Abstract:
A brake assembly (1) for a hand-held power-driven cutting device (2) is provided comprising a movably arranged lever (14), at least being movable between a first- and a second position, a brake member (16), and a brake element (20) connected to or forming one unit with a rotatable part (22) of a transmission of the cutting device (2), wherein the brake member (16) is movable between a non-activated position and an activated position, and wherein the brake member (16) is arranged to engage with the brake element (20) in the activated position to prevent rotation of the rotatable part (22). The brake assembly (1) further comprising a holding mechanism (23) arranged to hold the brake member (16) in the non-activated position when the lever (14) is in the first position, and a first resilient element (18) arranged to bias the brake member (16) towards the activated position, and wherein the brake member (16) is arranged to be released from the holding mechanism (23) as a response to the lever (14) coming into the second position, and wherein when released the brake member (16) is adapted to be forced towards the activated position by means of the first resilient element (18), and wherein the brake member (16) is arranged to engage with a structure (34) of the brake element (20) in said activated position so as to prevent rotation of the brake element (20).
Abstract:
Methods and apparatus are provided for determining when vehicle powertrain torque is being used to substantially maintain a vehicle at a substantially zero speed on a graded surface, and to shift the supplied torque from the powertrain to another vehicle system or component. A vehicle controller determines that the powertrain system is supplying a hold torque, which has a magnitude sufficient to substantially maintain the vehicle at a substantially zero speed on the graded surface. A brake torque at a magnitude at least equivalent to the hold torque is automatically applied from the vehicle brake system to thereby maintain the vehicle at the substantially zero speed. Thus, the powertrain system can remove the torque it is supplying to hold the vehicle at the substantially zero speed.
Abstract:
A system for controlling the engagement of a friction clutch (12) which is particularly suitable for controlling such a clutch in a tractor power take-off drive. The system includes two sensors (18, 19) which provide signals indicative of the input and output speeds of the clutch during the engagement process. These signals are compared in a microprocess control circuit (25) to produce comparison signals. Predetermined target accelerations for the clutch output (17) are set in relation to the full range of comparison signal values. The actual acceleration achieved by the clutch output is determined and the target and actual accelerations of the clutch output are compared and an error signal produced which is indicative of the disparity between the target and actual accelerations. Clutch engagement pressure is adjusted in response to the error signals so as to achieve the target accelerations using a solenoid operated valve (14) and the so-called pulse width modulation technique.
Abstract:
A method of performing a double swap kickdown shift in a transmission having a main box and a compounder. The compounder is shifted during the hold speed phase of the downshift. The target ratio for the downshift is overshot by an overshoot RPM.
Abstract:
A device and method for controlling an input clutch of a working vehicle, where, when a brake is released, the input clutch (10) is not rapidly engaged to suppress a large variation in torque, and when the brake is finely adjusted by a brake operation means (22), clutch pressure (Pc) of the input clutch is varied relative to a variation in the brake operation means with a high level of response, which enables highly accurate fine adjustment. Clutch pressure is detected by a clutch pressure detection means (16), and a controller (24) determines whether or not a clutch pressure rising rate is less than the limit rising rate of supply pressure (Pm). Then, the controller adjusts the supply pressure as follows by the use of an input clutch control valve (12): if it is determined that the clutch pressure rising rate is less than the supply pressure limit rising rate, the supply pressure is adjusted so that the difference between the supply pressure and the clutch pressure is a predetermined offset pressure, and if it is determined that the clutch pressure rising rate is not less than the supply pressure limit rising rate, the supply pressure is adjusted so as to rise at the supply pressure limit rising rate.
Abstract:
One embodiment of the present disclosure provides a material reduction machine including a clutch configured and arranged to engage and disengage a material reduction tool with an engine based in response to a control unit. The control unit is configured to decelerate the material reduction tool by maintaining the clutch engaged with the engine during an engine speed reduction period. Another embodiment of the present disclosure also provides a method of decelerating a material reduction tool of a material reduction machine. The metho includes the steps of maintaining engagement between the material reduction tool and an engine after the engine enters an engine speed reduction mode, and disengaging the material reduction device from the engine before the engine rpm drops below a predetermined level.
Abstract:
Drivetrain for a motor vehicle comprising an engine (1), a gearbox (9) having an intermediate shaft (11) with intermediate shaft brake (17) and a friction clutch (3) coupled between the engine and the gearbox. A torque sensor (19) is provided, which detects the input torque to the gearbox. The intermediate shaft brake and the clutch are controlled by a control unit (12), which is programmed in predetermined instances, when the gearbox is in the neutral position, the clutch is engaged and the intermediate shaft brake is released, to measure and store the torque loss from the gearbox and then to set the brake to a predetermined level and to register and store the torque increase during the setting until constant torque is attained. This is registered and stored in the control unit together with the time for the torque increase. The control unit is programmed to then deactivate the brake and to register and store the torque reduction during deactivation down to the torque loss and the time taken for this.
Abstract:
Bei einem Antriebsstrang für eine Arbeitsmaschine, insbesondere einen Radlader, werden die Fahrgeschwindigkeit über ein Fahrpedal (11) und die Arbeitshydraulik über einen Wählhebel (8) vorgewählt, wobei Signale einer elektronischen Steuereinheit (10) zugeführt werden, welche einen Antriebsmotor (1) und eine Kupplung (2), welche zwischen dem Antriebsmotor (1) und einem Pumpenlaufrad (3) eines hydrodynamischen Drehmomentwandlers angeordnet sind, dergestalt angesteuert werden, dass ein Nebenabtrieb (6) für eine Pumpe (7) der Arbeitshydraulik ausreichend Drehzahl zur Verfügung stellt und die vorgewählte Fahrgeschwindigkeit nicht überschritten wird.
Abstract:
Die Erfindung betrifft ein Verfahren zur Steuerung eines Kriechvorgangs eines Kraftfahrzeuges mit zumindest einer zwischen einer Antriebseinheit und einem Getriebe wirksam angeordneten, automatisiert betätigten Reibungskupplung, deren übertragbares Moment mittels eines Steuergeräts vorgegeben und von einem Kupplungsaktor eingestellt wird, einer ersten Sensoreinrichtung zur Erfassung der Geschwindigkeit des Kraftfahrzeugs, einer zweiten Sensoreinrichtung zur Erfassung einer Betätigung einer Betriebsbremse des Kraftfahrzeugs und einer dritten Sensoreinrichtung zur Erfassung der Betätigung eines die Antriebseinheit abhängig von einem Fahrerwunsch steuernden Lasthebels, wobei bei nicht betätigter Betriebsbremse und nicht betätigtem Lasthebel ein mehrstufiger Kriechprozess mit einem an der Reibungskupplung eingestellten Kriechmoment gestartet wird. Um einerseits einen Kriechvorgang auch bei Anfahrsituationen am Berg durchführen zu können und die Reibungskupplung vor Überwärmung und Schädigung zu schützen und sicherheitsrelevante Manöver ohne Wissen des Fahrers zu vermeiden, wird vorgeschlagen, in einer ersten Stufe das Kriechmoment lastabhängig zur Erzielung einer vorgegebenen Geschwindigkeit gegebenenfalls bis zu einem vorgegebenen, maximalen Grenzwert zu erhöhen, bei einem Ausbleiben eines Erreichens der vorgegebenen Geschwindigkeit am maximalen Grenzwert des Kriechmoments in einer zweiten Stufe eine vorgegebene Zeitdauer abzuwarten, bei Ausbleiben eines Erreichens der vorgegebenen Geschwindigkeit das Kriechmoment in einer dritten Phase um einen vorgegebenen Wert zu erhöhen und nach erneutem Ausbleiben des Erreichens der vorgegebenen Geschwindigkeit das Kriechmoment in einer vierten Stufe unter Ausgabe einer Fahrerwarnung abzubauen.