Abstract:
Methods of curing polyimide to tune the coefficient of thermal expansion are provided herein. In some embodiments, a method of curing a polymer layer on a substrate, includes: (a) applying a variable frequency microwave energy to the substrate to heat the polymer layer and the substrate to a first temperature; and (b) adjusting the variable frequency microwave energy to increase a temperature of the polymer layer and the substrate to a second temperature to cure the polymer layer.
Abstract:
Disclosed are methods and apparatuses for heating an object in a cavity by feeding the cavity with RF signals. One of the disclosed methods includes simultaneously feeding the cavity with at least two RF signals. Of the at least two RF signals, a first RF signal is fed to the cavity via a first antenna and a second RF signal is fed to the cavity via a second antenna. The first and second RF signals have a common frequency and differ in phase by a first phase difference. The method also includes measuring the first phase difference and adjusting the feeding based on measurements of reflected RF signals reflected from the cavity. Conducting the measurements of the reflected RF signals may also be part of the disclosed method. A disclosed apparatus includes the structure required for carrying out the above method.
Abstract:
The invention relates to a method (100) and apparatus for controlling the heating of food ingredients. The method comprises the step of measuring (110) the spectrum of energy absorption of the food ingredients in a given range of radio frequencies. The method also comprises the step of identifying (120), in said given range of radio frequencies, the radio frequency for which the food ingredients have the maximum energy absorption. The method also comprises the step of applying (130) an electrical field to the food ingredients, said electrical field having a radio frequency corresponding to said radio frequency for which the food ingredients have the maximum energy absorption. The step of measuring (110) comprises, for a plurality of selected radio frequencies in said given range of radio frequencies, the steps of: applying an electrical field on the food ingredients having a radio frequency corresponding to a given selected radio frequency in said plurality of selected radio frequencies; and, measuring the ratio between the energy of the radio frequency electrical field reflected or absorbed from the food ingredients, and the energy of the radio frequency electrical field applied to the food ingredients. The plurality of selected radio frequencies are selected from said given range of radio frequencies by the steps of: for each of said given range of radio frequencies, obtaining a penetration depth of an electrical field having a radio frequency corresponding to the given radio frequency into the food ingredients, and including the given radio frequency into the plurality of selected radio frequencies if the penetration depth of the electrical field having a radio frequency corresponding to the given radio frequency is equal to or larger than the thickness of the food ingredients in the direction of the electrical field applied to the food ingredients. This invention allows reducing the heating time of food ingredients.
Abstract:
The present invention relates to a method and apparatus for controlling a cooking process of food. The method comprises a step of emitting (101) a plurality of radio frequency signals into the food non invasively. The method also comprises a step of receiving (105) a plurality of reflection signals or transmission signals of the radio frequency signals from the food, wherein the reflection signals isa part of the radio frequency signals that reflect from the food, and the transmission signals isa part of the radio frequency signals that transmit through the food. The method also comprises a step of obtaining (110) a protein status, wherein the protein status is the extent of protein denaturation, in the food in the course of heating the food based on the plurality of radio frequency signals and the plurality of reflection signals or transmission signals. The method also comprises a step of determining (120) a doneness level of the food based on the protein status, and a steap of controlling (130) the cooking process of the food based on the determined doneness level. Using the protein denaturation provides a more direct and precise information of the status of food based on established relation between the doneness level and the protein denaturation extent.
Abstract:
The present invention relates to a nnicrowave oven having a microwave transmission means (3), which transmits electric field and/or magnetic field, whose structural properties are adjustable in order for matching the impedances of the microwave oven cavity (4) together with various loads to a microwave generating device (2). The microwave oven (1) of the invention comprises a microwave transmission means (3) of an electrically conductive material allowing for the transmission of microwaves and which confines and carries the microwaves produced by the microwave generating device (2) to be transmitted into the oven cavity (4) adapted to contain food articles to be cooked.
Abstract:
A radiating element for applying electromagnetic energy to a cavity. The radiating element comprises a feeding section and a grounding section, wherein the feeding section and the grounding section extend substantially within a first plane. The radiating element also includes a radiating section in electrical communication with the feeding section and the grounding section, wherein the radiating section includes at least one bend between the feeding section and a distal end of the radiating section, the at least one bend extending in a second plane different from the first plane.
Abstract:
A method of applying RF energy to an object in a cavity is disclosed. In some embodiments, the method may include applying to the object a first amount of RF energy at power increasing from an initial power level to a final power level; and if an electrical discharge occurs, stopping RF energy application for a period sufficient to allow the electrical discharge to decay. The method may further include applying to the object a second amount of RF energy after the period ends. The second amount of RF energy may be applied at intermediate power, higher than the initial power level and lower than the final power level.
Abstract:
A method of processing an object is disclosed. The method comprises heating the object by applying radio frequency (RF) energy, monitoring a value related to a rate of absorption of RF energy by the object during the heating, and adjusting the RF energy in accordance with changes in a time derivative of the monitored value.