Abstract:
Изобретение относится к области электротехники и может быть использовано для нанесения зеркального покрытия на часть внутренней поверхности колб при производстве электрических источников света. Техническим результатом является расширение области применения, повышение надежности эксплуатации устройства, повышение производительности операции нанесения зеркального покрытия на колбы, предотвращение случаев разрушения колб. Технический результат достигается тем, что в устройстве для нанесения зеркального покрытия на часть внутренней поверхности колб ламп, содержащем позицию откачки с уплотняющим кольцом, герметично закрепленные в ней электроды с испарителем, центральный и боковые части экрана с элементами их поворота, позиция откачки состоит из колпака и основания, между которыми размещено уплотняющее кольцо, колба полностью размещена внутри позиции откачки и установлена на центральной части экрана, элементы поворота боковых экранов выведены за пределы колбы и расположены внутри позиции откачки.
Abstract:
An der Innenwand des Entladungsgefäßes (2) ist eine Beschichtung (6) aus inertem Material aufgebracht. Die Schichtdicke ist so gering, dass keine Absorption der emittierten Strahlung auftritt.
Abstract:
The invention relates to methods of making barrier partitions, flexible molds (e.g. suitable for making barrier partitions), methods of making flexible molds and (e.g. plasma) display panel articles.
Abstract:
The present invention relates to cured coatings comprising: at least one filler, a polyalkoxysilane matrix, and at least one cured aminosilane in an amount between 5.5 to 40.0 wt % of the total weight of the cured coating. These cured coatings can be used in optics or electronics, and in devices such as lamps.
Abstract:
The invention relates to a holder device for manufacturing partial coatings on at least the burner (4) of a lamp bulb (3), comprising at least a retaining element, an adjustment element, and a screen element, wherein the device has a basic body (1) comprising at least one component, which body comprises at least a hollow space (12) in which a portion of the lamp bulb (3) that is not to be coated can be accommodated with clearance, at least a reference region (11) against which a region of the portion of the burner (4) that is not to be coated can be laid in a defined manner substantially without clearance, and at least. a screen (5) that is connected to the basic body (1).
Abstract:
Apparatus constructed in accordance with an exemplary embodiment of the invention coats an interior surface of a light bulb (54). It includes a support (52) for positioning a light bulb (54) that includes a light transmitting portion. A fixture positions a deposition material (M) and a shield (112) into a position within an interior region of the light bulb (54) for selectively coating an interior surface (116) of the light transmitting portion of the light bulb (54). A control adjusts a position of the shield (112), moving it into proximity to the bulb's inner surface (116) to control a target region of coating of the deposition material (M) onto the interior surface (116) of said light bulb (54). An energy source (122) applies energy to the deposition material (M) to vaporize the deposition material (M) and thereby coat the target region of the interior surface (116) of said light bulb (54).
Abstract:
In forming an optical thin film on the bulb surface of a light source such as a light bulb or a discharge lamp, a thin film whose interface/surface is less rough is formed on a rotary elliptic base disk. In forming a thin film by sputtering on a rotary elliptic base disk (2) rotating around its own axis in the vacuum chamber (4) of a film forming device, the gas pressure is set at 0.04 5.0 Pa, or a mixture of Ar gas and N2 gas is used as the sputtering gas and its partial pressure ratio is Ar gas 100:N2 gas 1-6, or a mixture of Ar gas, N2 gas and O2 gas is used whose partial pressure ratio is Ar gas 100:N2 gas 1 6:O2 gas 6. And at the start of thin film formation, the input power is at a maximum throughout the sputtering process, or a negative bias is applied to the subject base disk, whereby the thin film interface or surface is less rough and the film thickness distribution is lessened.
Abstract:
The flat luminescent screen of the invention contains a substrate and a matrix of electrically conductive elements consisting of rows and columns arranged on the substrate. The emitter represents a plurality of microscopic tips made from an electrically conductive material and arranged in the regions of the intersections of rows and columns; they have a height "h" and a diameter "d". Each region of an intersection of rows and columns which forms a pixel contains at least one microscopic tip. A phosphor film, which contains dopants, is selected from the group consisting either of ZnS, with a dopant selected from the group containing Cu, Al, Ag, Mn, or SrGa2S4, with an Eu dopant, or else ZnGd2O4 with a Ce dopant, wherein ZnS, SrGa2S4 and ZnGd2O4 correspond to the three colors of phosphor dots. The anode, made of an electronically conductive optically transparent film, is arranged on the phosphor film containing a dopant. A semiconductor film arranged on the surface of the emitter, on the top of the tips, is used to heat electrons. The thickness of the film is less than half of the height of the tips. The phosphor film containing a dopant is arranged on the surface of the semiconductor film and has a thickness determined by the relaxation length of the maximum energy Wmax of hot electrons; the other side thereof is contacted with the anode. A dielectric material is arranged in the regions between the microscopic tips. The distance between rows and columns is comprised between the diameter "d" of a microscope tip and the height "h" of the said tip.