Abstract:
L'invention concerne l'utilisation de nanoobjets en carbone sous fluoré en tant que matériau d'électrode de batteries primaires au lithium, l'électrode obtenue par cette utilisation ainsi qu'une batterie au lithium comprenant une telle électrode. Les nanoobjets en carbone sous fluoré utilisés dans l'invention ont une partie centrale en carbone non fluoré et une partie périphérique en carbone fluoré de formule CF X où x représente le rapport atomique F/C qui est tel que 0,25 19 F MAS RMN présente un seul pic entre -150 et -190 ppm/CFCl 3 (hors bandes de rotation). L'invention trouve application dans le domaine du stockage et de la restitution d'énergie, en particulier.
Abstract:
In some embodiments, the present invention provides methods of immobilizing carbon nanotubes on a surface, wherein the method comprises: (1) mixing carbon nanotubes with a superacid to form a carbon nanotube solution; and (2) exposing the carbon nanotube solution to the surface. The exposing results in the immobilization of the carbon nanotubes on the surface. In some embodiments, the method occurs without the utilization of carbon nanotube wrapping molecules. Other embodiments of the present invention pertain to systems that comprise immobilized carbon nanotubes on a surface, as developed by the aforementioned methods.
Abstract:
A method of fabricating a tunneling nanotube field effect transistor includes forming in a nanotube an n-doped region and a p-doped region which are separated by an undoped channel region of the transistor. Electrical contacts are provided for the doped regions and a gate electrode that is formed upon a gate dielectric layer deposited on at least a portion of the channel region of the transistor.
Abstract:
A catalyst particle on a substrate is exposed to reactants containing a semiconductor material in a reactor. An intrinsic semiconductor nanowire having constant lateral dimensions is grown at a low enough temperature so that pyrolysis of the reactant is suppressed on the sidewalls of the intrinsic semiconductor nanowire. Once the intrinsic semiconductor nanowire grows to a desired length, the temperature of the reactor is raised to enable pyrolysis on the sidewalls of the semiconductor nanowire, and thereafter dopants are supplied into the reactor with the reactant. A composite semiconductor nanowire having an intrinsic inner semiconductor nanowire and a doped semiconductor shell is formed. The catalyst particle is removed, followed by an anneal that distributes the dopants uniformly within the volume of the composite semiconductor nanowire, forming a semiconductor nanowire having constant lateral dimensions and a substantially uniform doping.
Abstract:
A method of fabricating a tunneling nanotube field effect transistor includes forming in a nanotube (202) an n-doped region (220) an a p-doped region (224) which are separated by an undoped channel region (222) of the transistor. Electrical contacts (208), (210) an (212) are provided for the doped regions and a gate electrode (206) that is formed upon a gate dielectric layer (204) deposited on at least a portion of the channel region of the transistor.