below emitter electrode and include first portion of substrate doped to first conductivity type. Second base region can be formed in substrate below separation space and can include second portion of substrate doped to first conductivity type.
Abstract:
A comparator comprising a comparator circuit of a differential receiver type for testing the operation of DUT differential output signals, wherein effects of in-phase signals are eliminated. For this purpose, an offset adder unit (30) receives differential signals (101, 102) from the DUT and produces output signals (111, 112) at a predetermined offset voltage, and a comparator (71) receives the two output signals from the offset adder unit (30) and produces an output signal upon comparing the two signals.