Abstract:
A method for detecting malfunctions in a combustion chamber of a gas turbine plant includes providing dynamic pressure signals (P1 I , P2,...., P N ), each indicative of a dynamic pressure at the outlet of a respective burner of a combustion chamber of the plant. Frequency spectra (S 1 (f), S 2 (f),..., S N (f), S 1 *(f), S 2 * (f),..., S N *(f)) of the dynamic pressure signals (P 1 , P 2 ,..., P N ) are calculated, the malfunctions of the burners are recognized according to these spectra. Each burner subject to malfunctioning is identified according to a bijective correlation between the burners and the respective dynamic pressure signals (P 1 , P 2 ,..., P N ).
Abstract:
An orbiting combustor nozzle (OCN) engine, having a rotating assembly comprising a co-rotating compressor and nozzle wheel enclosed within a non-rotating outer casing, defining a rotating combustion chamber, is disclosed. Combustion occurs in the combustion chamber in a vortex of gas that rotates at the same angular velocity as the rotating assembly. Also disclosed, is a method of cooling a blade of a rotating wheel, such as a turbine wheel or nozzle wheel, by projecting cool air at the base of the vane from a nozzle corotating with the blade. Such cooling is easily implemented in an OCN engine with use of an innovative annular combustor. Also disclosed is a method of countering axial backflow by use of a combustion chamber compressor.
Abstract:
L'invention concerne une chambre de combustion de turbomachine, configurée pour être logée dans un carter de chambre de ladite turbomachine alimenté en air, ladite chambre de combustion étant délimitée par au moins une première paroi (28, 30) d'orientation sensiblement axiale et une deuxième paroi transversale de fond (34), qui est jointive avec ladite au moins une première paroi (28, 30) et au travers de laquelle est agencé un système d'injection, caractérisée en ce que toutes les parois de ladite chambre sont perméables et comportent des orifices (54) ayant une section ne dépassant pas 0.8mm2.
Abstract:
The invention relates to a gas turbine combustion chamber arrangement having at least one centrifugal compressor 1 and having a centripetal annular combustion chamber, wherein between the centrifugal compressor 1 and the annular combustion chamber there is arranged a guide blade arrangement 2, characterized in that the guide blade arrangement 2 is designed such that the air flowing out of the centrifugal compressor 1 is diverted at an angle alpha of 20° to 30°, preferably 25°, with respect to the power unit axis 9, in that the air flow is supplied to the combustion chamber at substantially said angle alpha, in that the inflow region into the combustion chamber is designed for supplying the air at an angle of 20° to 30°, preferably 25°, with respect to the meridian plane 12, and in that the central axes 10 of the burners 4 or of the injection nozzles of the combustion chamber are arranged so as to be inclined at an angle beta of 30° to 40°, preferably 35°, with respect to a meridian plane 12 running through the power unit axis 9.
Abstract:
L'invention concerne un ensemble de combustion (20) de turbomachine, comprenant: -un tube à flamme (21) annulaire comprenant une paroi avant (23),une paroi arrière (24) et un fond (22) disposé en regard d'un arbre moteur (30), -une roue d'injection (41) entraînée en rotation par ledit arbre moteur (30),faisant saillie en partie dans le fond (22) du tube à flamme (21) et étant configurée pour pulvériser du carburant dans le tube à flamme par centrifugation, -au moins un injecteur (35), apte à déposer un film de carburant, sur ladite roue d'injection (41), Cet ensemble de combustion est remarquable en ce que ledit injecteur (35) est disposé au travers de ladite zone amont de la paroi avant (23) ou de la paroi arrière (24) du tube à flamme (21) et de façon que son orifice d'injection (37) débouche à l'intérieur de ce tube (21), en regard de la partie (43)de ladite roue d'injection (41)qui se trouve dans ledit tube à flamme (21).
Abstract:
Fuel (110) and air (100) are injected in a first poloidal flow (130) in a first poloidal direction (132) within a first annular zone (54) of an annular combustor (52). A first combustion gas (140) from the at least partial combustion of the fuel (110) and air (100) is discharged into an annular transition zone (58) of the annular combustor (52) and transformed to a second combustion gas (150) therein within an at least partial second poloidal flow (142) followed by an at least partial third poloidal flow (152) in the annular transition zone (58), wherein the direction of the second poloidal flow (144) is opposite to that (132) of the first (130) and third (152) poloidal flows. The second combustion gas (150) is discharged into a second annular zone (56) of the annular combustor (52), and then transformed to a third combustion gas (160) therein before being discharged therefrom, responsive to which a back pressure (207) is generated in the annular combustor (52).
Abstract:
A combustor (500) for energy producing systems uses fuel injection (115, 118) into a vitiated-air zone (195) and recirculating vortex for flameless oxidation. The air inlet (55) is opposite the fuel injector (115).
Abstract:
Combustor (50) for use in a turbine (100). The combustor (50) comprising a multiple fuel atomizers (10) which has a gas inlet for feeding gaseous fuel as first combustible into an inlet zone of the atomizer, an air inlet for feeding compressed air into the inlet zone, and an orifice for injecting a liquid fuel as second combustible into the inlet zone. The atomizer comprises a diffuser for emitting a gas stream at an exit side. The atomizer (10) is arranged with respect to a combustion chamber of the combustor (50) so that the exit side of the diffuser points in a tangential direction relative to the combustion chamber. The combustor (50) comprises an outlet duct (51) for discharging an exhaust gas produced by a combustion process of the gas stream inside the combustion chamber. The exhaust gas drives a turbine (63).