Abstract:
A system and method is provided to determine the moisture content in a sample material undergoing elemental activation analysis (EAA), the sample material containing at least one sample element which during EAA forms an activation product. The method comprises the steps of (i) positioning a reference material in vicinity of the sample material, the reference material containing a reference element having a thermal neutron capture cross-section of at least 1 barn, the reference material selected such that its product isotope of a thermal neutron capture reaction is a radioisotope that emits gamma-rays, (ii) irradiating the sample material and the reference material with a source of fast neutrons to produce thermal neutrons in the sample material and (iii) detecting gamma-rays emitted from the reference material and generating signals representative of the detected gamma-rays, (iv) calculating a factor, R , proportional to the thermal neutron flux based on the generated signals and (v) identifying, from a relationship relating moisture content to R , the moisture content in the sample material.
Abstract:
A method of characterizing a Plasma Processing Reactor (PPR) by measuring the electromagnetic (EM) emissions of a plasma inside the PPR using an Optical Plasma Monitoring Apparatus (OPMA) is described. The OPMA contains a plurality of photo-sensors that can measure EM emissions of narrow and/or broad spectral regions at various selected positions on the OPMA, and record them as a function of time. The OPMA can have substantially similar dimensions of a workpiece to facilitate loading and unloading into the PPR.
Abstract:
A vacuum condition controlling apparatus (104), the top of which is connected with an electron beam generating instrument. The apparatus is rotationally symmetric, comprises the following parts deployed outward from the central axis: the central channel (113), the first pumping channel (107), the gas supplying chamber (106) and the at least one pumping chamber (108). A pressure limiting aperture (109) is deployed near the outlet of the central channel (113), for keeping the pressure difference between the central channel (113) and the outside environment, and allow the electron beam to go through the central channel (113); the first pumping channel (107) is connected to the central channel (113) to pump the central channel (113); the top of the gas supplying chamber (106) is connected to the gas supplying channel (106) to supply gas to the area (114) between the specimen (111) and the apparatus; the top of the second pumping channel is connected to the second pumping channel, to pump the area (114).
Abstract:
A scanning electron microscopy system is disclosed. The system includes an electron beam source configured to generate a primary electron beam. The system includes a sample stage configured to secure a sample. The system includes a set of electron-optical elements configured to direct at least a portion of the primary electron beam onto a portion of the sample. The set of electron-optical elements includes an upper deflector assembly and a lower deflector assembly. The upper deflect assembly is configured to compensate for chromatic aberration in the primary electron beam caused by the lower deflector assembly. In addition, the system includes a detector assembly positioned configured to detect electrons emanating from the surface of the sample.
Abstract:
Provided herein are non-invasive methods of nanoscale imaging of a sample using an illumination layer and an electron beam. For example, the electron may activate the illumination layer without activating the sample, and the illumination layer may emit cathodoluminescence to produce a nanoscale image of the sample.
Abstract:
For volumetric analysis of the elemental composition of a measured sample (3) the method of three-dimensional scanning is executing using fluorescence induced by electromagnetic radiation, in which the primary beam (1) of electromagnetic radiation is flattened and is directed at the measured sample (3) in which it irradiates the measured area (6). From the measured area (6) there exits fluorescence radiation, which is almost completely shielded by the shielding means (7) to a secondary beam (9), which is released towards the shielded detector (4) through the permeable area (8) formed in the shielding means (7). The secondary beam (9) projects the image of the measured area (6) onto the shielded detector (4), which records the data of the measured area (6) and subsequently uses the data to obtain an elemental composition of the measured sample (3), including the distribution of concentration of elements in the sample volume.
Abstract:
Die Erfindung betrifft ein Verfahren zur Identifikation kristalliner Phasen in einer polykristallinen Probe, umfassend die Verfahrensschritte: a) für Kristallstrukturen, die in der Probe vermutet werden, jeweils Bestimmung eines normierten Vektors p(i) für die chemische Zusammensetzung der Kristallstruktur, wobei die Basis des Vektors Elemente und/oder Verbindungen repräsentiert und somit die Koordinaten des Vektors Angaben über die Konzentration der Elemente und/oder Verbindungen innerhalb der Kristallstruktur umfassen; b) an jedem Messpunkt der Probe, (i) Aufnahme eines Spektrums mittels energiedispersiver Röntgenspektroskopie (EDX-Spektrum) und Bestimmung der chemischen Zusammensetzung und (ii) Aufnahme eines Elektronenbeugungsbildes und Bestimmung der Beugungsbänder; c) Bestimmung eines normierten Vektors v für die chemische Zusammensetzung am Messpunkt, dessen Koordinaten Angaben über die Konzentration der Elemente und/oder Verbindungen am Messpunkt umfassen; d) Vergleich des normierten Vektors v für die chemische Zusammensetzung am Messpunkt mit jedem der normierten Vektoren p(i) der vermuteten Kristallstrukturen unter Ausgabe eines Bewertungsfaktors s(i) für die jeweilige Übereinstimmung der Vektoren; e) Vergleich der am Messpunkt bestimmten Beugungsbänder mit den Beugungsbändern der vermuteten Kristallstrukturen unter Ausgabe eines Bewertungsfaktors n(i) für die Übereinstimmung der Beugungsbänder; und f) Bestimmung einer Gesamtgüte aus den beiden Bewertungsfaktoren s(i) und n(i) und Zuordnung der Kristallstruktur mit der höchsten Gesamtgüte zum Messpunkt.