A method for making a leadframe includes removing a group of parallel, strip-shaped electrical conductors from a metal sheet, embedding end portions of the conductors in molding compound defining a leadframe body, and separating the conductors from each other, such that portions of the conductors remain encapsulated in the molding compound while other portions remain exterior to the molding compound and define leads of the resulting leadframe.
A printed circuit board includes a base, a circuit pattern, a solder mask, an activated metal layer, a plurality of metal seed layers, and a plurality of metal bumps. The conductive circuit pattern is formed on the base, to include a plurality of conductive pads. The solder mask is formed on a surface of the conductive circuit pattern and portions of the base are exposed from the circuit pattern. The solder mask includes blind vias corresponding to the pads, and laser-activated catalyst. The activated metal layer is obtained by laser irradiation at the wall of the blind via. The activated metal layer is in contact with the solder mask. The metal seed layer is formed on the activated metal layer and the pads. Each metal bump is formed on the metal seed layer, and each metal bump protrudes from the solder mask.
Embedding a power modification component such as a capacitance inside of an adaptor board located to extend over and beyond the vias of the main circuit board so that a portion of the interposer board containing the embedded capacitance is located beyond where the vias or blinds are located. This permits that via to conduct through the opening. In this way, the capacitance and the resistance will have a closer contact point to the electrical component. A resistance can also be embedded in an opening in the adaptor board and be vertically aligned within the opening to make contact with a pad on top of the adaptor board and a pad at the bottom of the adaptor board so that electricity conducts through the embedded component.
A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.
The present invention relates to a method for fabricating blackened conductive patterns, which includes (i) forming a resist layer on a non-conductive substrate; (ii) forming fine pattern grooves in the resist layer using a laser beam; (iii) forming a mixture layer containing a conductive material and a blackening material in the fine pattern grooves; and (iv) removing the resist layer remained on the non-conductive substrate.
A multi-layer micro-wire structure includes a substrate having a substrate edge. A first layer is formed over the substrate extending to a first layer edge. One or more first micro-channels are imprinted in the first layer, at least one imprinted first micro-channel having a micro-wire forming at least a portion of an exposed first connection pad in the first layer. A second layer is formed over the first layer extending to a second layer edge. One or more second micro-channels are imprinted in the second layer, at least one imprinted second micro-channel having a micro-wire forming at least a portion of an exposed second connection pad in the second layer. The second-layer edge is farther from the substrate edge than the first-layer edge for at least a portion of the second-layer edge so that the first connection pads are exposed through the second layer.
A method of manufacturing a wiring board includes: forming an outer through hole in a core substrate; filling the outer through hole with an insulation resin; forming a first conductive layer on a surface of the insulation resin at a portion where a core connecting via is formed; forming a land around the first conductive layer; laminating the wiring layer on the core substrate after the forming of the first conductive layer and the forming of the land; forming an inner through hole having a smaller diameter than that of the outer through hole and penetrating through the core substrate and the wiring layer so as to penetrate through the insulation resin; and coating a first conductive film on an inner wall surface of the inner through hole, in which the core substrate and the first conductive film are electrically connected through the first conductive layer and the land.
An electronics module includes a module housing having a base structure and a plurality of side walls. A module cover contacts the side walls and is connected to the module housing via at least one fastener. The module housing includes at least one fastener boss for receiving the at least one fastener. Each of the fastener bosses includes a fastener hole protruding partially into the fastener boss and a vent hole connecting the fastener hole to an opening on a surface of the fastener boss exterior to the module housing, and a sealant disposed in the fastener boss, thereby preventing external air from entering the electronics module through a fastener connection.
A method of fabricating components for a three-dimensional circuit structure includes providing a printed circuit board (PCB) having a top surface, an opposing bottom surface, and an end section. A first angled channel is formed in the top surface at the end section, with the first angled channel extending to an edge of the end section and dividing the end section into a first end portion and a second end portion. The PCB material is removed from the top surface at the first end portion to form a first support member having an upper surface at a preselected distance below the top surface. A second angled channel is formed in the bottom surface at the end section of the first PCB, with the second angled channel extending to the edge of the end section and being adjacent to the first support member. The PCB material is removed from the bottom surface at the second end portion to form a second support member having an upper surface that is contiguous with the top surface of the PCB. A ramp portion extends between the first support member and the second support member.
A display device includes a display panel including a display part; a conductive film located on a front surface of the display panel and made of a conductive member; a non-conductive housing frame that is located on a surface of the conductive film opposite to a surface of the conductive film facing the display panel, covers a peripheral part of the display panel, and has at least one through hole penetrating the housing frame along a front-and-back direction; a conductive coupling member disposed in the through hole and electrically coupled to the conductive film; and a conductive decorative panel that covers a surface of the housing frame opposite to a surface of the housing frame facing the conductive film and is electrically coupled to the coupling member.
Techniques for generating EUV light include directing a first pulse of radiation toward a target material droplet to form a modified droplet, the first pulse of radiation having an energy sufficient to alter a shape of the target material droplet; directing a second pulse of radiation toward the modified droplet to form an absorption material, the second pulse of radiation having an energy sufficient to change a property of the modified droplet, the property being related to absorption of radiation; and directing an amplified light beam toward the absorption material, the amplified light beam having an energy sufficient to convert at least a portion of the absorption material into extreme ultraviolet (EUV) light.
A LED (Light-Emitting Diode) driving circuit including at least one light-emitting unit and a protection detecting circuit, is provided. Each light-emitting unit includes an LED string coupled to a driving voltage, a current regulator and a transistor. The current regulator is coupled to a corresponding LED string and controls a current flowing therethrough. The transistor is coupled between the LED string and the current regulator. The protection detecting circuit generates a clamping reference level signal to a control terminal of the at least one transistor and is coupled to a connection node of the at least one transistor and the at least one LED string. When a voltage of any connection node is higher than a preset protection value, the protection detecting circuit decreases the clamping reference value to reduce or cut off the current of the at least one LED string.
The present invention relates to a high efficiency, high power factor LED driver for driving an LED device. In one embodiment, an LED driver can include: an LED current detection circuit coupled to the LED device, and configured to generate a feedback signal that represents an error between a driving current and an expected driving current of the LED device; a power stage circuit, where a first power switch terminal is coupled to a first input voltage, and a second power switch terminal is coupled to ground; and a control circuit configured to generate a control signal according to the feedback signal and a drain-source voltage of the power switch, where the control signal, in each switch period, turns on the power switch when the drain-source voltage reaches a low level, and turns off the power switch after a fixed time interval based on the feedback signal.
An LED-based lighting system is operated with a time-based process. The LEDs are first turned on by energizing the system at full power. After a predetermined time period, which is selected so that the junction temperature of the LEDs does not reach a critical temperature, the current supply is ramped down to a steady-state supply. The steady-state current is maintained as long as the light is turned on. When the light is turned on the next time and the LEDs have not cooled down all the way, as determined by the time that has expired since the LEDs were last lit, the full-power time period is shortened accordingly.
A method, device, and computer program product are provided for adjusting brightness of an optical touch panel. The optical touch panel comprises a microprocessor, a display module including a back light source, and an optical position detection device including optical transmitting devices and optical receiving devices. The method comprises detecting, via the optical receiving devices, a current ambient light level on the display module. The method further comprises generating, via the optical receiving devices, a current ambient light level signal indicative of the detected current ambient light level and transmitting the current ambient light level signal to the microprocessor. Furthermore, the method comprises adjusting, via the microprocessor, brightness of the back light source based on the current ambient light level signal.
The present invention proposes a distributed probabilistic dynamic interference coordination scheme to decrease or eliminate inter-cell interference, wherein the mechanism of ALOHA is introduced into the dynamic interference coordination. According to the first aspect of the present invention, a resource scheduling method is proposed, comprising: selecting resource to be scheduled from a scheduling list; selecting a first user equipment to be scheduled from the scheduling list; allocating the selected resource to the first user equipment by probability of p, wherein 0≦p≦1, if the first user equipment is of edge user. The present invention further proposes a scheduler implementing the aforesaid resource scheduling method and a base station (BS) comprising the aforesaid scheduler.
A communication system includes a plurality of nodes including a base station; at least one terminal; and at least one relay node through which each terminal can be connected to the base station. An entity in a network higher in layer than each relay node configures the relay node to set a target value for a predetermined parameter reflecting a radio link status of the relay node. The relay node monitors the predetermined parameter to notify an upper-layer node of difference information corresponding to a difference between the target value and a monitored parameter value. The upper-layer node controls a link parameter of a radio link connecting the upper-layer node and the relay node depending on the difference information, resulting in efficient radio resource allocation in a relay network with small signaling overhead.
A method includes detecting a first value for a first parameter associated with a first access point of a plurality of access points and based at least on the first value for the first parameter associated with the first access point, configuring a second value for a second parameter associated with a second access point of the plurality of access points.
A method and system for selectively allowing uplink wireless transmission from a wireless communication device (WCDs) to a base station without a resource block assignment. Certain resource blocks may be designated for this use but still available for assignment to particular WCDs. When the base station receives data in such a resource block without having assigned the resource block for use by any WCD, the base station may determine based on a class or other identity of the transmitting WCD whether to forward the received data for transmission onto a transport network or rather whether to discard the data. The base station may then act accordingly. This arrangement may help improve performance in a scenario where many WCDs in a coverage area, such as embedded WCDs, would tend to transmit small amounts of data often, but the disclosed arrangement is more generally applicable as well.
A communication unit includes a plurality of antennas and controls, in transmitting signal using the plurality of antennas, the transmission directivity of the plurality of antennas based on a known signal from the communication terminal. A radio resource allocation unit allocates, to the communication terminal, an uplink frequency band for use in transmission of the known signal from a plurality of unit frequency bands lined in a frequency direction. In newly allocating the uplink frequency band to the communication terminal, the radio resource allocation unit newly determines the uplink frequency band based on elapsed time since the last use of the unit frequency band as the uplink frequency band.
A wireless communication system, using wireless base stations, and other devices, such as a relay node, interoperate with using spectrum aggregation and MIMO. Traffic usage is detected and based on channel utilization relative to capacity, spectrum aggregation is chosen over MIMO under certain conditions. On the other hand, under higher channel utilization system components switch to MIMO modes of operation to reduce demand on channel use, while providing good throughput for communications stations.
A method of broadcasting a first beacon by an access point of a communications system includes obtaining transmission times for second beacons broadcast by nearby access points, and adjusting a transmission time for the first beacon in accordance with the transmission times for the second beacons to group the first beacon and the second beacons together within a single channel. The method also includes broadcasting an indicator of the transmission time for the first beacon to stations operating in the communications system, and broadcasting the first beacon at the transmission time for the first beacon.
A method includes operating a user equipment to initiate monitoring of a control channel associated with a particular component carrier for determining if the user equipment is scheduled by the control channel associated with the particular component carrier. In response to determining that the user equipment is not scheduled, autonomously terminating the monitoring of the control channel associated with the particular component carrier. A further method includes establishing a set of rules defining how and when a user equipment autonomously deactivates use of component carriers transmitted by a network access node. The network access node assumes, in response to the network access node not scheduling the user equipment in a control channel of a particular component carrier for some period, that the user equipment has autonomously deactivated monitoring of the control channel of the particular component carrier. Various apparatus and computer programs are also disclosed that operate in accordance with the methods.
Carrier aggregation to enhance Evolved Multimedia Broadcast Multicast Service (eMBMS) includes transmitting unicast signaling for a unicast service on an anchor carrier to mobile entities, transmitting eMBMS signaling on a second carrier different from the anchor carrier to the mobile entities for use with the unicast signaling, and various techniques for practical application of carrier aggregation for eMBMS enhancement. In addition, allocating subframes used for MBMS on a Single Frequency Network (MBSFN) includes allocating at least a portion of one or more subframes otherwise reserved for unicast subframes on a mixed carrier to provide an increased allocation of subframes carrying MBSFN information, transmitting MBSFN signals on the increased allocation of subframes, and more detailed aspects.
Provided is a wireless base station including a power measurement unit for measuring a power of a reference signal for synchronization at a downlink adjacent frequency; a base station type acquisition unit for acquiring a type of a base station that transmits the signal at the downlink adjacent frequency; and a power setting unit for setting a maximum transmission power based on a measurement value of the power measured by the power measurement unit and the type of the base station acquired by the base station type acquisition unit.
According to one exemplary embodiment of the present invention, an apparatus is provided comprising a radio transmitter having an output stage with an adjustable output power level, a measurement circuit configured to measure a radio signal power of the radio transmitter and a control block connected to the measurement circuit wherein the measurement circuit is connected to the output stage of the radio transmitter where the radio signal power is measured; and wherein the control block is configured to adjust the output power level of the radio transmitter based on the measured radio signal power at the radio transmitter output stage.
A user equipment (UE) of a wireless communication system is disclosed. A second receiving module, of a second wireless communication chip, is configured for receiving a transmission power value of a first signal configured to be transmitted from a first wireless communication chip of the UE. A second transmission power value determining module, of the second wireless communication chip, is configured for determining a transmission power value of a second signal configured to be transmitted from the second wireless communication chip, the determination based on the received transmission power value of the first signal and a predefined specific absorption rate (SAR) condition, wherein the first wireless communication chip is configured for transmitting the first signal using a first wireless communication scheme, wherein the second wireless communication chip is configured for transmitting the second signal using a second wireless communication scheme simultaneously with the transmission of the first signal by the first wireless communication chip.
In embodiments, an evolved Node B (eNB) of a wireless communication network may configure an enhanced physical downlink control channel (EPDCCH) physical resource block (PRB) set for a user equipment (UE). The EPDCCH-PRB set may include a plurality of PRB-pairs. The EPDCCH-PRB set may further include a plurality of enhanced resource element groups (EREGs) organized into localized enhanced control channel elements (ECCEs) having EREGs of the same PRB-pair and distributed ECCEs having EREGs of different PRB-pairs. In some embodiments, the eNB may determine a set of distributed EPDCCH candidates for the UE from the EPDCCH-PRB set, wherein the individual distributed EPDCCH candidates include one or more of the distributed ECCEs, and wherein the set of distributed EPDCCH candidates includes at least one EREG from each of the plurality of localized ECCEs. Other embodiments may be described and claimed.
A method for performing timing synchronization error compensation by a base station in a communication system, in which if there is a need for timing synchronization error compensation of a user equipment, the base station generates a message related to the timing synchronization error compensation, and broadcasts the generated message to the user equipment. In this manner, the base station can notify the user equipment of the need for timing synchronization error compensation in the communication system.
A system and method are provided to streamline at least a clock synchronization process for subsequent WiGig PALs once clocks in a first WiGig PAL transmitter and a corresponding first WiGig PAL receiver are synchronized. The unique layering structure of the WiGig 60 GHz standard affords an opportunity to streamline the clock synchronization process based on relationships between individual WiGig PALs, and that the WiGig PALs are directly on top of the WiGig MAC and PHY layers. A process for assisted cross-PAL/cross-layer clock synchronization affords significant reductions in an amount of time required to synchronize the clocks of multiple WiGig PALs based on leveraging an already synchronized clock pair in a first WiGig PAL transmitter/receiver pair to facilitate the clock synchronization of one or more subsequent WiGig PAL transmitter/receiver pairs.
Methods and systems are provided for prioritizing carriers in femtocell frequency-hopping pilot beacons. A femtocell receives registration requests from a number of mobile devices requesting to hand off service from a macro-network carrier to the femtocell. The femtocell identifies the macro-network carrier that each mobile device has handed off from. The femtocell then uses that information to prioritize future broadcasts of its frequency-hopping pilot beacon on those macro-network carriers on which the most mobile devices have handed off from. The prioritization could take the form of broadcasting more often on the higher priority one or more carriers per cycle, or broadcasting for a longer continuous period of time on the higher priority one or more carriers per cycle.
A method for one of a plurality access points (APs) of a wireless communication system to convey neighbor information to a station is disclosed. The method includes transmitting a compact information of at least one neighbor AP; wherein the compact information is transmitted in a frame and the compact information is used for scanning.
An apparatus and method connect an Access Point (AP) in a portable terminal. More particularly, an apparatus and method designate a group of searched peripheral APs, and attempt an access to an AP corresponding to a group selected by a user in a portable terminal. The apparatus includes a group set unit and an AP search unit. The group set unit sets items of peripheral APs to a group according to user's selection. After searching the peripheral APs at the time of AP connection, the AP search unit classifies an AP belonging to a selected item and connects to the classified AP.
The disclosed subject matter provides for systems, devices, and methods facilitating carrier-driven bearer path selection. Carrier-driven bearer path selection enables a carrier to assert bearer path selection policies. Bearer paths available to UEs can be checked for compliance with a carrier's policies. Preferred bearer paths can be designated to the UE for selection. Designation of preferred bearer paths can, in an aspect, be related to route cost, path requests, or path characteristics. In addition, complex bearer path schema can be determined. In an aspect, complex bearer path schema can include asymmetric routing, bonding, and multiplexing. The subject disclosure can enable a carrier to improve management of the carrier's network resources by driving bearer path selection determination to UEs.
The invention disclosed is a new system and method for directing the initiation of a notification campaign directed to a telecommunications system, wherein a variety of different campaigns are initiated through a universal interface offering access to a variety of telecommunications systems. With the advent of automated telephonic message delivery, certain public safety agencies, such as police departments and fire departments, seek to deliver mass messages to citizenry at risk during emergency situations.
A system provides for traffic offloading in a Public Safety communication system. The system includes multiple user equipment (UEs), each a member of a same communications group, and a services network element configured to receive information comprising an identifier of the communications group, an identifier of each UE of the multiple UEs, and an identifier of a cell of a primary network where each UE resides; store, in association with each UE identifier, the communications group identifier and the primary network cell identifier; determine that a primary network cell is congested; responsive to determining that the cell is congested, determine a subset of the multiple UEs that are members of the communications group, reside in the congested cell, and are capable of being served by one or more secondary networks; and instruct the subset of UEs to offload their communications group traffic to the one or more secondary networks.
A method, a system and an evolved nodeB (eNodeB) that enable user equipment (UE) to switch between carrier groups in a multi-carrier network. A carrier selection and switching (CSS) utility identifies a first and a second set of pre-configured groups of carrier frequencies that are subsequently assigned to a particular UE. The CSS utility notifies the UE of the assigned, pre-configured groups of carrier frequencies and provides the UE with system parameters associated with the first and second pre-configured groups of carrier frequencies. The CSS utility signals the UE to initiate communication via the first preconfigured group of carriers. Based on the occurrence of pre-established conditions, the CSS utility utilizes a switch signal to indicate via physical downlink control channel (PDCCH) to the UE (a) when to begin utilizing the second group of preconfigured carrier frequencies and (b) when to make subsequent switches between carrier groups.
A method of data transmission with a first mobile station (UE1) in a cellular communication system is described. The cellular communication system comprises a plurality of access nodes (BS1, BS2, BS3), and a plurality of mobile stations (UE11, UE2′, UE3′) in a coverage area (302) of the plurality of access nodes (BS1, BS2, BS3). The plurality of access nodes (BS1, BS2, BS3) and the plurality of mobile stations are adapted to perform data transmission in a first mode between an individual access node from the plurality of access nodes and the first mobile station (UE1), and in a second mode of cooperative data transmission between at least two of the access nodes from the plurality of access nodes and the first mobile station (UE1). The method comprises the steps of identifying the first mobile station (UE1) from the plurality of mobile stations, determining an indication of a modification of the transmission conditions between the first mode and the second mode for said first mobile station (UE1), selecting the mode of data transmission for the identified mobile station from the first and the second mode based on the indication, and performing the data transmission in the selected mode. A corresponding device and program is also described.
There is provided a solution for performing radio access parameter tuning. The solution includes obtaining first predetermined characteristics related to users who experienced a radio link failure, obtaining second predetermined characteristics related to the users who are according to a predetermined rule prone to a radio link failure, and determining, based on the obtained second predetermined characteristics in addition to the obtained first predetermined characteristics, whether radio access parameter tuning is to be performed or not.
This application discloses methods for creating self-organizing networks implemented on heterogeneous mesh networks. The self-organizing networks can include a computing cloud component coupled to the heterogeneous mesh network. In the methods and computer-readable mediums disclosed herein, a processor receives an environmental condition for a mesh network. The processor may have measured the environmental condition, or it could have received it from elsewhere, e.g., internally stored information, a neighboring node, a server located in a computing cloud, a network element, user equipment (“UE”), and the like. After receiving the environmental condition, the processor evaluates it and determines whether an operational parameter within the mesh network should change to better optimize network performance.
Method, apparatus, and computer program product embodiments are disclosed for managing coexistence of secondary users in RF spectrum. An example embodiment includes receiving, by a coexistence manager, information indicating that a candidate wireless network served by another coexistence manager may interfere with a wireless network served by the coexistence manager; determining a location related to the wireless network served by the coexistence manager; transmitting a request message to the other coexistence manager, indicating the location and requesting an estimate of a transmission signal level at the location caused by the candidate wireless network; receiving from the other coexistence manager, a response message including information indicating an estimated transmission signal level at the location caused by the candidate wireless network; and determining whether the candidate wireless network interferes with the wireless network served by the coexistence manager based on the received estimated transmission signal level.
The disclosure provides a method and device for determining Channel quality indication information, which is configured to perform channel measurement based on a reference signal, so as to obtain a CQI information. The method considers the influence of multiple factors on CQI calculation, including selection of a measurement reference signal as well as the influence of multiple complex conditions on CQI calculation, thereby solving the problem that an existing system is unable to obtain accurate Channel quality indication information when using a transmission mode 9, and enhancing the flexibility and performance of the system.
Methods and systems for auto coexistence priority selection for a SCO link are disclosed. Aspects of one method may include a first Bluetooth device communicating with a collocated WLAN device via a coexistence method. The first Bluetooth device, prior to executing a non-SCO task, which may comprise tasks that do not involve SCO packet transfer, may communicate low priority via the coexistence method if a Bluetooth SCO link is present between the first Bluetooth device and a second Bluetooth device, and if a current task being handled by the first Bluetooth device is a high priority task. If a SCO link is not present between the first and second Bluetooth devices, and if the current non-SCO task is a high priority task, the first Bluetooth device may communicate high priority via the coexistence method prior to executing the non-SCO task.
Certain aspects of the present disclosure relate to techniques for supporting television white space (TVWS) communication. In an aspect of the present disclosure, a low-rate TVWS enabler (Mode II wireless communication device) may provide initial enablement for all Mode I devices (e.g., access points and user terminals), as well as it may transmit a contact verification signal (CVS) on a regular basis to keep the Mode I devices enabled for the TVWS communication.
A method of wireless communication includes configuring a small cell with activation parameters. The activation parameters include a new carrier type having a reduced periodicity. The method also includes configuring a UE with time restricted measurements. The time restricted measurements correspond to the new carrier type and the reduced periodicity. The method further includes receiving small cell signal measurements from the UE and initiating an activation sequence in response to the small cell signal measurements.
Methods and systems for associating or pairing a mobile device with a local output device via a central or mobile connect server system are provided. Pairing is performed by initiating a pairing request from an output device that is passed to the mobile connect server for processing. The mobile connect server responds to the request with a pairing code that is displayed by the output device. A user of the mobile device then enters the displayed pairing code in the mobile device. The mobile device transmits the entered pairing code to the mobile connect server and, in response to a match, the mobile device is paired to the output device. Pairing can enable various functions, including an ability to control programming or other information displayed by the output device in response to commands entered in the mobile device.
A method of management of a communication device in an aircraft may include transitioning the communication device from a normal mode to a disabled mode based on a calculated device sleep time based on data associated with transportation information of the device. One of these modes may be a state of the device in which a transceiver of the device is deactivated and the other mode may be a state of the device in which the transceiver is activated. Therefore, the device sleep time determines when the wireless device's transceiver may not be activated.
Methods, systems, and devices are described for determining and updating coordinates of access points (APs) within a location tracking system. Tools and techniques are described that may provide for automatically determining a coordinate set, which represents coordinates of at least three neighboring APs within a location tracking area. These techniques may be utilized at the time of the APs' deployment and/or when APs are moved or relocated to a new location. The methods, systems, and devices may be applicable to single- and multi-floor location tracking systems. Coordinate and/or coordinate sets of APs may be stored in a location tracking server, and they may used in determining a location of tracking tags with the location tracking area. The stored coordinates and/or coordinate sets may be updated as the location of APs change.
Methods and systems for determining a location of a UE includes receiving UE position information from a UE being serviced by a plurality of base stations. The UE position information may include a signal reception time and a signal transmission time or a timing advance for at least two of the plurality of base stations. The signal transmission time being a measured time for a signal being transmitted by the UE to be received by a base station, the signal reception time being a measured time for a signal being transmitted by the base station to be received by the UE, and the timing advance being a difference between the signal transmission time and the signal reception time for the base station. The method may include determining a location of the UE based on the received UE position information.
A method and a lighting device for providing a Location Based Service (LBS) service providing a Location Based Service (LBS) based on Visible Light Communication (VLC) is provided. The method includes receiving, by at least one light source, data from a coordinator, the data including identification information of the at least one light source that corresponds to location information of the at least one light source, which is used by a terminal to identify a location of the at least one light source; and transmitting, by the at least one light source, the data to the terminal in a VLC signal.
Emergency broadcasting systems and methods are described herein. One system includes an anchor access point configured to detect an emergency event and send a message relating to the emergency event to a number of location tags located within a predetermined area of the anchor access point.
An example method for adjusting the range of transmission of advertising packets is disclosed. In particular, method includes receiving, from an application executing on a mobile computing device, a request. The request may include a request to transmit an advertisement packet via a short-range wireless device of the computing device. Additionally, the request may include a power level for the transmission of the advertisement packet via the short-range wireless device. The request may be received via an application programming interface (API) exposed to the application. Additionally, the method may include causing the transmission, via the short-range wireless device, of the advertisement packet. The short-range wireless device may be configured to transmit the advertisement packet at a transmission power level less than or equal to the requested power level. Further, the requested power level may be less than or equal to a nominal power level for the short-range wireless device.
A device control middleware 130 in a mobile terminal 10 converts ability information and input information (for example, pressing of a key) of various input devices of the mobile terminal 10 into an analyzable form, and transmits the converted information to a PC 20. A virtual device middleware 230 in the PC 20 analyzes the information received from the device control middleware 130 and supplies the information extracted by the analysis as input information of a JAVA application 250.
Techniques are provided to use near-field speakers to add depth information that may be missing, incomplete, or imperceptible in far-field sound waves from far-field speakers, and to remove the multi-channel cross talk and reflected sound waves that otherwise may be inherent in a listening space with the far-field speakers alone. In some possible embodiments, a calibration tone may be monitored at each of a listener's ears. The calibration tone may be emitted by two or more far-field speakers. One or more audio portions from two or more near-field speakers may be outputted based on results of monitoring the calibration tone.
A microphone comprises a movable diaphragm 2 and a back electrode 4. The mechanical relationship between the back electrode 4 and the diaphragm 2 is adjustable thereby to control the cut-off frequency of the microphone. This enables the microphone to be adapted to different noise environments.
A loudspeaker diaphragm includes a diaphragm portion and an edge portion, which is molded integrally with the diaphragm portion and made of a material different from a material for the diaphragm portion. The edge portion contains at least one thermoplastic polymer (I), in combination with a block polymer (II). The at least one thermoplastic polymer (I) is selected from a block copolymer (I-a) which contains a polymer block (A) having a repeating structural unit derived from an aromatic vinyl compound and a polymer block (B) having a repeating structural unit derived from a conjugated diene, and an addition hydrogenated block copolymer (I-b) of the block copolymer (I-a). The block copolymer (II) contains a polymer block (C) having a repeating structural unit derived from an olefin compound and a polymer block (D) having a repeating structural unit derived from a (meth)acrylic compound.
Accessories for a telephone include at least one earphone and at least one microphone array having multiple microphones used to generate outgoing audio signals for (i) processing by a signal processor and (ii) transmission by the telephone. In one embodiment, two earphones are connected by two corresponding wires, and two microphone arrays, respectively connected to the two wires, are mechanically and electronically configurable in a plurality of use modes to generate outgoing audio signals for processing by the signal processor. The use modes include one or more and possibly all of a single-sided mode, a two-sided mode, an enhanced directivity mode, a stereo recording mode, a multichannel recording mode, a conference mode, and a two-dimensional-array mode, where one of the use modes is automatically detected by the signal processor based on the audio signals generated by the two microphone arrays.
An earphone includes a generally conical housing having generally circular front face adapted to be seated in the concha of the user's ear. The housing tapers away from the front face toward the rear of the housing. A speaker is disposed in the housing. A first resilient portion is disposed on the sidewall of the housing to form a first contact surface. A second resilient portion is disposed on the sidewall of the housing, opposite from the first resilient portion. The second resilient portion extends sufficiently circumferentially around the housing to form second and third contact surfaces disposed on opposite sides of the wire guide. The first, second, and third contact surfaces allow the housing to be grasped between the thumb and two fingers of the user to facilitate insertion of the front portion of the housing into the user's ear.
An electroacoustic transducer includes a diaphragm including: a wing-pair portion; and a cone portion. The wing-pair portion includes a pair of convex surfaces having respectively convex surfaces of a pair of longitudinal split tubular members. A valley is formed between one side portions of the pair of convex surfaces. The cone portion surrounds an outer peripheral portion of the wing-pair portion and extends in a conical shape. The electroacoustic transducer further includes: a converter configured to convert between a vibration of the diaphragm in a depth direction of the valley and an electric signal corresponding to the vibration; and a supporter supporting an outer peripheral portion of the cone portion to allow the diaphragm to vibrate in a direction of the vibration.
An apparatus and method for monitoring energy storage devices is disclosed. A monitoring system that monitors an energy storage device collects and stores operating data from the device and relays that data through a communications system to one or more servers. The servers can store the operating data from each of the monitored energy storage devices.
Personal object based archival systems and methods are provided for processing and compressing video. By analyzing features unique to a user, such as face, family, and pet attributes associated with the user, an invariant model can be determined to create object model adapters personal to each user. These personalized video object models can be created using geometric and appearance modeling techniques, and they can be stored in an object model library. The object models can be reused for processing other video streams. The object models can be shared in a peer-to-peer network among many users, or the object models can be stored in an object model library on a server. When the compressed (encoded) video is reconstructed, the video object models can be accessed and used to produce quality video with nearly lossless compression.
There is provided a system and method enabling client-side initiated identification of media content rendered on a client-side media player. In one embodiment, the system comprises the client-side media player including a controller and a memory, a media content database accessible by the client-side media player over a network, and a media content identifier application to be run on the client-side media player. The media content identifier application, when executed by the client-side media player controller, performs a method comprising sampling the media content, sending a first data corresponding to the sample to the media content database over the network, and receiving a second data over the network identifying the media content, thereby enabling client-side initiated identification of the media content rendered on the client-side media player.
An apparatus may include a receiver configured to receive chunks of data on a downstream channel from a cable modem termination system. The receiver may be further configured to enter a low power state in which the chunks of data cannot be received. Wake up circuitry may be configured to monitor data in the downstream channel for a wake up signal when the receiver is in the low power state.
The present invention relates to a method for a control point of initiating actions on a device in a communication network comprising at least two control points both adapted to control said device. Further, the present invention relates to a method for a device of initiating actions on said device in a communication network comprising at least two control points both adapted to control said device. Further, the present invention relates to a control point of initiating actions on a device in a communication network comprising at least two control point both adapted to control said device. Further, the present invention relates to a device in a communication network comprising at least two control points both adapted to control said device based on action requests received from a control point along with control point identification.
A device receives an indication that a user of the device wishes to share media content with another user. The device identifies a size associated with the media content and an acceptable media content size for successful transmission over a communication network. The size associated with the media content is compared with the acceptable media content size to determine whether the size associated with the media content exceeds the acceptable media content size. Upon determining that the size associated with the media content exceeds the acceptable media content size, the device enables the user of the device to reduce the size of the media content to the acceptable media content size. The user is enabled to graphically determine when the media content is reduced to the acceptable media content size.
A method includes receiving a request related to a set top box, the request having a public identifier of the set top box and a user account identifier. The public identifier is accessible by a user associated with the set top box. The method also includes accessing a user record, corresponding to a location, from a database of user records. The method further includes determining, from the user record, a private identifier of the set top box corresponding to the public identifier of the set top box, wherein the private identifier is unique to the set top box among a set of set top boxes associated with the user record and the private identifier is inaccessible by the user and using the private identifier to perform an action related to the set top box in response to the request.
A system and method for distribution of media signals. Wireless communications are established between a set-top box and a wireless adapter in communication with a television. The wireless adapter is powered by the television. A signal is received from the set-top box at the wireless adapter. The signal is formatted for wireless communication. The signal is converted to a format displayable by the television. The formatted signal is communicated from the wireless adapter to the television.
Systems, devices and methods are described including specifying a jitter response control parameter, receiving multiple timestamp pairs. A maximum jitter of the timestamp pairs may be determined along with an elapsed time, and a clock frequency may be adjusted if the maximum jitter is less than the elapsed time divided by the jitter response control parameter. The jitter response control parameter may be adjusted in response to changes in die jitter of the input A/V signal. Further, one or more Proportional-Integral-Derivative (PID) controller coefficients may be adjusted in response to the evaluated jitter of the timestamp pairs.
Digital data associated with recorded programs are uploaded to a Head End facility from user devices (e.g., set-top boxes) in a media distribution network. The Head End facility stores a library of the Digital Video Recording (DVR) assets for programs and makes them available, by streaming, to user devices, including user devices that do not have DVR capability. Techniques are also provided to efficiently upload a DVR asset simultaneously in segments or chunks from multiple user devices.
A method includes sending a polling message from a management system to a set-top box device. The polling message requests service data related to quality of service associated with the set-top box device. The method includes receiving, at the management system, quality parameters from the set-top box device in response to the polling message. The method includes selecting a representative color that corresponds to the quality of service. The method also includes sending a quality indicator from the management system to a display. The quality indicator displays the representative color and an identification of the set-top box device.
A system, method and apparatus of distributing a video stream is provided. At a publishing point relay, a plurality of video files encoded from a portion of the video stream from a Hypertext Transfer Protocol (HTTP) Live Streaming (HLS) Adaptive Bit Rate (ABR) encoding device are received. Each of the encoded video files having a different bit-rate, the encoded video files received using a protocol for transferring files. Edge publishing point servers are determined that are registered with the publishing point relay to distribute the audio/video stream. Each of the encoded video files received by the publishing point relay are relayed to each of the determined edge publishing points as each video file is received from the HTTP ABR encoding device.
Methods, systems, and computer program products are provided to divide code blocks, such as blocks of quantized coefficient of image or video data, into smaller blocks and sub-blocks that can be processed in parallel using layered entropy coding and decoding scheme. This division is accomplished while still encoding the entire code block using the same layered entropy coding scheme.
The disclosed subject matter provides techniques for coding overlays in a scalable bitstream environment. H.265's Video Parameter Set (VPS) may be augmented to include syntax elements indicative of a type of an auxiliary picture, which can, for example, be an overlay picture, an overlay layout, an alpha picture (which controls semi-transparency of pictures), and so on. A Supplementary Enhancement Information (SEI-) message may be used to describe the overlay layout and associate the aux type layers.
Techniques are described related to deriving a reference picture set. A reference picture set may identify reference pictures that can potentially be used to inter-predict a current picture and picture following the current picture in decoding order. In some examples, deriving the reference picture set may include constructing a plurality of reference picture subsets that together form the reference picture set.
Provided are methods and apparatuses for encoding and decoding a motion vector. The method of encoding a motion vector includes: selecting a mode from among a first mode in which information indicating a motion vector predictor of at least one motion vector predictor is encoded and a second mode in which information indicating generation of a motion vector predictor based on pixels included in a previously encoded area adjacent to a current block is encoded; determining a motion vector predictor of the current block according to the selected mode and encoding information about the motion vector predictor of the current block; and encoding a difference vector between a motion vector of the current block and the motion vector predictor of the current block.
The motion estimation engine has a multi-threaded structure and comprises a preprocessor for rough motion estimation of motion vectors and in-loop motion estimator for creating a coding tree unit, as well as a shared memory for interaction of the pre-processor with the in-loop motion estimator. The coding tree unit is formed by merging neighboring partitions of coding units using a list of best MV candidates.
The image decoding method includes: determining a context for use in a current block to be processed, from among a plurality of contexts; and performing arithmetic decoding on a bit sequence corresponding to the current block, using the determined context, wherein in the determining: the context is determined under a condition that control parameters of neighboring blocks of the current block are used, when the signal type is a first type, the neighboring blocks being a left block and an upper block of the current block; and the context is determined under a condition that the control parameter of the upper block is not used, when the signal type is a second type, and the second type is one of “ref_idx_l0” and “ref_idx_l1”.
In an example, a method includes coding significance information for transform coefficients in a set of transform coefficients associated with the residual video data according to a scan order in one or more first passes. The method also includes coding a first set of one or more bins of information for the transform coefficients according to the scan order in one or more second passes, where the first set of one or more bins are coded in a first mode of a coding process. The method also includes coding a second set of one or more bins of information for the transform coefficients according to the scan order in one or more third passes, where the second set of one or more bins are coded in a second mode of the coding process.
An image coding method and apparatus considering human visual characteristics are provided. The image coding method comprises (a) modeling image quality distribution of an input image in units of scenes such that the quality of an image input in units of scenes is gradually lowered from a region of interest to a background region, (b) determining a quantization parameter of each region constituting one scene according to the result of modeling of image quality distribution, (c) quantizing image data in accordance with the quantization parameter, and (d) coding entropy of the quantized image data.
A method and apparatus are provided for coding a signal from images, the images being split into sub-blocks of pixels. The method includes grouping at least two sub-blocks into at least one block of larger size, when the sub-blocks comply with at least one predetermined grouping criterion. A prediction is performed by applying at least one mode of motion prediction using at least two distinct motion prediction vectors, for at least one block of larger size, the motion prediction vectors being associated respectively with sub-sets of the block of larger size, comprising at least one of the sub-blocks of the block of larger size. The sub-sets are predefined and distinct.
A stereoscopic imaging device, wherein the aperture controller performs a second aperture control in which the larger the amount of shake detected by the shake detector becomes, the further the amount of opening of the aperture unit increases than the amount of opening required for the first aperture control. The present invention allows to shallow a depth of focus and to increase the amount of parallax by further opening an aperture as the amount of shake becomes larger, so that an influence on a parallax is reduced even when the amount of shake is large, thereby maintaining a stereoscopic effect.
A picture encoding and decoding method, a picture encoding and decoding device and a network system are provided, in which, the picture encoding method includes: determining a prediction block used by a picture block according to a division manner of the picture block; determining a corresponding division level in the picture block or the prediction block of transform blocks corresponding to the picture block or the prediction block, in which, the transform blocks corresponding to the picture block or the prediction block include one or more transform blocks; determining a size of the transform blocks corresponding to the picture block or the prediction block according to the division manner of the picture block and the division level; determining identification information for identifying the division level corresponding to the transform blocks corresponding to the picture block or the prediction block; and writing the identification information into a code stream.
Provided is a multi-dimensional layered modulation transmitting and receiving apparatus and method for stereoscopic three-dimensional (3D) video data. The transmitting apparatus may convert multi-dimensional data to a plurality of stream data by mapping the multi-dimensional data to a complex number plane, and may transmit the plurality of stream data by mapping the plurality of stream data to dimensions divided based on a time and a space, respectively. The receiving apparatus may determine a signal strength of received signal, a performance, a power mode, may determine a service image corresponding to the signal strength, the performance, the power mode, may determine a dimension corresponding to the service image, and may receive stream data of the determined dimension.
In one embodiment, the method includes determining a motion vector of a current image block equal to a motion vector of an image block based on a reference picture index indicating a reference picture for the image block. For example, the motion vector of the current image block may be equal to the motion vector of the image block if the reference picture index indicates a long-term reference picture for the image block.
The forward transform and quantization components of the video encoders described herein may modify the quantization typically performed by video encoders to reduce quantization artifacts. For example, for a given pixel in an image macroblock, noise may be generated based on information about pixels in the neighborhood of the given pixel (e.g., DC transform coefficients or quantization errors of the neighbor pixels and corresponding programmable weighting coefficient values for the neighbor pixels) and this noise may be added to the DC transform coefficient for the given pixel prior to performing quantization. The weighting coefficient values may be chosen to shape the noise added to the DC transform coefficient values (e.g., to apply a filter operation). When applied to a chroma component of an image frame, this neighbor-data-based dithering approach may reduce color banding artifacts. When applied to the luma component, it may reduce blocking artifacts.
A television (1) of the present invention includes a CPU (118) which stores broadcast medium information and recording mode information in such a manner that the broadcast medium information and the recording mode information are related to a broadcast content and when the broadcast content is reproduced, automatically sets a degree of an image process carried out on the broadcast content by an image processing circuit (107) in accordance with the broadcast medium information and the recording mode information which are stored in such a manner as to be related to the broadcast content.
Selection of an audio-visual stream from among a plurality of streams occurs by first detecting a navigation packet within at least one stream that provides information concerning the stream, as well as those streams in lie in synchronism therewith. From the navigation packet, a determination is made which other streams lie in synchronism with the one stream, which audio and sub-picture data packets exist in each stream, and as well as which highlight information properties exist for selecting among the synchronized streams. At least one of the audio data packets, sub-picture data packets, or highlight information properties undergoes modification in accordance with information about at least one other synchronized stream to allow display of a viewer selectable button or the like to select among the synchronized streams and/or be presented with differing audio and/or sub-picture contents with each stream.
An imaging apparatus comprises: an imaging unit configured to capture a subject image to generate image data; a first operating unit configured to receive a user operation; and a controller configured to execute a predetermined function according to an operation received by the first operating unit and an operation received by a second operating unit that is different from the first operating unit. The controller assigns different functions to the first operating unit and the second operating unit when executing a moving image recording process that records the image data as moving image data, and assigns the same function to the first operating unit and the second operating unit when not executing the moving image recording process.
An apparatus and method for An image capture device for Automatic White Balance (AWB) are provided. The device includes a camera for capturing an image, a primary sensor for sensing environmental conditions of the image capture device and for generating data regarding the environmental conditions, a plurality of supplementary sensors for sensing the environmental conditions of the image capture device and for generating supplementary data regarding the environmental conditions, an AWB unit for performing an AWB operation on the captured image according to the generated data and the generated supplementary data, and a controller for controlling the camera, the primary sensor, the plurality of supplementary sensors and the AWB unit.
A video signal processing apparatus (and method) includes a section determination unit which detects a non-equidistant section having different intervals between a plurality of sample points set for a range from a minimum signal level to a maximum signal level of a video signal to be inputted,correction level holding unit which holds a signal level of a video signal after correction for each sample point as a correction level, and an interpolation computation unit which obtains a signal level of the video signal after correction corresponding to the signal level of the inputted video signal by executing cubic interpolation computation with reference to the correction level held by the correction level holding unit.
An image processing apparatus includes: a front-most image information storage unit configured to store information relating to a front-most image that is one image of a plurality of compositing target images serving as compositing targets of an imaged image making up an imaged moving picture; a transformation information storage unit configured to store transformation information used for transforming another compositing target image of the plurality of compositing target images with the front-most image as a reference; an image transforming unit configured to transform the plurality of compositing target images sequentially toward the front-most image from the compositing target image positioned at the forefront or last of the temporal axis based on the transformation information; an image compositing unit configured to overwrite-composite the transformed compositing target images sequentially to generate a composited image; and a display control unit configured to display the composited image sequentially.
An image processing apparatus includes an input unit configured to receive an user's input, a display configured to display a status of the image processing apparatus, and a controller configured to limit an operation of the input unit. The controller is configured, if the image processing apparatus is not in progress of any image processing when a certain condition is satisfied, to display information of the limitation of the operation of the input unit at the display. The controller is configured, if the image processing apparatus is in process of an image processing when the certain condition is satisfied, to display a status of the image process at the display, and then to display the information of the limitation at the display after the image process is completed.
An intelligent television can provide various interfaces for navigating processes associated with providing content. The user interfaces include unique visual representations and organizations that allow the user to utilize the intelligent television more easily and more effectively. Particularly, the user interfaces pertain to the display of media content, electronic programming guide information, television content, and other content. Further, the user interfaces provide unique process of transitioning between the content.
A solid-state image pickup device includes a column ADC realizing higher precision and higher-speed conversion. Converters converts a signal of each pixels output via a corresponding vertical read line to a digital value by sequentially executing first to N-th (N: integer of three or larger) conversion stages. In the first to (N−1)th conversion stages, each converter determines a value of upper bits including the most significant bit of a digital value by comparing the voltage at a retention stage with a reference voltage while changing the voltage at a retention node. In the N-th conversion stage, each converter determines a value of remaining bits to the least significant bit by comparing the voltage at the retention node with the reference voltage while continuously changing the voltage at the retention node in a range of the voltage step in the (N−1)th conversion stage or a range exceeding the range.
The image sensor includes a pixel array including a plurality of unit pixels each including a single transistor and a photodiode connected to a body of the single transistor, a row driver block configured to enable one of a plurality of rows in the pixel array to enter a readout mode, and a readout block configured to sense and amplify a pixel signal output from each of a plurality of unit pixels included in the row that has entered the readout mode.
A system and method for limiting fixed pattern noise (FPN) in a time delay and integration (TDI) mode of operation of a complementary metal oxide semiconductor (CMOS) imaging device is disclosed. The system and method provide for each line time, selecting a pixel for each column of photosensitive elements in the along track direction to capture dark information such that the selected pixel does not correspond to a portion of a scene that was previously selected to capture dark information in a current TDI period. The dark information for the selected pixels is captured and summed for each column of photosensitive elements. This sum is then used during a next TDI time period to subtract FPN effects from the output of the corresponding column. This allows the dark sum information to be constantly updated while the image sensor is in use while only decreasing the responsitivity by (N−1)/N relative to an N pixel column of a traditional TDI operation.
An automatic photographing method, adapted to automatically photograph an image based on aesthetics, includes the following steps. First, view finding is performed on a pre-capture region so as to generate an image view. It is determined whether the image view satisfies an image composite template. When the image view satisfies the image composite template, the view image is set as a pre-capture image. When the image view does not satisfy the image composite template, a moving distance between the pre-capture region and a focus region mapping to the image composite template is calculated, and it is determined whether to set the image of the pre-capture region as the pre-capture image according to the moving distance. The pre-capture image is evaluated according to personal information of the user so as to decide whether or not to capture the pre-capture image.
A stereoscopic image capturing system includes a plurality of lens devices with optical elements, a vibration detection unit, a control unit that calculates a drive signal to drive the optical element(s) for correcting image blurring based on an output from the vibration detection unit, and a driving unit that drives the optical element(s) based on the drive signal.
A digital camera includes an image capturing unit, an image composition unit, and a display control unit. The image capturing unit captures frames at predetermined time intervals. The image composition unit sequentially combines at least a part of image data from image data of a plurality of frames sequentially captured by the image capturing unit at predetermined time intervals. The display control unit performs control to sequentially display image data combined by the image composition unit while the image data of the frames are captured by the image capturing unit at predetermined time intervals.
An apparatus and method for photographing a subject in a photographing device are provided. The method includes determining a capture pose; determining a pose of a subject for photographing; and photographing the subject automatically based on a similarity between the capture pose and the pose of the subject.
An image capturing apparatus having an image sensor including focus detection pixels capable of outputting a pair of image signals for focus detection determines whether each line of the pixels of the image sensor is an addition/non-addition line that outputs the image signal suitable/unsuitable for detection of a correlation amount, obtains the correlation amount for each addition line based on the pair of image signals, add the obtained correlation amount of the addition line, counts the number of addition lines, obtains a defocus amount based on the added correlation amount, and drives a focus lens based on the defocus amount when a product of an evaluation value representing reliability of the defocus amount and a predetermined standard number of additions is smaller than the product of the number of addition lines and a standard evaluation value representing a predetermined evaluation value.
An image capturing apparatus, includes: an image capturing element configured to capture an image of a subject; and a focusing control unit configured to perform a focusing control by a phase difference AF method using detection signals of first signal detection units and second signal detection units; a matching degree generation unit configured to generate a first matching degree which corresponds to a matching degree of two images captured by a first pair using the detection signals of the respective signal detection units of the first pair, and a second matching degree which corresponds to a matching degree of two images captured by a second pair using the detection signals of the respective signal detection units of the second pair; and a credibility determination unit configured to determine credibility of the focusing control by the phase difference AF method based on the first matching degree and the second matching degree.
Approaches are described which enable a user of a computing device (e.g., mobile phone, tablet computer) to capture a first image using the front-facing camera and then use that first image to guide the capturing of a second image (e.g., a higher quality image) using the rear-facing camera of the device. When the user turns the device around, the first image is used as a model template to guide the user in moving and/or rotating the device to align the rear-facing camera for capturing the second image.
A processor includes: a data transmission/reception section that reads parameter data unique to a scope from a ROM provided in the scope; a register communication state determination section that determines whether or not the parameter data read from the data transmission/reception section has an error; and a mute control/color bar control section that if a result of the determination by the register communication state determination section indicates that the parameter data has an error, controls an image processing section according to a type of the parameter data having the error.
A wireless mobile terminal works with an identification server to automatically identify a broadcast program/movie and then identify and connect to a networked media server to receive the identified program/movie therefrom. The terminal generates data that characterizes content of a broadcast program/movie that is send by the terminal and is playing external thereto. The terminal transmits a message that includes the characterization data and a request for identification of a media server from which the broadcast program/movie can be received. The identification server identifies the broadcast program/movie, and identifies a user viewed location within the identified program/movie that corresponds to what was sensed by the terminal. The identification server identifies an Internet address of a media server from which the terminal can receive transmission of the identified program/movie. The identification server transmits a message to the terminal that identifies the identified program/movie, the user viewed location therein, and the Internet address of the media server. The terminal responds to the message by establishing a communication connection to the identified media server and requesting transmission therefrom of the identified program/movie starting from a location corresponding to the user viewed location.
A content processing device is configured to receive data requested according to a specified parameter and also to receive an incoming video signal, and is further configured to receive a request to purchase at least one item after providing a data interface and at least a subset of the requested data for display on a video display.
The invention provides a receiver, a smartcard and a conditional access system for securely obtaining a control word using an entitlement transform tree, wherein intermediate results are cached to improve computational efficiency.
A system, apparatus, and method for estimating available bandwidth for transmitting a media stream over a network, the media stream having a plurality of frames. One method includes receiving some of the plurality of frames, each frame of the plurality of frames having a inter-frame size differential and an inter-arrival time differential, detecting whether at least some of the inter-arrival time differentials are outside of a steady-state range using at least some of the inter-frame size differentials, and estimating an available bandwidth based on the detected change and using a processor.
According to an embodiment of the present invention, a solid state image pickup device is provided. The solid state image pickup device includes a plurality of photoelectric conversion elements, a light shielding unit, and a correction unit. The plurality of photoelectric conversion elements photoelectrically converts an incident light into charges corresponding to a received light amount. The light shielding unit is disposed in a light receiving surface side of a predetermined photoelectric conversion element of the plurality of photoelectric conversion elements and shields an incident light entering the predetermined photoelectric conversion element from a light receiving surface side. The correction unit corrects a received light amount of an incident light received by another photoelectric conversion element other than the predetermined photoelectric conversion element, based on a received light amount of an incident light received by the predetermined photoelectric conversion element.
Methods and systems for allowing a contents list of a video camera recorder to be smoothly displayed on a television receiver and improve the performance of a selecting operation on video content by a user. A video camera recorder (source device) 10A and a television receiver (sink device) 30A are connected through an HDMI cable 1. The video camera recorder 10A is provided with an HDMI transmission unit (HDMI TX) 28 and a high-speed data line I/F 28A. The television receiver 30A is provided with an HDMI reception unit (HDMI RX) 32 and a high-speed data line I/F 32A. In response to a transmission request from the television receiver 30A side, the video camera recorder 10A transmits, at high speed, additional information (contents list and thumbnail data) to the television receiver 30A by using a high-speed data line constituted by specific lines of the HDMI cable 1.
According to one aspect, the subject matter described herein includes a method for congestion management in a Diameter signaling network. The method occurs a Diameter routing node. The method includes determining, using a metric associated with Diameter message processing, that a first Diameter message processing metric threshold has been exceeded. The method also includes in response to determining that the first Diameter message processing metric threshold has been exceeded, performing a first congestion mitigation action, where performing the first congestion mitigation action includes analyzing subsequent Diameter messages to determine one or more common attributes of the subsequent Diameter messages and in response to determining the one or more common attributes of the subsequent Diameter messages, performing a second congestion mitigation action for Diameter messages having the one or more common attributes.
Systems, methods, protocols and apparatus for information exchange and synchronization using DTMF signaling over telephone communication channels are provided. Information is packetized and converted from one format, e.g., ASCII formatted data, to another format, e.g., BCD formatted data. The information is wrapped in one or more packets by a sending apparatus, each packet including one or more headers, such as a Name and Length field that identify the information being exchanged and the amount of data included in the packet payload/value field. The data in the packets are converted from BCD to DTMF signals and are transmitted over a telephone communication line to a receiving apparatus. The receiving apparatus converts the DTMF signals back to BCD formatted data and processes the packets to obtain the information contained therein.
Computer-implemented methods for associating, based on a fling gesture, content with a graphical interface window, are provided. In one aspect, a method includes receiving, via a computing device, a fling gesture associated with an access point, wherein the fling gesture is a movement of the access point along a path from a first location on a display screen of the computing device to a second location on the display screen of the computing device, and wherein the access point is a reference to content. In response to the fling gesture, a graphical interface window is generated. The graphical interface window is then associated with the content referenced by the access point.
A terminal for actively providing information based on communication contents of a communication session. The terminal comprises a display unit that divides at least one of a schedule, Apps, REC, information regarding a matter of interest, and a contact into categories and displays, according to the categories, at least one of information regarding a communicator's matter of interest, schedule-related information, address book information corresponding to name information within a subscriber address book, first information relating to Apps within the subscriber terminal, and one or more App driving icons corresponding to the first information that are extracted from communication contents for at least one of a subscriber and a communication opponent in the communication session.
The present invention provides a method, system, and program product for managing conference calls. Specifically, prospective conference call participants (e.g., moderators and/or invitees) will initially provide user profiles. A participant's profile will include, among other things, a set of contact numbers at which the participant can be reached. Thereafter, a moderator and a set of invitees of a conference call to be held are identified. This is typically done based on synchronization with a calendar application used to send and accept an invitation to the conference call. When the moderator later initiates the conference call, the present invention will access the profile of each invitee that accepted the invitation, and then call the invitees at the respective contact numbers set forth therein. When contact is made with an invitee, the call will be merged into the conference call with the moderator.
The system and method enable an agent to be able to select a contact (e.g., a voice call or email from a customer) from a contact queue in a contact center. As contacts come into a contact center, the contacts are placed in the contact queue. An agent in the contact center is presented with the contacts along with a profile that is associated with each of the contacts. The profile may contain information about the contacts such as an attitude of the contact, a conversation style of the contact, a sentiment of the contact, and the like. The agent selects one of the contacts in the contact queue. The selected contact is then sent to the agent for handling.
A mobile device may include a first antenna and a second antenna. A first radio frequency (RF) transceiver may be coupled to the first antenna, and a second RF transceiver may be coupled to the second antenna. A baseband chipset may be coupled to the first RF transceiver and the second RF transceiver. One or more switches may be connected within a first transmit path, a second transmit path, a first receive path, and a second receive path, wherein one or more of the first transmit path, the second transmit path, the first receive path, and the second receive path associated with the coupling of one or more of the first antenna, the second antenna, the first RF transceiver, the second RF transceiver, and the baseband chipset.
An object of the present invention is to provide a mobile terminal in which a sound path can be secured around speaker sound holes when the mobile terminal is placed and which can thereby provide stable sound to a user. A mobile terminal according to the present invention is a mobile terminal in which an upper housing including a display unit is connected to a lower housing (1) including an operation unit in a freely-movable fashion and a speaker sound hole (7) is formed in a surface of the lower housing (1) opposite to the operation unit (rear surface), in which the rear surface is configured so as to be inclined with respect to a placing-surface (6) when the mobile terminal is placed on the placing-surface so that a space (9) that allows speaker sound to be released is formed between the rear surface and the placing-surface, and a protrusion (4) is formed near the speaker sound hole (7). As a result, a sound path is secured around the speaker sound hole (7), and therefore stable sound can be provided to a user.
A system and method for rapid dissemination of image products. In the system, a data consumer display device sends a geospatial request for a map image of a specific area of interest to a rapid image distribution system (RIDS), which forwards the request to a sensor ground station. The sensor ground station processes data received from a sensor platform and sends the processed data to a georectification processor. The georectification processor creates georectified data and sends the georectified data to the RIDS, which further processes the data, exposing it to data consumers using network optimized data services (e.g., KML/KMZ, TMS, GeoRSS, image chipper) based on geographic coordinates provided in the query that is a smaller subset of the sensor data. The RIDS sends the image product to the data consumer display device for display.
A method for a data capturing and exchange system. The data capturing and exchange system has a plurality of devices in a sub-network and a network server connected to the sub-network. The method includes capturing an unstructured data record of a document on a device, collecting metadata associated with the unstructured data record; determining a recipient for the unstructured data record in a health information exchange, and composing a data message containing the unstructured data record. The method also includes obtaining the composed data message containing the unstructured data record, packing the composed data message into a packed message containing a structured data record corresponding to the unstructured data record, and sending the packed message to the recipient in the HIE can receive and recognize the document.
The present invention is directed toward a method and system for tracking webpage requests from web browsers without invading the privacy of the corresponding users. A server receives the webpage requests, and extracts from each of them a user-neutral identifier and URL. The server creates records of these webpage requests, and these records are used to create and update profiles for the corresponding user-neutral identifiers. Since the user-neutral identifiers are not tied to user-specific information, the profiles are made anonymous and user privacy can be protected. However, since each user-neutral identifier is tied to a particular web browser, useful information regarding individual browsing behavior can be obtained. Furthermore, the requested URL's can be categorized before being used to update the profiles, thus eliminating concerns that a user's browsing activity might be tracked from website to website.
Systems and methods to selectively block calls from reaching destinations based on an input received from a callback connection. One embodiment includes a web server to receive a selection of an advertisement from an customer and to obtain a communication reference from the customer in response to the selection; a session border controller to interface with a packet switched network; and one or more telecommunication servers coupled to the session border controller and the web server, the one or more telecommunication servers to establish a connection for real time communications using the communication reference, to initiate a connection for real time communications with an advertiser of the advertisement after receiving an indication of acceptance of the connection established using the communication reference; where the advertiser is charged an advertisement fee in response to establishing a connection for real time communications between the advertiser and the customer.
A method for providing IP services to a user of a public network is disclosed. The user accesses the public network using a user equipment which supports a first set of IP services. The network provides a second set of IP services. A third set of IP services, included in a first set and second set of IP services, is identified and the user is allowed to access a plurality of IP services of a third set. A public network suitable to implement the method is also disclosed.
A risk aware domain name service (DNS), which includes modulating a time to live (TTL) value associated with the DNS based at least in part on one or more DNS-related metrics associated with a DNS server providing DNS resolution is disclosed. A zone file that indicates a particular TTL value may be generated based at least in part on the one or more DNS-related metrics and provided to the DNS server.
The present invention, relating to the field of computer technologies, provides a method and server for intelligent categorization of bookmarks. The method includes: acquiring a bookmark link address requested for categorization by a client; categorizing the bookmark link address requested for categorization; and returning a categorization result as a bookmark category to the client. The server includes: an acquiring module, a categorizing module, and a returning module. According to the present invention, by acquiring a bookmark link address requested for categorization by a client, categorizing the bookmark link address requested for categorization, and returning a categorization result as a bookmark category to the client, the objective of intelligent categorization of the bookmarks is achieved so that time consumption caused by users' manual organization and categorization of the bookmarks is avoided. In addition, a better user experience on the browser is brought to users.
A computer implemented method includes monitoring activity on the virtual machine. A plurality of activities being performed at the virtual machine is identified. Each of the activities includes an activity source, an activity target, and an association between the activity source and the activity target. The activity sources, activity targets, and associations are stored in the memory. A fingerprint indicative of the activity on the virtual machine is created from the stored activities. The fingerprint is transmitted to prevent future attacks that comprise the same or similar activities as indicated by the fingerprint.
This invention leverages DNSSEC to makes post-password technologies work against endpoints across the globe, rather than solely within company walls. It describes a system by which DS records are encoded in NS names, which traverse well from the customer to the registry. This invention also proposes a series of steps through which DNSSEC can be explored as a useful solution to real world problems. By creating and further developing a mirror of the real DNS, which grows by combination of true DNS record information with specially synthesized authentication keys, DNSSEC scales, providing greater security and less risk of corrupting or erroneous online material. This same technology also evaluates user activity to create a database of statistics regarding automated activity, as compared to human activity. This database assists in identification and prevention, or at least mitigation, of potential future attacks on any given client by automated bot-driven activity.
An intrusion detection method, system and computer-readable media are disclosed. The system can include a processor programmed to perform computer network intrusion detection. The intrusion detection can include an identification module and a detection module. The identification module can be adapted to perform semi-supervised machine learning to identify key components of a network attack and develop MDL models representing those attack components. The detection module can cluster the MDL models and use the clustered MDL models to classify network activity and detect polymorphic or zero-day attacks.
Systems and methods for packet profiling are disclosed. According to one embodiment, a method for profiling incoming data packets for an organization includes the steps of (1) receiving, at an interface for a transport provider, a data packet; (2) using a computer processor, analyzing the data packet; (3) using the computer processor, based on the analysis, marking the data packet; and (4) transmitting the data packet to the organization.
A method and system for authenticating delivery including the steps of receiving by a receiver a delivery information package from a deliverer over a network during a communication between the receiver and the deliverer, wherein the delivery package includes deliverer identity information, sending an authentication request of the received delivery package from the receiver to an authentication module having a hardware processor, over at least one of a call network and an additional network, and authenticating the received delivery package using the deliverer identity information.
Rapid demanding for storage capacity at internet era requires a much flexible and powerful storage infrastructure. Present invention disclosed a type of storage system based a model of centrally controlled distributed scalable virtual machine. In this model, one or more service pools including virtual storage service pool and application service pools can be automatically created to meet the demands for more storage capacity from various applications. Specially this model provide a solid foundation for distributing storage volumes for supporting storage on-demand and sharing with exceptional management capabilities. In addition, this model provides a flexible fault recovery topology beyond the traditional recovery plan.
In a distributed computing system, respective indications of services or functionalities provided by computing nodes of the distributed computing system are received from the computing nodes. The computing nodes are registered according to the functionalities provided thereby responsive to receiving the respective indications therefrom. A request associated with one of the services is selectively communicated to at least one of the computing nodes responsive to registration thereof. Related methods, systems, and computer program products are also discussed.
Embodiments of the present invention provide an integrated host and subsystem port selection methodology that uses performance measurements combined with information about active data paths. This technique also helps in resilient fabric planning by selecting ports from redundant fabrics. In a typical embodiment, host port to storage port pairs that create a path between a host and a storage device will be identified. From these pairs, a set of host port to storage port candidates for communicate data from the host to the storage device will be identified based on a set of resiliency constraints. Then, a specific host port to storage port pair will be selected from the set based on a lowest joint workload measurement. A path will then be created between the specific host port and storage port, and data will be communicated from the host to the storage device via the path.
A method and system for facilitating peer-to-peer networking among local peers are described. Hashes are generated from a digital content file and virtual coordinates of virtual nodes in a virtual coordinate system. The generated hashes are then used to retrieve peer connection information.
A computer system including a processor and a memory for retrieving digital media content, storing the digital media content in the memory, and providing the digital media content to a thin media client is provided.
A source device in a wireless display (WD) system stores a plurality of preconfigured formats. Each of the preconfigured formats is associated with a different type of human input device (HID). The source device receives one or more Internet Protocol (IP) packets from a sink device in the WD system. The one or more IP packets include a HID command (HIDC) input report. The source device identifies, based on data in the one or more IP packets, one of the preconfigured formats and parses the HIDC input report based on the identified preconfigured format in order to determine a user input. The source device then generates media data in response to the user input and sends the media data to the sink device.
In some implementations, a method includes interfacing a mobile device including a GUI. User credentials used to execute transactions with contactless devices are securely stored and associated with one or more enterprises. The secure memory includes master credentials and a master security framework that enables enterprises to store or update user credentials and associated security frameworks. Displays associated with the user credentials are dynamically generated and presented through the GUI of the mobile device. Wireless transactions are executed with contactless devices using the selectable user credentials.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing multi-factor authentication. In one aspect, a method includes determining that the identity of a user has been successfully proven using a first of two or more authentication factors, allowing updates or requests for updates to be initiated after the identity of the user has been successfully proven using the first authentication factor, logging the updates or requests for updates that are initiated after the identity of the user has been successfully proven using the first authentication factor, determining that the identity of the user has not been successfully proven using a second of the two or more authentication factors, and reverting the updates, or discarding the requests for updates, based on determining that the identity of the user has not been successfully proven using the second authentication factor.
Disclosed are various embodiments for synchronizing authentication sessions between applications. In one embodiment, a first authentication token is received from a first application in response to determining that the first application is authenticated with a service provider. A second authentication token is requested from a token exchange service associated with the service provider. The second authentication token is requested using the first authentication token. The second application is configured to use the second authentication token in order to access a resource of the service provider.
Embodiments of the invention provide systems and methods for authenticating mobile device communications. A mobile device to which a message will be communicated may be identified. Based upon a shared secret between a service provider and the mobile device, a payload authentication code (“PAC”) may be generated, and the generated PAC may be associated with a payload for the message. The message and the generated PAC may then be communicated to the mobile device, and the mobile device may be configured to utilize the shared secret to verify the PAC and authenticate the message. In certain embodiments, the operations of the method may be performed by one or more computers associated with the service provider.
Embodiments of the invention can provide systems and methods for device provisioning. According to one example embodiment of the invention, a method can be provided. The method can include identifying, from a computer-readable memory, provisioning information associated with a device; attaching the provisioning information to an item; and preparing the item to be sent to a location of the associated device, wherein the device is provisioned based at least in part on the item. In certain embodiments, one or more operations can be performed by one or more computers associated with a service provider.
Each member of a group contributes to and calculates a new shared value. A distributed shared value algorithm is used to reach unanimous agreement on a shared value, such that every group member can use the new shared value as soon as it is changed. The distributed shared value agreement methodology operates without the selection of a leader. Each group member performs the distributed shared value agreement methodology and computes the new shared value using one or more of the contributions from the group members in such a way that no one member coerces the resulting shared value.
Systems and methods are described for performing bulk transmissions of information (e.g., emergency information, etc.) while preserving user privacy. An example mobile device described herein includes an information aggregation module configured to compile first information associated with the device, the first information including location-related information, an encryption module communicatively coupled to the information aggregation module and configured to encrypt the first information using at least one session key, and a transmitter communicatively coupled to the encryption module and configured to transmit encrypted first information to at least one receiver prior to a triggering event and to transmit the at least one session key to the at least one receiver after the triggering event.
A system encrypts digital content data with a key of a content encryption key (CEK) pair and CEK related share data available to an end user station including a source for generating source encrypted data including content data. The share data is encrypted with a first key of a second encryption key pair associated with a targeted intermediate station including a processor receiving source encrypted data and being in data communication with a portable storage device associated with the end user station, which is associated with a third encryption key pair. The processor generates intermediate station encrypted data by decrypting encrypted share data using a key of the second key pair and encrypting resulting decrypted data using a key of the third key pair. A reconstruction processor uses an algorithm and input share data to reconstruct the CEK. A decryption processor uses the reconstructed CEK to decrypt encrypted content data.
Embodiments of the present invention provide a data transmission method and apparatus. ROHC packets that use a same Context ID are encapsulated into MAC PDU, wherein the MAC PDU is formed by a MAC PDU packet header and a MAC PDU payload. The Context ID of the ROHC packets is carried in the MAC PDU packet header, and the Context ID is not carried in the ROHC packets. The MAC PDU is sent. In this way, transmission resources are saved, and transmission efficiency is improved.
Systems and methods are described for automatically providing remote self service facilities administration over an Internet protocol (IP) network or over a direct circuit (DC) network. To such ends, a system provides self service use of services of a provider network remotely from the provider network. A remote site kiosk is places in a remote site network with an Internet connection, the remote site kiosk having encryption support via a remote site tunneling endpoint for communications with the Internet and self service applications which communicate through the remote site tunneling endpoint. A data center with an Internet connection to a provider network and to the remote site kiosk, with encryption support via a data center tunneling endpoint to securely receive and forward communications over the Internet between the remote site kiosk and the provider network.
A method is provided for processing packets in a security module of a node in a real-time tracking system. The security module receives messages via a communication module. Each message contains an identifier associated with a transmitting entity of the message. A respective identifier is associated with a respective buffer. Messages having a same identifier are stored to an associated buffer. At least one message is selected from each buffer. For each buffer, a verification mode is selected for the message selected based on state variables and identifier-level properties of the identifier associated with that buffer. A buffer for message verification is selected based on state variables and identifier-level properties of all identifiers. The message selected is verified utilizing the selected verification mode. The state variables and the identifier-level properties of all identifiers are updated based on a result of the verification of the at least one message.
An approach for regional firewall clustering for optimal state-sharing of different sites in a virtualized/networked (e.g., cloud) computing environment is provided. In a typical embodiment, each firewall in a given region is informed of its peer firewalls via a registration process with a centralized server. Each firewall opens up an Internet protocol (IP)-based communication channel to each of its peers in the region to share state table information. This allows for asymmetrical firewall flows through the network and allows routing protocols to ascertain the best path to a given destination without having to take firewall placement into consideration.
A method and system for sending electronic messages. A command syntax is embedded in an electronic message on a sender device. The electronic message is to be sent by a sender from the sender device to a user at a recipient device. The electronic message includes a data structure to which the command syntax is coupled. The command syntax comprises a text string coded to only describe and trigger one or more pre-defined selective enhanced privacy and control features for one or more portions of the data. The command syntax includes one or more commands which upon being executed at the recipient device prevent the user at the recipient device who receives the electronic message from printing the received electronic message, storing the received electronic message, copying the received electronic message, forwarding the received electronic message, and blind carbon copying the received electronic message.
Described are methods and communications network for carrying pseudowires over packet-switched network. A communication network includes a packet-switched network (PSN), a first provider edge (PE) device in communication with a second PE device through the PSN, and a pseudowire (PW) established between the PE devices for emulating a service across the PSN. The PW has a Virtual Circuit Connection Verification (VCCV) control channel that carries an Ethernet Operations, Administration, and Maintenance (OAM) message. In some embodiments, various data plane encapsulation formats enable a PW to emulate an Ethernet or a non-Ethernet service over an Ethernet PSN. Each encapsulation format includes an Ethernet tunnel header and a PW header that encapsulates an Ethernet or non-Ethernet payload.
In general, this disclosure describes a high-level forwarding path description language (FPDL) for describing internal forwarding paths within a network device. The FPDL enables developers to create a template that describes a section of an internal forwarding path within the forwarding plane of a network device. The FPDL provides syntactical elements for specifying the allocation of forwarding path structures as well as enabling the run-time construction of internal forwarding paths to interconnect the forwarding path structures in a manner specific to packet, packet flow, and/or interface properties, for example. In conjunction with late binding techniques, whereby the control plane of the network device provides arguments to template parameters that drive allocation by the packet forwarding engines of forwarding path structures specified by the FPDL, the techniques provide control plane processes a unified interface with which to manage the operation of the packet forwarding engines.
Methods, apparatus and systems are provided for assigning Fiber Channel Domain identifiers with an iSNS Server, a Fiber Channel over Ethernet device interconnection apparatus controller (FIAC), and a Fiber Channel over Ethernet device interconnection apparatus (FIA). A Request Domain Identifier iSNS protocol message is sent from a FCoE device interconnection apparatus controller (FIAC) to a iSNS Server. A Fiber Channel Initialization Protocol (FIP) Fabric Login (FLOGI) frame is received from a Fiber Channel over Ethernet (FCoE) device by a FCoE device interconnection apparatus (FIA). The FIAC assigns a new Fiber Channel address identifier using the Domain Identifier assigned from the Request Domain Identifier response. At the FIAC, a FIP link service accept (LS_ACC) response is transmitted to the FIP FLOGI comprising the newly assigned Fiber Channel address identifier at the FIAC. At the FIA, the FIP LS_ACC is forwarded to the FCoE device that transmitted the FIP FLOGI frame.
An example method, system, and switching element are provided and may provide for an egress port to be configured to receive a plurality of data packets, each of the plurality of data packets being a class of a plurality of classes. A buffer may communicate with the at least one data port interface. A memory management unit may be configured to enable and disable transmission of the plurality of classes of the plurality of data packets based on a metering policy; and place the plurality of data packets in the buffer.
Efficient and highly-scalable network solutions are provided that utilize incremental scaling of switches, and devices connected to those switches, in an environment such as a data center. Embodiments may utilize multiple tiers of switches. Sets of switches in two different tiers may be initially connected to each other utilizing multiple connections. As network capacity needs within the computing environment increase, additional switches may be added to tiers. To connect the added switches to the switch network, the redundant connections may be utilized. Moving connections from one switch to another switch can free up ports to connect added switches in one of the tiers of switches to the switch network. The tiers of switches can be based on Clos networks, where the tiers of switches are fully connected, or other high radix or fat tree topologies that include oversubscription between tiers.
A method, system, and medium are provided for improving communication between a mobile device and a wireless network in embodiment of the invention. Based in part on expected locations for a mobile device and network availability, predictions can be made regarding the future quality of service available for the mobile device. This prediction can allow actions to be taken to mitigate any change in the quality of service.
A switch device includes a relay unit relaying communication data when information processing units included in an information processing apparatus perform communications with external devices; an address learning unit registering ports receiving the communication data in association with addresses indicating transmission sources of the communication data; and a band control unit controlling a bandwidth to be allocated to the communications by setting a first port and a second port of the ports to belong to a same group and by setting the first port and the second port to belong to different groups based on a number of addresses registered by the address learning unit in association with each of the ports.
According to various embodiments of the disclosed method and apparatus, a node on a network submits to a network controller a request for discovery of information regarding communication capabilities of other network nodes. The network controller sends a request for node communication capabilities to the other nodes in the network; receives responses from the other nodes that include information regarding communication capabilities of each respective node; and send the received information regarding communication capabilities of the nodes to a plurality of nodes in the network.
A multi-rate statistical multiplexing system is configured to determine whether a subscriber-line is in a congested-state. The subscriber-line provides one or more channels requested by a subscriber. The system selects a version among different versions of each requested channel based on the level of congestion and an indicator of perceived quality of viewing experience of each requested channel. The system switches to the selected version of each channel and the perceived quality of viewing experience is maintained after switching.
A method, computer program product and system for managing an overload of signals on a network due to usage by a large number of users on the network during an event, comprising: detecting a cluster of communication on the network, determining a physical location of a centroid of the cluster of the communication on the network, associating the physical location of the centroid to be the approximate physical location of the event; reviewing information within cluster of communication being sent through the network regarding the event; categorizing the event based on a predetermined set of rules; determining bandwidth limitations of the network for users within a determined proximity to the physical location of the event; determining the resources necessary to respond to and resolve the event; and allocating bandwidth of the network based upon the resources and the proximity of users to the physical location of the event.
A process and system for user-controlled configuration of an Internet-protocol (IP) network wherein the user may supply input for generating a network classification profile (NCP), which includes a number of classes of service (COSs) for prioritizing network traffic. Network packets belonging to a COS may be classified according to a packet parameter. The NCP may be used to prioritize packets sent to the network from a network ingress router. A queuing profile for scheduling packets received from the network based on the NCP may also be generated and used by a network egress router. The packet parameter may be based on information in the packet header.
A method of commencement of operation of a communication system such as an Ethernet OAM system enables an endpoint (A) to transmit and receive repetitive connectivity check messages on a link between the endpoint and a remote endpoint (B). A loss of connectivity with the remote endpoint is determined by the absence of received connectivity check messages within a monitoring interval. The commencement of the monitoring interval is delayed until a predetermined number of valid connectivity check messages has been received. The method may be implemented by use of a counter for received connectivity check messages and an additional waiting state in a state machine.
A method, system, and program product for communicating with machines connected to a network. Information sent to or from the machines is transmitted using electronic mail or via a direct connection. The electronic mail may be transmitted over the Internet to a service center or from a service center to a resource administrator, but also may remain within a local or wide area network for transmission between a machine and a resource administrator. E-mail messages may be transmitted from a computer which is attached to a device that is being monitored or controlled and include information regarding the status, usage, or capabilities of the attached device. The device may send status messages and usage information of the device to either a resource administrator or to a service center on the Internet through a firewall.
The present invention relates to a user terminal, cloud device and virtualization method in which a user terminal transmits a system profile to a cloud apparatus for generating a list of candidate screen visualization techniques from system profile information transmitted from the terminal, checks an apparatus loading amount and processing possibility for each technique, and determines an optimal screen visualization technique candidate on the basis of an available resource of an apparatus and a system profile of a terminal according to web service possibility and video streaming processing possibility. The system profile information includes web browser performance, video streaming replay function, RDP and VNC client driving possibility, network status, resolution and requesting service. The cloud apparatus receives the system profile information from the user terminal, generates a list of candidate screen visualization techniques, checks an apparatus loading amount and processing possibility to determine a screen visualization technique.
A method of monitoring packet traffic is provided. The method includes: at a first access point, capturing portions of traffic packets passing therethrough separated by time intervals; encapsulating the portions of traffic packets thereby forming encapsulated packets and adding timestamps to the encapsulated packets so as to preserve the portions of traffic packets and information related to the time intervals; transmitting the encapsulated packets over a network; decapsulating the encapsulated packets so as to obtain replay packets and the capture timestamps, wherein the replay packets include the portions of the traffic packets; and, transmitting the replay packets separated by the time intervals, wherein the timestamps are used to reproduce the time intervals so as to imitate the traffic packets passing through the first access point.
A computer network system relating to collecting (at a user-node) network and computer information (temporally adjacent to a user-perceived computing performance anomaly) from connectivity resource nodes at a time determined by user action. The system provides a local configurable resource for iteratively collecting computing performance information relating to the quality of service experienced by a computer user interfacing with a computer network.
Techniques for efficiently updating routing information in a network device such as a router. According to an embodiment of the present invention, information is stored identifying one or more nodes and leaves owned or advertised by the nodes. When a change occurs in a network environment, information is stored identifying one or more nodes and leaves that have changes associated with them. The routing information in the network device is then updated for only those nodes and leaves that have changes associated with them.
A router receives a packet at an ingress interface. The router classifies the received packet based on at least a first field value contained in the header of the packet. According to the classification of the received packet, the router associates one of the plurality of forwarding tables to the packet. The router then performs a lookup operation in the associated forwarding table according to at least a second field value contained in the header of the packet. Based on the lookup operation, the router determines an egress interface and transmits the received packet from the determined egress interface.
Transceiver circuitry may include a storage element that receives data signals from an external element, an alignment detector circuit, and a register. The storage element has a write clock terminal that receives a channel clock signal and a read clock terminal that receives another channel clock signal. The alignment detector circuit is adapted to generate an asserted ready signal when a predefined pattern is detected in the received data signals. The register receives an output signal from the storage element and outputs the output signal based on the asserted ready signal that is generated by the alignment detector circuit. The register may be clocked by the same channel clock signal that is received at the read clock terminal of the storage element.
Modulation is performed on a first input signal and a second input signal to be transmitted based on symbol mapping. Phase values of the first and second modulated input signals are selectively adjusted. Angle modulation is performed on the first input signal and the second input signal having selectively adjusted phase values. The angle-modulated first and second input signals are transmitted.
A receiver and method is provided for sigma-delta converting an RF signal to a digital signal and downconverting to a digital baseband signal. The RF signal is split into N phases, as can be accomplished using a sample and hold circuit, and each phase is digitized, as can be accomplished using an analog-to-digital (A/D) sigma-delta converter. Polyphase decimation techniques and demodulation are applied to the phased signals to generate a demodulated digital signal. The demodulated digital signal is further downconverted to the appropriate baseband signal.
In a distributed application execution system having a plurality of application servers, each application server has volatile and nonvolatile storage as well as computational resources for executing applications as follows. A plurality of applications is stored in non-volatile storage. At least one such application is a primed application which is derived as follows. An unprimed application is executed and an initialization signal is optionally communicated to the unprimed application. A status signal is obtained from the unprimed application. Upon receipt of the status signal, the unprimed application is checkpointed to produce the primed application, and the primed application is stored. A request to execute the primed application is received from a client system. In response to the request, the primed application is loaded from non-volatile storage into volatile storage, and the primed application is executed. The primed application returns a result to the request to the client system.
A system and method is directed to managing network communications and improving network security. In a communication protocol, an improved method of generating a value that encodes information received in an incoming message, and a corresponding way of validating an incoming message with an encoded value, improves network security. A technique for directing a network device to delay communications includes sending an instruction designating an initial window size of zero to the device. Another technique uses a TCP fast retransmit protocol. The techniques can be used to provide layer four switching, change to layer seven switching when desired, and then change back to layer four switching to improve security in a layer four switching device. Levels of trust can also be used to selectively perform aspects of the invention.
Embodiments of the present invention provide systems, methods, and computer-readable media for initiating anonymous communication between a first user and a second user. In particular, an anonymous communication request is transmitted from a first user to a session management node. The anonymous communication request may include search criteria provided by the first user. Based on the search criteria, the session management node many generate a query to a profile server. The profile server may identify a second user based on the search criteria provided by the first user. Additionally, the profile server may provide an identifier of the second user to the session management node. Further, the session management node may initiate anonymous communication between the first user and the second user.
A method is provided for estimating channel state information in an in-band on-channel radio signal including a plurality of digitally modulated reference subcarriers. The method includes: receiving symbols transmitted on the reference subcarriers; combining the reference subcarrier symbols with a known reference sequence conjugate to produce a plurality of samples; median filtering the samples to produce filtered samples; smoothing the samples for each of the reference subcarriers over the plurality of reference subcarriers to produce a complex channel gain estimate for each of the subcarriers; and using a bias correction function to compensate for estimation bias error in the complex channel gain estimate due to the median filtering. Receivers that implement the method are also provided.
Methods and apparatus for interfaces to manage last-mile connectivity and dynamic reconfiguration for direct network peerings. A system may include a data center, endpoint routers and a connectivity coordinator. The coordinator implements an interface defining connectivity operations. The coordinator receives a request for dedicated connectivity to data center resources, formatted according to the interface. The coordinator determines a connectivity provider to provide last-mile connectivity to the requester, and transmits a notification identifying the selected connectivity provider.
One embodiment provides a network controller. The network controller includes a modulation module. The modulation module includes a high rate (HR) bit sequence generator configured to generate a first high rate bit sequence, encoder circuitry configured to encode a first low rate bit stream, the first low rate bit stream comprising backchannel information, and modulation circuitry configured to modulate the encoded first low rate bit stream onto the first high rate bit sequence. The network controller further includes transmit circuitry configured to transmit the modulated first HR bit sequence to a link partner during a link initialization period.
Embodiments of an apparatus and method for selective single-carrier (SC) equalization are provided. Multipath propagation in a communication channel often changes, and the severity of multipath propagation is often below worst case conditions supported by a SC communication device. When multipath propagation is less severe and below worst conditions, the use of frequency-domain equalization (FDE) in a SC receiver to mitigate ISI can be overkill and can result in excess power being consumed. The excess power consumption can be attributed to the general inability of the structure used to perform FDE to scale in terms of performance with channel conditions. Embodiments of the apparatus and method for performing selective equalization in a SC receiver allow either FDE or time-domain equalization (TDE) to be performed based on the current multipath propagation conditions of a communication channel. In general, TDE is used in place of FDE to conserve power when channel conditions permit.
A method of replicating on a test server a production load of a production server. The method can include creating the production load on the production server by processing client requests received from clients. The method further can include, while the client requests are processed, via a processor, in real time, replicating the production load to generate a replicated production load that represents the client requests and defines state information representing unique states formed between the production server and the respective clients. The method also can include, in real time, communicating the replicated production load in order to replicate the production load on the test server.
A method for operating a redundant communication network with network participants includes the steps of determining by network participants to which network channels they are connected and using a telegram for said determining by the network participants to which network channels they are connected.
Systems, methods, and other embodiments associated with data stream classification are described. One example method includes identifying packets associated with the data stream. The example method may also include updating a set of characterization data associated with the data stream based on information associated with a packet. The example method may also include assigning a data stream classifier to the data stream by comparing characterization data to identification data upon determining that the set of characterization data indicates that the data stream is able to be classified. The example method may also include providing a signal associated with the data stream classifier.
In systems and methods of arranging content for broadcast in a wireless communication system, a request is received from a plurality of wireless devices, each associated with a user profile, for content associated with content characteristics. A plurality of content for each of the plurality of wireless devices is generated according to the associated user profile. The plurality of content is arranged according to the content characteristics for broadcasting to the plurality of wireless devices in a multicast transmission.
A system for multicast switching for distributed devices may include an ingress node including an ingress memory and an egress node including an egress memory, where the ingress node is communicatively coupled to the egress node. The ingress node may be operable to receive a portion of a multicast frame over an ingress port, bypass the ingress memory and provide the portion to the egress node when the portion satisfies an ingress criteria, otherwise receive and store the entire frame in the ingress memory before providing the frame to the egress node. The egress node may be operable to receive the portion from the ingress node, bypass the egress memory for the portion and provide the portion to the first egress port when an egress criteria is satisfied, otherwise receive and store the entire multicast frame in the egress memory before providing the multicast frame to an egress port.
An apparatus and a method for an authentication protocol. A client generates a server unique identifier of a server prior to communicating with the server. An encrypted password generator module of the client calculates an encrypted password based on the server unique identifier, a username, and an unencrypted password. A communication request generator module of the client generates and sends a communication request to the server. The communication request includes a username, a client random string, a client timestamp, and a client MAC value. The client MAC value is computed over the username, the client random string, and the client timestamp, using the encrypted password as an encryption key.
Systems and methods are disclosed for allowing an authority to monitor a computer user's information in a most palatable manner for the computer user. The authority is provided access to information with encrypted user identification information and the user is notified if decryption is facilitated. The systems and methods also include a novel key production system whereby large numbers of deterministic key pairs may be created for use in the monitoring system.
A key agreement protocol between a first party and a second party comprises the following steps from the first party perspective. An encrypted first random key component is directed to the second party, the first random key component having been computed at the first party and encrypted using a public key of the second party in accordance with an identity based encryption operation. An encrypted second random key component corresponding to the second party is received. The encrypted second random key component is decrypted using a private key of the first party. A session key for use in subsequent communications between the first party and the second party is computed based at least in part on the second random key component.
A signaling circuit having a selectable-tap equalizer. The signaling circuit includes a buffer, a select circuit and an equalizing circuit. The buffer is used to store a plurality of data values that correspond to data signals transmitted on a signaling path during a first time interval. The select circuit is coupled to the buffer to select a subset of data values from the plurality of data values according to a select value. The equalizing circuit is coupled to receive the subset of data values from the select circuit and is adapted to adjust, according to the subset of data values, a signal level that corresponds to a data signal transmitted on the signaling path during a second time interval.
In wireless OFDMA systems, midamble is used to facilitate downlink (DL) channel estimation. Midamble signals are transmitted by a base station via a midamble channel allocated in a DL subframe. In a novel symbol-based midamble channel allocation scheme, a midamble channel is allocated in the first or the last OFDM symbol of multiple resource blocks of the subframe, while the remaining consecutive OFDM symbols are used for data transmission. The symbol-based midamble channel provides good coexistence between midamble signals and pilot signals without inducing additional limitation or complexity. Under a novel midamble channel and sequence arrangement, both code sequence and either time-domain or frequency-domain location degrees-of-freedom are considered such that the required number of midamble sequences is substantially smaller than the number of strong interferences. In addition, different midamble sequences are systematically generated based on a base sequence such that the receiving mobile station does not need to memorize all the different code sequences.
A data network node is configured for operation as a time-transfer boundary clock, and has at least one time-transfer slave network interface and several time-transfer master interfaces, all configured for operation according to a time-transfer protocol. The data network node also includes a clock source interface configured for connection to a synchronous clock source supplied from a remote node, as well as a real-time clock (RTC) circuit. The RTC circuit supplies time-of-day data for time-transfer messages sent via the second network port and selectively operates in a first mode, wherein the RTC frequency is driven by a clock signal from the clock source interface, a second mode, wherein the RTC frequency is driven by a clock signal derived from time-transfer messages received by the time-transfer slave interface, and a third mode, wherein the RTC frequency is driven by a local clock signal from local clock source.
In an example embodiment, there is disclosed a technique that enables a wireless device to achieve coexistence with an interfering source. The wireless device determines when interference is present and not present during a service period and reports the duration of interference free interval. At the end of an interference period, the wireless device can send a trigger signal indicating the start of an interference free interval to request data be sent to the wireless station until the expiration of the duration of the interference free interval. In particular embodiments, the signal sent by the wireless device can include an offset, for example a timing synchronization function (TSF) value, to indicate the end of the interference-free interval, perhaps computed so as allow for some clock drift.
An apparatus for optical communication and optical communication method are provided, the method comprising the steps of generating an optical signal for transmitting the sequence of information data, transmitting the sequence of information data as a sequence of transmit matrices, S(k) being the k-th transmit matrix and k being a positive integer, and wherein the sequence of transmit matrices is transmitted through an optical channel characterized by a unitary channel matrix H, receiving a sequence of receive matrices, the k-th receive matrix R(k) being expressed as: R(k)=H·S(k)+N(k) wherein k is a positive integer and N(k) is a complex matrix of noise samples and providing a sequence of decision matrices, the k-th decision matrix D(k) being expressed as: D(k)=RH(k−1)R(k).
A device for modulating terahertz waves includes a metal layer (703) including a continuous metal portion (705) and island metal portions (707). The metal portions (705, 707) are separated by apertures (709). The device further includes a semiconductor layer (715) affixed to a bottom surface of the metal layer (703). The semiconductor layer (715) includes carrier regions (717) located below the apertures (709). The transmission of terahertz waves through the apertures (709) is modulated by changing a voltage applied across the aperture via voltage source (715). By injecting free carriers into carrier regions (717) due to a change of the voltage an extraordinary terahertz transmission effect of the metal layer (703) can be switched off. A small increase in the free-carrier absorption is significantly enhanced by the Fabry-Perot resonance, resulting in a substantial decrease in transmission. The disclosed ring aperture terahertz modulator allows for electrical control of the carrier density only in the area underneath the aperture. This design minimizes the power consumption and maximizes the operation speed.
Embodiments of the present invention provide a coefficient determining apparatus, equalizer, receiver and transmitter. The coefficient determining apparatus comprises: a synchronizer configured to find a position of a training sequence from signals containing the training sequence received by a transmitter; and a first processor configured to set an initial tap coefficient of an equalizer according to the received signals and the training sequence; wherein in each polarization state, the training sequence comprises n pairs of training symbols, in the n pairs of training symbols, the training symbols of the same pair being identical, the training symbols of the different pair being different, a cyclic prefix and a cyclic postfix being respectively inserted before and after each pair of training symbols, and n being an integer greater than 1. By using the training sequence contained in the transmitted signals to determine an initial tap coefficient of the equalizer relatively close to the optimal value, channel damages may be approximately compensated, and the receiver is facilitated in further processing the signals.
In the context of a balloon network, embodiments described herein may help to maintain an optical communications link between two balloons. For example, an illustrative balloon may include auxiliary photodetectors that are arranged around the photodetector in the balloon's optical receiver system. The balloon may detect intensity differences between the auxiliary photodetectors on opposite sides of an optical receiver, and adjust the positioning in an effort to reduce the intensity difference, and by so doing, better align the optical receiver with the optical transmitter of the transmitting balloon.
Embodiments of the present disclosure provide a data synchronization method and system, and an optical network unit. An ONU receives synchronization data that is transmitted by a first OLT through a GEM port corresponding to a predetermined GEM port ID or a logical link corresponding to a predetermined LLID, and stores the synchronization data. When a fault occurs on the first OLT or on a backbone optical fiber connected to the first OLT, the ONU transmits the synchronization data to a second OLT so that the second OLT recovers services according to the synchronization data.
A vehicular microphone system (200) for post processing optimization of a microphone signal includes a first transducer (201) and second transducer (203) separated by a predetermined distance within an automotive mirror. A first high pass filter network (205) is connected to the first transducer (201) while a second high pass filter network (207) connected to the second transducer (203). A low frequency shelving filter (209) is used for receiving the output from the second high pass filter (207). A first all pass filter (211) is connected to the low frequency shelving filter (209) and a second all pass filter (213) is used in connection with the first all pass filter (211) for tailoring audio characteristics. A summing amplifier (215) is used for summing the output of the first high pass filter network (201, 205) and the second all pass filter network (203, 207, 209, 211, 213) such that the first transducer (201) and second transducer (203) operate with improved directivity resulting in enhanced signal-to-noise performance in a substantially noisy vehicular environment.
A vehicular communication system includes: a vehicular communication apparatus; and a portable terminal apparatus. The vehicular communication apparatus includes: a vehicular storage device that stores a predetermined vehicular application for a predetermined function; and a vehicular input device that enters an operation for the predetermined function. The portable terminal apparatus includes: a mobile storage device that stores a predetermined mobile application for the predetermined function; a mobile input device that enters an operation for the predetermined function; an interoperation detection device that detects establishment of an interoperation state, in which the predetermined vehicular application and the predetermined mobile application interoperate with each other; and an operation input disable device that prevents the mobile input device from entering the operation when the interoperation detection device detects the establishment of the interoperation state.
Embodiments of the present invention include a system and method for wirelessly identifying and validating an electronic device in order to initiate a communication process with another device or a service. In an embodiment, the system includes a portable biometric monitoring device that is identified by a client device or a server for the purpose of initiating a pairing process. In an embodiment, pairing implies pairing the portable device to an online user account with minimal user interaction. After pairing, the portable device and appropriate client devices and servers communicate with little or no user interaction, for example to upload sensor data collected by the portable device.
The present invention relates to a wireless communication system, a communication control method, and a relay station. The wireless communication system includes: a wireless terminal; a plurality of base stations; and a relay station, wherein the relay station defines a wirelessly communicable base station among the plurality of base stations as a candidate for a master station, in a case where a plurality of the candidates for the master station are present, acquires priority order setting information for setting priority orders of connection regarding the respective candidates for the master station, and sets the priority orders of the connection based on the priority order setting information. Then, in a case where the relay station has received a connection request from the wireless terminal, the control unit decides a candidate for the master station, which has a highest priority order of the connection, as an optimal master station.
When spatial multiplexing is performed to any of a plurality of receiving antennas included in each terminal, it becomes possible to obtain excellent receiving characteristics by combining signals received by all antennas appropriately. A receiving antenna unit 28 receives channel state information from each terminal, a channel matrix H is obtained. A transmit weight/interference coefficient calculation unit 24 calculates a transmit weight and an interference coefficient based on channel matrix. The transmit weight is input to transmit weight multiplication units 17 and 23. The interference generation unit 15 generates an interference signal based on the interference coefficient. An interference subtraction unit 13 subtracts the interference signal from a desired signal. A modulo unit 14 adds a signal so that amplitude of an information signal output from the interference subtraction unit 13 falls within a constant range. A signal multiplexing unit 18 performs spatial multiplexing to the signal performed nonlinear arithmetic.
Methods and apparatus for increasing diversity gain at a receiver by applying beamforming to transmit diversity space-time coded signals. Transmit diversity can be provided at a signal source by space-time coding the signal. A transmit signal is space-time coded over a plurality of space-time antenna groups, with each space-time antenna group associated with a specific space-time code. The signal at each space-time antenna group is beamformed over the plurality of antenna in the space-time antenna group. Each of the plurality of antenna in a space-time antenna group is weighted with a distinct weight, relative to the other antenna in the space-time group. Each weight can have a distinct amplitude, phase, or combination of amplitude and phase. The weights can be static or dynamic. The dynamic weights can vary amplitude, phase, or a combination of amplitude and phase of each weight over time.
An equalizer is applied to a signal to be transmitted via at least one multiple input, multiple output (MIMO) channel or received via at least one MIMO channel using a matrix equalizer computational device. Channel state information (CSI) is received, and the CSI is provided as an input to the matrix equalizer computational device when the matrix equalizer computational device is not needed for matrix equalization. One or more transmit beamsteering codewords are selected from a transmit beamsteering codebook based on output generated by the matrix equalizer computational device in response to the CSI input to the matrix equalizer computational device.
The present invention employs a pilot scheme for frequency division multiple access (FDM) communication systems, such as single carrier FDM communication systems. A given transmit time interval (TTI) may include numerous traffic symbols and one or more pilot symbols. A mobile terminal may generate, for a transmitter, sounding pilot information and map the sounding pilot information onto at least certain sub-carriers within a TTI. The one or more pilot symbols may include at least a first group of subcarriers and at least a second group of subcarriers. The first group of subcarriers may be sounding pilots and the second group of subcarriers may be pilots for demodulation. The second group may not include sounding pilots.
An apparatus for generating at least one signal based on at least one aspect of at least two received signals is provided. The apparatus comprises: a diverse antennae array of M antennae, where M is greater than or equal to two; at least one multiple-input and multiple-output capable transceiver in communication with each antenna in the diverse antennae array of M antennae; encoding circuitry capable of causing first data to be encoded; decoding circuitry capable of causing second data to be decoded; and processing capable of causing diversity combining, where the processing circuitry is in communication with the multiple-input and multiple-output capable transceiver, the encoding circuitry, and the decoding circuitry. In operation, the processing circuitry is capable of causing the apparatus to: receive at least two first signals, combine at least two of the at least first two signals, generate at least two second signals based on at least one aspect of the at least two first signals, and simultaneously transmit the at least two second signals. Additionally, the apparatus is configured such that at least one of the at least two second signals is capable of being received by a multiple-input capable node.
A wireless communication device (WCD) having improved tuning abilities is provided. The device comprises an absorption element (AE) connected to an additional antenna (MIMOA). RF power coupled from a main antenna (MA) into the additional antenna (MIMOA) is absorbed instead of being re-emitted into the main antenna (MA) and disturbing measurement of the reflected power level.
Apparatuses and methods of advertising antenna ports to UEs is provided. In an aspect, a device may receive an advertisement regarding transmit antenna ports for legacy UE operation and transmit antenna ports for advanced UE operation. The advertisement may indicate a number of transmit antenna ports set for legacy UE operation and a different number of transmit antenna ports set for advanced UE operation. The device may also receive all control channels for legacy and advanced UE operation via the transmit antenna ports for legacy UE operation, and receive first reference signals via the transmit antenna ports for legacy UE operation and second reference signals via the transmit antenna ports for advanced UE operation. The first reference signals are received in all subframes, and the second reference signals are received in a subset of all the subframes based at least in part on a subframe configuration.
A battery driven mobile communication device drawing a base current with periodic high current pulses during transmission. The current pulses may be larger than the current level which the device's battery can supply. The device uses a switched mode power supply with an output capacitor sufficiently large to provide the high current pulses when demanded by the load, without its voltage falling below that necessary to operate the device. This power supply provides the average current drawn by the load, and maintains the capacitor's charge. When the load demands a current pulse, that excess current is drawn from the capacitor, which begins to discharge. Once each pulse is completed, the battery continues to provide the lower baseline current of the device, and at the same time tops up the capacitor to replace the charge used during the pulse. The battery may be a low cost primary battery.
A communication system and communication method enable various types of near field communication. NFC communication apparatuses have two features in that each can perform communication in two communication modes and that each can perform data transmission at a plurality of transfer rates. The two communication modes consist of a passive mode and an active mode. In the passive mode, between the NFC communication apparatuses, for example, a first NFC communication apparatus transmits data to a second NFC communication apparatus by modulating electromagnetic waves generated by itself, while the second NFC communication apparatus transmits data to the first NFC communication apparatus by performing load modulation on the electromagnetic waves generated by the first NFC communication apparatus. Alternatively, in the active mode, either of the NFC communication apparatuses transmits data by modulating electromagnetic waves generated by itself. The present innovation can be applied to, for example, an IC card system, etc.
Aspects disclosed herein relate to improving acquisition for NFC load modulation. In one example, a communications device is equipped to monitor at least a complex component of load modulation of a carrier signal, detect, using a NFC technology type specific peak detection scheme, a peak associated with at least the complex component, and determine a presence of a packet beginning pattern based on the detected peak. In an aspect, the packet beginning pattern may be associated with a reception of a packet from a target NFC device.
A method and an apparatus for puncturing bits in parity bit groups in a digital broadcasting system are provided. In a method for transmitting signaling information in a digital broadcasting system, a received information bit stream is encoded and a parity bit is added. The parity bit is punctured such that parity bits of different patterns are formed between adjacent frames.
A description is given of an apparatus that includes a division unit configured to receive a data stream and to divide the received data stream into a plurality of data segments. The apparatus further includes a plurality of first CRC check units, wherein each of the first CRC check units is configured to perform a first CRC check of a respective one of the plurality of data segments, the plurality of first CRC checks being performed concurrently, and wherein each of the first CRC check units is configured to perform a second CRC check based on an output of the respective first CRC check unit.
Methods and apparatus for checksumming network packets encapsulated according to an encapsulation protocol are described in which a single checksum is performed at the encapsulation layer, with checksum generation performed at the source encapsulation layer and checksum validation performed at the destination encapsulation layer. The packet source and packet destination may be informed by the encapsulation layer that a checksum operation is not necessary for the network packets. By performing checksumming at the encapsulation layer, the method may reduce overhead as checksum computation is initiated once rather than twice as in conventional encapsulation techniques. In addition, checksum algorithms may be used that provide stronger error detection or correction than is provided by standard network protocol checksumming, different checksum algorithms may be selected for different paths according to one or more criteria, and checksum operations may be offloaded to hardware.
In response to receiving an input string to be compressed, a plurality of diverse lossless compression techniques are applied to the input string to obtain a plurality of compressed strings. The plurality of diverse lossless compression techniques include a template-based compression technique and a non-template-based compression technique. A most compressed string among the plurality of compressed strings is selected. A determination is made regarding whether or not the most compressed string was obtained by application of the template-based compression technique. In response to determining that the most compressed string was obtained by application of the template-based compression technique, the most compressed string is compressed utilizing the non-template-based compression technique to obtain an output string and outputting the output string. In response to determining that the most compressed string was not obtained by application of the template-based compression technique, the most compressed string is output as the output string.
In response to receipt of an input string, an attempt is made to identify, in a template store, a closely matching template for use as a compression template. In response to identification of a closely matching template that can be used as a compression template, the input string is compressed into a compressed string by reference to a longest common subsequence compression template. Compressing the input string includes encoding, in a compressed string, an identifier of the compression template, encoding substrings of the input string not having commonality with the compression template of at least a predetermined length as literals, and encoding substrings of the input string having commonality with the compression template of at least the predetermined length as a jump distance without reference to a base location in the compression template. The compressed string is then output.
Examples are provided for a method and apparatus for calibration of an analog-to-digital converter (ADC) including multiple sub-ADCs. The method includes applying a calibration signal to an input node of each sub-ADC. For each sub-ADC, a corresponding error signal is generated based on output signals of the sub-ADC and a reference sub-ADC. Each sub-ADC is calibrated based on the corresponding error signal. The reference sub-ADC is selected by: applying a non-zero input voltage signal to the input node of each sub-ADC, measuring a corresponding output signal of each sub-ADC in response to the non-zero input voltage signal, generating a deviation error based on a subtraction of a stored value from the measured output signal of each sub-ADC, and designating as the reference sub-ADC a sub-ADC from the multiple sub-ADCs based on the deviation error.
A method and apparatus is disclosed to compensate for impairments within a data converter such that its output is a more accurate representation of its input. The data converter includes a main data converter, a reference data converter, and a correction module. The main data converter may be characterized as having the impairments. As a result, the output of the main data converter is not the most accurate representation of its input. The reference data converter is designed such that the impairments are not present. The correction module estimates the impairments present within the main data converter using its output and the reference data converter to generate corrections coefficients. The correction module adjusts the output of the main data converter using the corrections coefficients to improve the performance of the data converter.
Methods, devices, and apparatus include systems and techniques for error correction. According to an aspect, a device includes analog-to-digital conversion comparators configured to effect analog-to-digital conversion of an analog input signal; redundant comparators configured to effect error correction for the analog-to-digital conversion; and encoder circuitry configured to generate a digital output signal based on outputs of the analog-to-digital conversion comparators and the redundant comparators.
An oscillation circuit is connected to a resonator element (crystal resonator) and oscillates a resonator element to output an oscillation signal. The oscillation circuit includes an amplification element (inverter), and a set of variable capacitive elements having at least two variable capacitive elements, which are connected to an oscillation loop from an output to an input of the amplification element and the capacitance values thereof are controlled with potential differences between reference voltages and a variable control voltage. In each variable capacitive element of a set of variable capacitive elements, the common control voltage is applied to one terminal, and the reference voltage which differs between the variable capacitive elements is input to the other terminal.
A method, an apparatus, and a computer program product are provided. The apparatus generates LO signals. The apparatus includes a LO generator module and an injection signal generator module coupled together. The LO generator module has a plurality of LO outputs and a plurality of injection signal inputs. The LO module is configured to generate the LO signals on the LO outputs based on injection signals received on the injection signal inputs. The injection signal generator module has a plurality of LO inputs and a plurality of injection signal outputs. The LO inputs are coupled to the LO outputs. The injection signal outputs are coupled to the injection signal inputs. The injection signal generator module is configured to generate injection signals on the injection signal outputs based on the LO signals received on the LO inputs and based on a received VCO signal.
In an embodiment, a gate driver circuit and/or method therefor may include configuring the gate driver circuit form a drive current to supply to a gate of an MOS transistor wherein the value of the drive current is a minimum value that can be supplied to the gate without increasing a charge stored on a gate-to-source capacitance of the MOS transistor; configuring the gate driver circuit to change the value of the drive current responsively to changes of a Vgs of the MOS transistor.
Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals are described. Such devices and method include use of symmetrical compensation capacitances, symmetrical series capacitors, or symmetrical sizing of the elements of the stack.
A semiconductor integrated circuit comprises a state holding circuit that inputs an output of one inverter to another inverter with each other; an input circuit that causes a state of the state holding circuit to transition based on a data signal; a first first-conductive transistor that is inserted between an input of the one inverter and an output of the another inverter and is controlled by the data signal; and a first second-conductive transistor that is connected in parallel with the first first-conductive transistor and is controlled by the data signal.
An embodiment includes an impedance calibration circuit having a calibrator configured to compare voltage levels at an external node and an internal node of the impedance calibration circuit and to generate an output based on the comparison. The calibrator further includes respective filters coupled between the external node and a first input of the comparator, and between the internal node and a second input of the comparator. The filters are configured for symmetric noise injection into the comparator from a chip ground line to which a programmable resistor at the internal node is coupled.
A PCM signal is converted to a PWM signal using predistortion to alleviate harmonics. A PCM predistorted signal is converted to the PWM and amplified. A third harmonic nonlinear function receives the PCM signal and produces a third harmonic of the PCM signal. A third harmonic difference function takes one sixth of the third harmonic and produces a third harmonic PCM compensation signal. The PCM signal and the third harmonic PCM compensation signal are summed to produce a PCM predistorted signal for a full-bridge amplifier. A second harmonic nonlinear function produces a second harmonic of the PCM signal. A second harmonic function takes one fourth of the second harmonic to produce a second harmonic PCM compensation signal. The PCM signal, the third harmonic PCM compensation signal, and the second harmonic PCM compensation signal are summed to produce the PCM predistorted signal for a half-bridge amplifier.
In accordance with an embodiment, a circuit includes an oscillator having an oscillation frequency dependent on an input signal, a digital accumulator having a first input coupled to an output of the oscillator, a digital-to-analog converter (DAC) coupled to an output of the digital accumulator, an analog loop filter coupled to an output of the digital-to-analog converter, and a comparison circuit having an input coupled to an output of the analog loop filter and an output coupled to a second input of the digital accumulator.
In one example embodiment, a programmable capacitor array is provided for low distortion and minimizing linearity degradation of an input (Vin) by utilizing control circuitry to switch on and off an array of MOSFET switches. The control circuitry turns on a MOSFET to load a capacitance on Vin and turns off the MOSFET to remove the capacitance from Vin in response to a Din control signal. When the intention is to load Vin with the capacitance, the MOSFET is left on continuously. When the intention is to remove or unload the capacitance from Vin, the MOSFET is primarily turned off, however, the MOSFET is still periodically turned on with appropriate voltage levels in response to a clock signal for periods of time when the loading of the capacitance on Vin is tolerable to the system, thereby ensuring minimal linearity degradation of Vin due to the programmable capacitor array system.
A surface acoustic wave filter includes an arrangement of transducers having at least one first transducer one second transducer and one third transducer. The at least one first transducer is connected to the input terminal and a terminal for applying a reference potential. The second transducer is connected to the first output terminal and the terminal for applying the reference potential. The third transducer is connected to the second output terminal and the terminal for applying the reference potential. A capacitor is connected to at least one of a first and second output terminal in such a way that the capacitor is connected between the first and second output terminals or between one of the first and second output terminals and the terminal for applying the reference potential.
An acoustic wave device comprising at least one surface acoustic wave filter and one bulk acoustic wave filter, the device including, on a substrate comprising a second piezoelectric material: a stack of layers including a first metal layer and a layer of a first monocrystalline piezoelectric material, wherein the stack of layers is partially etched so as to define a first area in which the first and second piezoelectric materials are present and a second area in which the first piezoelectric material is absent; a second metallization at the first area for defining the bulk acoustic wave filter integrating the first piezoelectric material, and a third metallization at the second area for defining the surface acoustic wave filter integrating the second piezoelectric material.
In a system and method for maintaining the spatial stability of a sound field a balance gain may be calculated for two or more microphone signals. The balance gain may be associated with a spatial image in the sound field. Signal values may be calculated for each of the microphone. The signal values may be signal estimates or signal gains calculated to improve a characteristic of the microphone signals. The differences between the signal values associated with each microphone signal may be limited although some difference between signal values may be allowable. One or more microphone signals are adjusted responsive to the two or more balance gains and the signal gains to maintain the spatial stability of the sound field. The adjustments of one or more microphone signals may include mixing of two or more microphone. The signal gains are applied to the two or more microphone signals.
According to an embodiment, a variable gain amplifier includes a differential transistor pair including a first and second transistor. A variable resistor for setting a gain is connected between electrodes the transistor pair. A first variable capacitor is connected to an electrode of the first transistor, and a second variable capacitor is connected to an electrode of the second transistor. Corresponding to the gain setting set by adjusting the variable resistor, capacitance values of the variable capacitors can be adjusted to provide improved frequency characteristics of the variable gain amplifier.
Methods and systems for controlling an electric motor are provided. An estimated rotor flux angular position error is generated based on estimated back electromotive force (EMF) values, and based on the estimated rotor flux angular position error, an estimated rotor flux angular position, an estimated electrical synchronous frequency and/or an estimated rotor frequency can be generated.
An inverter control section controls the inverter by controlling an armature current in a two-axis orthogonal coordinate system that rotates in synchronization with the rotary electric machine, the armature current being a vector obtained by synthesizing a field current and a drive current extending along respective axes of the orthogonal coordinate system. If it is determined that connection between the DC power source section and the inverter is in a blocked state, the inverter control section executes zero-torque control in which the inverter is controlled such that torque regenerated by the rotary electric machine becomes zero, and executes high-loss control in which the field current is varied so as to increase the armature current while maintaining a torque command provided in the zero-torque control.
A control device for controlling a three phase AC motor with an inverter includes: a current acquisition device for a current of the motor; a rotation angle acquisition device for a rotation angle of the motor; a current estimation device for a current estimated value; a first voltage command value operation device for a first voltage command value; a voltage command reference value operation device for a voltage command reference value; a second voltage command value operation device for a second voltage command value; a control mode switching device for first and second control modes generating a drive signal of the inverter based on the first and second voltage command value, respectively; and a number-of-revolutions operation device. When the revolution number is more than a threshold, the first control mode is selected. When the revolution number is not more than the threshold, the second control mode is selected.
A motor control device to execute speed control and position control of motor simultaneously, includes a target position information provider, a target speed information provider, a detected position information detector, a processor to add position feedback information, position feed-forward information, speed feedback information, and speed feed-forward information for output as motor control information, based on the target position information, the setting target speed information, and the detected position speed information, a control voltage generator operatively connected to the processor to generate a control voltage to drive the motor in accordance with the motor control information, and a motor driver operatively connected to the control voltage generator and the motor to control rotation of the motor based on the control voltage.
A method for setting a desired output voltage of a power supply branch of a controllable energy store, for controlling and supplying electrical energy to an n-phase electric motor, where n≧1. The controllable energy store has n parallel power supply branches, which each have at least two serially connected energy storage modules including at least one electrical energy storage cell having an assigned, controllable coupling unit; are connected to a reference bus on one side; and are connected to phases, respectively, of the electric motor on the other side. At least one coupling unit is controlled by pulses so that the arithmetic mean of the output voltage of a power supply branch corresponds to the desired output voltage. The energy storage cells respectively assigned to the coupling unit are switched into the respective power supply branch for a pulse duration, and are bypassed during a pause time.
A three-level power conversion circuit includes a plurality of one-phase switch circuits which receive power from direct current power supplies that are connected in series. Each of the one-phase switch circuits includes a semiconductor switch series circuit that is connected in parallel to the direct current power supplies, and also a bidirectional switch and a circuit-opening device that are connected in series between a series connection point of the semiconductor switch series circuit and a series connection point of the direct current power supplies. If a semiconductor element in a bidirectional switch fails, the circuit opening device opens a path along which the main current of the semiconductor element flows, and operation of the inverter is continued as a two-level inverter with the remaining bidirectional switches in a constant off-state.
A battery free off-grid solar inverter system includes an inverter and a controller. The inverter is used for converting a direct current voltage provided by a solar panel into an alternating current voltage. The inverter has an input terminal, an output terminal, and a control terminal. The input terminal is used for coupling to the solar panel for receiving the direct current voltage, and the output terminal is used for coupling to a load for coupling the alternating current voltage. The controller is coupled to the control terminal for gradually increasing the alternating current voltage to make the direct current voltage be gradually decreased when the battery free off-grid solar inverter system is turned on. The controller stops increasing the alternating current voltage when the direct current voltage is lower than a predetermined direct current voltage value.
The power supply apparatus includes a transformer having primary and secondary sides, a switching element, a feedback unit, a conversion unit that converts a current flowing in a primary winding of the transformer into a voltage, a control unit that controls operation of the switching element, a voltage switching unit that increases the voltage output from the conversion unit and feeds the increased voltage to the control unit when a continuous oscillation state is transited to an intermittent oscillation state. The voltage switching unit switches the voltage of the power supply that is input into the control unit to be higher when the continuous oscillation state is transited to the intermittent oscillation state.
An energy-saving control device is disclosed. The control device is connected with an integrated circuit (IC) and a secondary winding of a transformer of a power converter. A primary winding of the transformer receives energy, and then the energy is discharged from the secondary winding and an energy signal of the energy is generated. And the energy signal comprises a high-frequency part and a low-frequency part thereafter. The energy signal is received by the energy-saving control device to control the operation of the IC according to a ratio of the low-frequency part to the high-frequency part.
An AC/DC converter comprising an input rectifier circuit connected in series with a primary winding (5) of an isolating transformer (6) and to a chopper switch (T1) driven by a control circuit (10) using pulse width modulation on the basis of a signal representative of a primary current, the isolating transformer having a first secondary winding (7) that is wound in the same direction as the primary winding and that is connected to an output line (8) of the converter via a diode (D4) and a filter coil (L1), and a second secondary winding (9) that is wound in the opposite direction to the primary winding and that is connected directly to the output line via a diode (D2), the output line being connected to an output capacitor (Cout). The converter includes an analog correction circuit for correcting the primary current, which circuit is connected to the control circuit and to a measurement element (30) delivering a signal representative of the primary current, and is arranged to transform said signal into a triangular signal suitable for driving the control circuit.
An exemplary direct current (DC) voltage generating apparatus for generating stable DC voltages includes a voltage conversion circuit, a voltage control circuit, and a voltage regulating circuit. The voltage conversion circuit receives an alternating current (AC) voltage, and converts the AC voltage to a first DC voltage. The voltage control circuit receives the first DC voltage, and converts the first DC voltage to a second DC voltage and a control signal. The voltage regulating circuit receives the control signal, and regulates the second DC voltage to a stable second DC voltage at the voltage control circuit according to the control signal.
A boundary conduction mode (BCM) switching regulator controls a power stage to convert an input voltage to an output voltage or output current. The BCM switching regulator detects whether it is operating in continuous conduction mode (CCM) or discontinuous conduction mode (DCM), and adjusts the On-time, Off-time, or frequency of the power stage accordingly, so that the switching regulator operates in or near BCM.
A magnetic device and power converter employing the same. In one embodiment, the magnetic device includes a first L-core segment including a first leg and a second leg extending therefrom, and an opposing second L-core segment including a first leg and a second leg extending therefrom. The magnetic device also includes a winding formed around at least one of the first leg and the second leg of the first L-core segment or the second L-core segment.
A drive circuit for a synchronous rectifier, a method of driving a synchronous rectifier and a power converter incorporating the drive circuit or the method. In one embodiment, the drive circuit includes: (1) a first drive circuit stage configured to derive a timing for at least one drive signal from a secondary winding of a transformer coupled to the synchronous rectifier and (2) a second drive circuit stage, coupled to the first drive circuit stage and configured to employ a substantially stable voltage source to provide power for the at least one drive signal and apply the at least one drive signal to at least one control terminal of at least one synchronous rectifier switch in the synchronous rectifier.
An augmented power converter may include a motor drive circuit. The motor drive circuit may include a motor drive transformer to convert a two-phase DC voltage to a three-phase output voltage for operating an electrical device. The motor drive circuit may also include a power control component for each phase of the two-phase voltage.
A rotor of a rotating electrical machine includes a rotor core which includes an annular core plate formed by coupling a plurality of arc shaped core plate pieces. Multiple core plates are stacked together. A circumferential position of a seam formed by coupling the core plate pieces is alternately displaced for every predetermined number of core plates in a stacking direction of the core plates. A bar-shaped member is inserted in a plurality of through holes formed in the respective core plate pieces and aligned in the stacking direction. Both side surfaces of the rotor core in the stacking direction are interposed between end plates, the end plates contact the core plates, and the end plates do not contact the bar-shaped member at least on a radially outside of the bar-shaped member, which is a side in a direction of a centrifugal force that acts on the bar-shaped member.
Disclosed herein are stator components designed to facilitate stator mounting as part of a generator. Also disclosed are generators suitable for use, for example, as part of a wind turbine, their components, as well as methods for their production.
An electric radiometer generates electricity in tangible amounts by placing stationary rare earth magnets on a stationary magnetized needle which are connected to two-sided aluminum wings in such a manner that an electric current is produced when the coils in motion cut across the flux lines of a stationary magnetic field after a complete revolving circuit to a receiving device.
A contactless power transmission device which transmits electric power in a contactless way includes: a power transmission section which transmits electric power using a primary coil; a power receiving section which is provided in a radio communication device and receives electric power using a secondary coil that is electromagnetically coupled with the primary coil; a housing which shields an electromagnetic wave, in which the power transmission section is provided, and which forms a closed space where the radio communication device is housed; and a housing antenna section which is provided in the housing and transmits a first communication signal to the outside of the housing, or transmits a second communication signal to the inside of the housing, the first communication signal being emitted from the radio communication device housed inside the housing, the second communication signal being emitted from the radio communication device housed outside the housing.
A battery charge control apparatus for a vehicle, where the vehicle is provided with a prime mover driven by using fuel stored in the vehicle, power generation means for converting energy generated by the prime mover using the fuel into electrical energy, and a secondary battery that stores the electrical energy generated by the power generation means. The apparatus includes temperature detection means for detecting a temperature of the battery, and battery-charge limiting means for limiting storing of the electrical energy generated by the power generation means into the battery when the temperature of the battery detected by the temperature detection means is low. This leads to enhancement of fuel usage efficiency of the engine.
A power monitoring system to monitor electrical power supply to electrical equipments. The monitor includes an energy saving device to reduce unnecessary power consumption. A control means for enabling control of power consumption of electrical devices in response to the data output of the monitored power consumption.
The present invention provides an apparatus for charging a high voltage battery of an electric vehicle by performing a control operation when the apparatus operates abnormally, the control operation discontinuing operations of a rectifier, a boost PFC (Power Factor Control) circuit and a DC-DC converter and receiving a power source from an auxiliary power supply unit, the power source charged by discharging a DC-link capacitor.
A vehicle that is chargeable using power from an external power source includes: a chargeable electric storage device; a charging device that charges the electric storage device by using the power from the external power source; and a control device that, based on maximum supply power that is able to be supplied to the electric storage device and based on actual charge power actually supplied to the electric storage device, calculates a shortfall with respect to charge power supplied to the electric storage device in a case where charging is performed at the maximum supply power, and stores information relating to a causal factor for the shortfall.
A charger (100) provides a self aligning, compliant connector with multiples degrees of freedom. The charger (100) comprises a housing having an aperture (132) through which a charger connector (110) is mounted via an interior interface formed of convex protrusions (115) and concave recesses (135) that provide a predetermined range of rotational motion and self-alignment for the charger connector (110) within the aperture (132) thereby facilitating mating with a corresponding connector of a radio. Compliant pads (120) apply a compressible force to further control the rotational motion of the charger connector (110).
A rack system includes one or more racks each configured to receive at least one distribution module. Each rack includes management sections located at the front of the rack; troughs located at the rear of the rack; horizontal channels extending between the management sections and the trough; a storage area located at a first of opposing sides of the rack; a front vertical channel that connects to the storage area and at least some of the management sections; and a travel channel at the rear of the first rack that connects the storage area to the troughs.
A spacer assembly includes first and second clamping bodies. The first clamping body has a first slot. The first slot has a first set of teeth. The second clamping body has a second slot. The fastener connects the first clamping body to the second clamping body. The fastener has a second set of teeth to engage the first set of teeth such that rotation of the fastener moves the first clamping body relative to the second clamping body.
A seed beam source for a fiber amplifier system. The seed beam source includes a plurality of continuous wave master oscillator lasers, each generating a laser beam at a different wavelength and a plurality of switching modulators each receiving the laser beam from a particular one of the master oscillator lasers, where each switching modulator is electrically driven so as to output the laser beam as pulses based on a predetermined timing control. The seed beam source further includes an optical coupler responsive to the optical pulses from the plurality of switching modulators where the optical coupler only receives one of the optical pulses from the plurality of switching modulators at any particular point in time, and where the optical coupler continuously receives the optical pulses from the plurality of switching modulators and outputs an interleaved continuous optical seed beam including the pulses from all of the switching modulators.
A pulse oximetry system for reducing the risk of electric shock to a medical patient can include physiological sensors, at least one of which has a light emitter that can impinge light on body tissue of a living patient and a detector responsive to the light after attenuation by the body tissue. The detector can generate a signal indicative of a physiological characteristic of the living patient. The pulse oximetry system may also include a splitter cable that can connect the physiological sensors to a physiological monitor. The splitter cable may have a plurality of cable sections each including one or more electrical conductors that can interface with one of the physiological sensors. One or more decoupling circuits may be disposed in the splitter cable, which can be in communication with selected ones of the electrical conductors. The one or more decoupling circuits can electrically decouple the physiological sensors.
The invention provides a connector including a body of insulating material and first, second, and third signal terminals. The terminals are arranged in a line along a first direction in the body. The third signal terminal is located between the first and second signal terminals. A frequency of a signal transmitted by the third signal terminal is about one hundredth or lower of a frequency of each signal transmitted by the first and second signal terminals.
A circular plug connector unit for shielded electrical cables, having an insulating body that is enveloped by a shielding sleeve, wherein plural electrical socket shaped plug contacts and/or pin shaped plug contacts are arranged in receiving cavities in the insulating body, wherein the shielding sleeve is interlocked with the insulating body. The plug side end of the shielding sleeve includes an even number of axially extending sleeve segments which are separated by longitudinal slots which are advantageously configured as sleeve segments that are short in axial direction and sleeve segments that are long in axial direction. Sleeve segments which are arranged in sequence advantageously have a uniform radial offset relative to each other in an alternating direction, wherein the sleeve segments of two identically configured shielding sleeves are insertable into one another with a rotational offset in circumferential direction of 360° divided by a number of the sleeve segments.
An electrical connector (100) includes an insulative housing (1), a number of contact terminals (2), a metal plate (3), and a metallic shell (4) enclosing the insulative housing (1). The terminals and the metal plate (3) are retained in the insulative housing (1). The insulative housing (1) includes a base portion (11) and a tongue portion (12) extending forward from the base portion (11). The contact terminal includes a contacting portion (21), a tail (22), and a connecting portion (23) connecting the contacting portion (21) and the tail (22). The tails (22) are positioned out of the insulative housing (1). The metal plate (3) has a number of positioning end portions (33). The positioning end portions (33) are soldered on a printed circuit board for grounding. The electrical connector (100) has improved electromagnetic interference effect.
A connector housing includes a terminal receiving chamber and a pair of lances for locking the terminal on both sides of the terminal receiving chamber. A terminal pullout jig inserted into the connector housing displaces the lances to respective unlocking positions, thus pulling out the terminal from the terminal receiving chamber. The connector housing includes a pair of unlocking wall portions configured to be elastically deformed integrally with the pair of lances respectively. The terminal pullout jig includes an unlocking arm portion configured to displace the pair of the lances to the respective unlocking positions, and a terminal pressing portion for pressing the terminal in a terminal pullout direction.
A method for sealing an electric coupling piece (K) against moisture, includes, at an end of the line (1) intended for connection to the coupling piece (K), at least one annular groove extending in the circumferential direction is cut into the casing of the line (1). Prior to injection molding the protective body (9), an O-ring (10) serving as a sealing element is placed into the groove, where the O-ring (10) rests tightly against the lateral borders of the groove (11) with the respective pretension, where the O-ring is of a material which connects tightly and in a moisture proof manner to the insulating material of the finely produced protective body (9).
A connector assembly has first and second housings (10, 300). Ribs (305, 306) project from an inner surface of a receptacle (301) of the second housing (300). The first housing (10) has a main body (11) that can fit into the receptacle (301), a seal ring (50) is mounted externally on the housing main body (11) and a retaining member is mounted into the main body (11). The retaining member includes a pressing surface (67, 90) for preventing detachment of the seal ring (50) and grooves (68, 86) that receive the ribs (305, 306) when the housings are connected. Reverse tapered surfaces (74, 91) are formed on the back surfaces of the grooves (68, 86) at a side facing and opposite to the pressing surface (67, 90) of the retaining member and incline toward the housing main body (11) to approach the pressing surface (67, 90).
A terminal testing device provides an adapter customized to a port of a connector being tested so that force applied to the adapter identifies loose and fixed terminals in the connector. The adapter includes springs and push pins that correspond in number to the number of terminals being tested and has a face plate that corresponds to the type of connector being tested. The push pins provide force against the terminal end. Specifically, the device seats the adapter and connector to align both and permit force to be in line with terminal ends. The force applied to the terminal ends is uniform and controlled by means of the adapter and is obtained by a single driving means.
A crimpless electrical connector assembly includes an outer housing. The outer housing has a first connector aperture extending therethrough. A connecting member is positionable within the interior of the outer housing. The connecting member insertably receives an electrical conductor so the electrical conductor is operationally coupled to the connecting member. An inner housing is provided. The inner housing has a conductor aperture extending therethrough. The inner housing is positionable within the interior of the outer housing. The conductor aperture is aligned with the first connector aperture when the inner housing is positioned within the interior of the outer housing. The conductor aperture insertably receives the electrical conductor so the electrical conductor is operationally coupled to the connecting member. A connector is selectively inserted into the first connector aperture on the outer housing so the connector is operationally coupled to the connecting member and the electrical conductor.
A terminal block (10) to be fixed to a motor case (C) which houses a motor body and includes a coolant flow path (C1) and adapted to fasten busbars by tightening bolts includes nuts (30) for tightening the bolts, and a heat sink (40) made of aluminum die-cast and held in close contact with the nuts (30) via an insulation plate (20) behind the nuts (30). The heat sink (40) includes a heat radiating portion (46) which comes into contact with cooling water passing in the coolant flow path (C1) of the motor case (C).
An apparatus transmits and/or receives radio waves in the UHF band and is configured for installation in an elastic structure. The apparatus includes at least one electronic component and an antenna embedded in the elastic structure. The antenna is connected to the electronic component and includes at least one filament configured to be plastically deformable and/or elastically deformable. The filament is helically wound to a predetermined antenna length (L) and defines an antenna winding turns density per cm of the antenna length. The antenna length (L) is between 4 cm and 10 cm and the antenna winding turns density lies in a range of 5 to 15 winding turns per cm of the antenna length.
An apparatus to modify an incident free space electromagnetic wave includes a block of an artificially structured material having an adjustable spatial distribution of electromagnetic parameters (e.g., ∈, μ, η, σ, and n). A controller applies control signals to dynamically adjust the spatial distribution of electromagnetic parameters in the material to introduce a time-varying path delay d (t) in the modified electromagnetic wave relative to the incident electromagnetic wave.
A second slit 117 and a fourth slit 119 provided in a first antenna element 150 and a first slit 116 and a third slit 118 provided in a second antenna element 151 are adjusted such that the mutual coupling between the first antenna element 150 and the second antenna element 151 in the desired frequency band is canceled, and reduces degradation in coupling between antenna elements without connecting the antenna elements through components and the like. With such a configuration, it is possible to achieve high-efficiency loosely coupled MIMO array antennas operating in the same frequency band in a portable wireless terminal.
An optically scannable code antenna is provided. Encoded matrix codes are printed with electrically conductive material on a substrate. An antenna pattern is generated on the substrate from the electrically conductive material. Enclosed information in the matrix code and accessible via the antenna pattern is provided. At least a portion of the antenna pattern is also a portion of the matrix code. Signals are transmitted and received from the antenna pattern made up of a portion of the matrix code formed on the substrate by electrically conductive materials. Authentication and security measures using the matrix code and signal from the antenna pattern are also provided.
A mobile terminal including a case that forms at least a portion of a terminal body of the mobile terminal. The case may include a case body, a different material portion attached to the case body and composed of a plateable material that is different from a material composing the case body, and an antenna coil formed on the different material portion via plating and configured to detect a change in magnetic flux occurring at a periphery of the terminal body.
An enclosed resonator includes a generally planar plate having a top side and a bottom side wherein a pocket is recessed into the bottom side to produce a bottom surface and a periphery around the rectangular pocket including a first pair of parallel sides and a second pair of parallel sides, a plurality of generally parallel channels formed into the top side each channel extending generally in a direction of the second pair of parallel sides, a first plurality of holes extending along a first side of the first pair of parallel sides each hole extending from the bottom side to one of the plurality of generally parallel channels, a second plurality of holes extending along a second side of the first pair of parallel sides each hole extending from the bottom side to one of the plurality of generally parallel channels.
A pseudo-antenna and system and method for manufacturing the same are disclosed. In one embodiment of the pseudo-antenna, a substrate is provided including a surface layer selected from the group consisting of tetrel-based and metal materials. The surface layer is annealed by application of a static pulse from a Tesla emitter at ambient conditions. The surface layer presents a normalized unit structure having at least one phonon representing a micro-crystal surface effect and absorption band. Further, the surface layer presents imperfect harmonic interaction with the carrier wave.
The broadband directional coupler is used for measuring the power of a forward and/or a returning high-frequency signal on a line. For this purpose, the broadband directional coupler provides a voltage splitter which is connected to an inner conductor (1) of the line. This voltage splitter provides a first resistor (8) which is connected to an outer conductor of the line. The voltage splitter comprises ohmic resistors, and a first connection of a second resistor (4) is connected to the inner conductor (1) of the line, and a second connection of the second resistor (4) is connected to a first connection of a third resistor (6). A second connection of the third resistor (6) is connected directly or indirectly to a first connection of the first resistor (8) and at the same time to the outer conductor of the line. In this context, a measured voltage is picked up at the second connection of the second resistor (4) or at the first connection of the third resistor (6).
A high frequency line-waveguide converter is provided which includes a first substrate including a first dielectric layer, a first conductive layer formed on a surface of the first dielectric layer, and a conductive pattern formed on the surface of the first dielectric layer that surrounds the second conductive layer. An antenna formed on a bottom surface of the first dielectric layer at a fixed interval from the second conductive layer. The high frequency line-waveguide converter also includes a second substrate including a third conductive layer and a fourth conductive layer separated by a second dielectric layer. An adhesion layer formed between the first substrate and second substrate, a shield conductive part formed by multiple vias between the conductive pattern and the fourth conductive layer, and a conductive waveguide in contact with the fourth conductive layer.
To provide a hydrogen storage alloy for an alkaline storage battery that improves output power by pulverization of the alloy in the initial stage of partial charge and discharge cycles and that maintains its surface condition to improve the amount of lifetime work (Wh), and an alkaline storage battery and battery system. A hydrogen storage alloy for an alkaline storage battery includes a composition expressed by LaxReyMg1-x-yNin-m-vAlmTv (Re: rare earth element(s) including Y; T: Co, Mn, Zn; 0.17≦x≦0.64, 3.5≦n≦3.8, 0.06≦m≦0.22, v≧0), and a main phase of an A5B19 type crystal structure. A ratio of X/Y of the concentration ratio X of Al to Ni in a surface layer and the concentration ratio Y of Al to Ni in a bulk layer is 0.36≦X/Y≦0.85. An alkaline storage battery includes the hydrogen storage alloy in its negative electrode. An alkaline storage battery system performs partial charge and discharge control.
A lithium ion conducting material includes a sulfide-based solid electrolyte material that contains Li, an element that belongs to group 13 to group 15 and S, and that contains an MSx unit, wherein M is an element that belongs to group 13 to group 15, S is a sulfur element, and x is the maximum number of S atoms that can be bonded with M, and an inhibitor that is in contact with the sulfide-based solid electrolyte material and that contains a metal element having an ionization tendency lower than that of hydrogen.
An electrolyte membrane for a lithium battery, the electrolyte membrane including: a matrix including a polymerization product of a (meth)acrylate monomer composition; and a porous metal-organic framework dispersed in the matrix, wherein the metal-organic framework includes a crystalline compound including a metal ion or metal ion cluster which is chemically bound to an organic ligand, and a liquid electrolyte including a lithium salt and a nonaqueous organic solvent.
The invention provides a battery electrode capable of improving a lifespan characteristic (cycle characteristic at the time of high temperature endurance). The battery electrode has a collector and an active material layer formed on a surface of the collector. The active material layer includes a plurality of binders having different specific gravities. The binders are more present at the collector side of the active material layer.
The present invention relates to electrode materials for charged electrical cells, comprising at least one polymer comprising polysulfide bridges, and carbon in a polymorph comprising at least 60% sp2-hybridized carbon atoms. The present invention further relates to electrical cells comprising the inventive electrode material, to specific polymers comprising polysulfide bridges, to processes for preparation thereof and to the use of the inventive cells.
An anode active material including a porous transition metal oxide; an anode including the anode active material; a lithium battery including the anode; and a method of preparing the anode active material.
A negative active material and a lithium battery are provided. The negative active material includes a composite core, and a coating layer formed on at least part of the composite core. The composite core includes a carbonaceous base and a metal/metalloid nanostructure disposed on the carbonaceous base. The coating layer includes a metal oxide coating layer and an amorphous carbonaceous coating layer.
In an aspect, a composite anode active material including: a porous particles, said porous particles including: a plurality of composite nanostructures; and a first carbonaceous material binding the composite nanostructures, wherein the porous particles have pores within the particle, and wherein the composite nanostructures include a crystalline second carbonaceous material substrate including at least one carbon nano-sheet, and a plurality of metal nanowires arranged at intervals on the crystalline second carbonaceous material substrate is disclosed.
An exemplary embodiment of a synthesis method includes the following acts or steps: providing LiMn2O4 material as a precursor; leaching Mn from the LiMn2O4 material using an acid to form a synthesized solution; adding carbonaceous material to the synthesized solution; adding phosphoric acid to the synthesized solution with carbonaceous material to form MnPO4 composite material; and adding Li containing compound to the MnPO4 composite material to form LiMnPO4 composite material.
A battery module includes a plurality of battery units, each including an electrode assembly and an electrode terminal electrically connected to the electrode assembly; a bus bar connecting the electrode terminal of a first battery unit of the plurality of battery units and the electrode terminal of a second battery unit of the plurality of battery units; and a position arrangement unit configured to maintain a position of the bus bar relative to the electrode terminals of the first and second battery units.
A separator for a battery having a porous base material layer and a polymer coating layer formed on at least a surface of the base material layer. The polymer coating layer includes a first fluorinated copolymer and a non-fluorinated polymer. A weight ratio of the first fluorinated copolymer to the non-fluorinated polymer is in a range of 3:1 to 1:3.
An electrically powered vehicle includes a fuel cell with a decomposition reactor for decomposing sodium chlorate (NaClO3). Reaction products produced by the decomposition reactor include oxygen and sodium chloride (NaCl). Gaseous hydrogen is stored onboard the vehicle, such as in a hydrogen tank at a low pressure, using metal hydrides. The hydrogen from the hydrogen tank and the oxygen produced by the decomposition reactor are consumed by the fuel cell in order to produce electricity. The vehicle further includes a storage tank for storing the NaCl produced by decomposition of the NaClO3.
A combined water drain and diluent gas purge valve routes fluid from the anode side of a fuel cell to the cathode inlet. When a purge of diluent gas is requested, the valve opens, draining any liquid present in the sump of a water separation device, for example. After the liquid has drained, the diluent gas is purged. An anode bleed model using fuel injector feedback can determine the amount of gas exiting the valve, and can request the valve to close once the required amount of diluent is purged. During operation, an amount of hydrogen may exit the valve. Hydrogen passing through the valve can be catalytically consumed once it reaches the cathode electrode, causing the cathode exhaust, and the fuel cell exhaust to have a reduced hydrogen content.
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
A display device includes a display substrate, an encapsulation substrate facing the display substrate, a filling material between the display substrate and the encapsulation substrate, the filling material including a norbornene-based resin, and a sealing material joining the display substrate with the encapsulation substrate.
This invention relates to a method for forming a patterned layer on a substrate by means of an imprint process. According to the method a first layer is provided on the substrate, and a pattern of recesses is provided in the first layer by imprinting the layer with a patterning means. Then the first layer is cured. The curing is followed by performing a first surface treatment onto the first layer to make the surface of thereof hydrophilic, and then performing a second surface treatment onto a selected subarea of the surface of the first layer to make the. subarea hydrophobic. The subarea includes surface portions between the recesses and excludes the recesses. Finally, a conducting pattern material (41) is deposited into the recesses.
A method of manufacturing an organic light emitting display apparatus is provided. A plurality of first electrodes is formed on a substrate. An intermediate layer including an emission layer is formed on the plurality of first electrodes. A deposition mold including a plurality of auxiliary patterning lines is formed by performing a deposition process twice using a mask. The mask includes a plurality of aperture sets, each of the plurality of aperture sets corresponding to part of each of the plurality of auxiliary patterning lines. A plurality of second electrodes is formed on the intermediate layer by depositing a conductive material into the deposition mold.
An organic light-emitting display device may include a plurality of scan lines, a plurality of data lines, and a plurality of pixels located at an intersection region of the scan line and the data line, wherein the organic light-emitting display device includes a thin film transistor including a gate electrode on a different layer than a scan line, an active layer on the gate electrode, and source and drain electrodes that are in contact with source and drain regions of the active layer, and a capacitor including a first capacitor electrode on the same layer as the scan line, a second capacitor electrode on the gate electrode, and a third electrode on the same layer as the source and drain electrodes.
An organic light emitting diode includes a substrate and an organic layer sequence, which generates electromagnetic radiation during operation. The organic layer sequence is arranged in a central region of the substrate A metallization is arranged in an edge region of the substrate and is designed for making electrical contact with the organic layer sequence. A separately produced metallic contact structure is cohesively and electrically conductively connected to the metallization by a joining process based on ultrasonic technology.
The present invention provides composite organics and optoelectronic devices, including photovoltaic devices, comprising the same. In one embodiment, the present invention provides a photovoltaic cell comprising a radiation transmissive first electrode, a photosensitive layer electrically connected to the first electrode, the photosensitive layer comprising a plurality of composite organic layers, wherein each of the plurality of composite organic layers comprises a polymeric phase and a nanoparticle phase, the nanoparticle phase comprising at least one exaggerated nanocrystalline grain.
Provided is a nonvolatile magnetic device that is capable of realizing low power consumption by performing writing with a voltage and is also excellent in retention characteristics. The nonvolatile magnetic device includes a nonvolatile magnetic element. The nonvolatile magnetic element includes: a first free layer made of a ferromagnetic substance; a first insulating layer made of an insulator, the first insulating layer being provided to be connected to the first free layer; a charged layer provided adjacent to the first insulating layer; a second insulating layer made of an insulator, the second insulating layer being provided adjacent to the charged layer; and an injection layer provided adjacent to the second insulating layer. The charged layer is smaller in electric resistivity than both of the first insulating layer and the second insulating layer. The injection layer is smaller in electric resistivity than the second insulating layer.
A method is provided for bonding a first substrate carrying a semiconductor device layer on its front surface to a second substrate. The method comprises producing the semiconductor device layer on the front surface of the first substrate, depositing a first metal bonding layer or a stack of metal layers on the first substrate, on top of the semiconductor device layer, depositing a second metal bonding layer or a stack of metal layers on the front surface of the second substrate, depositing a metal stress-compensation layer on the back side of the second substrate, thereafter establishing a metal bond between the first and second substrate, by bringing the first and second metal bonding layers or stacks of layers into mutual contact under conditions of mechanical pressure and temperature suitable for obtaining the metal bond, and removing the first substrate.
Light emitting devices and methods are disclosed that provide improved light output. The devices have an LED mounted to a substrate, board or submount characterized by improved reflectivity, which reduces the absorption of LED light. This increases the amount of light that can emit from the LED device. The LED devices also exhibit improved emission characteristics by having a reflective coating on the submount that is substantially non-yellowing. One embodiment of a light emitting device according to the present invention comprises a submount having a circuit layer. A reflective coating is included between at least some of the elements of the circuit layer. A light emitting diode mounted to the circuit layer, the reflective coating being reflective to the light emitted by the light emitting diode. In some embodiments, the reflective coating comprises a carrier with scattering particles having a different index of refraction than said carrier material.
The present invention is curable silicone resin composition which is an addition-curable silicone composition, and comprises: (A) (A-1) a compound having at least two aliphatic unsaturated groups per one molecule and represented by the following formula (1), (B) an organic silicon compound having at least two hydrogen atoms bonded to silicon atom per one molecule and having no aliphatic unsaturated group, (C) a hydrosilylation catalyst containing a platinum group metal, and (D) 0.1 to 500 parts by mass of silicone powder having an average particle diameter of 0.5 to 100 μm based on 100 parts by mass of the total Components (A) and (B). Thereby, there can be provided a curable silicone resin composition having high light extraction efficiency and useful as, for example, an encapsulant, a cured product thereof and a photosemiconductor apparatus.
The present disclosure involves lighting apparatus. The lighting apparatus includes a first doped semiconductor layer. A light-emitting layer is disposed over the first doped semiconductor layer. A second doped semiconductor layer is disposed over the light-emitting layer. The second doped semiconductor layer has a different type of conductivity than the first doped semiconductor layer. A photo-conversion layer is disposed over the second doped semiconductor layer and over side surfaces of the first and second doped semiconductor layers and the light-emitting layer. The photo-conversion layer has an angular profile.
A light emitting diode and a method of the same are provided. The light emitting diode includes a substrate with a first region and a second region, a first semiconductor layer, a light-emitting layer, and a second semiconductor layer. The light emitting diode further includes a plurality of vias, a first metal layer, a second metal layer, and a patterned passivation layer interposed between the second semiconductor layer and the first metal layer. The plurality of vias are located in the first region and penetrate through the second semiconductor layer and the light-emitting layer to expose part of the first semiconductor layer. The first metal layer is located in the first region, and electrically contacted with the first semiconductor layer through the plurality of vias. The second metal layer is located in the second region, and electrically contacted with the second semiconductor layer and electrically insulated from the first metal layer. The patterned passivation layer is configured to electrically isolate the first metal layer from the second semiconductor layer and the light-emitting layer.
A micro-light-emitting diode (micro-LED) includes a first type semiconductor layer, a second type semiconductor, a first dielectric layer, and a first electrode. The second type semiconductor layer is disposed on or above the first type semiconductor layer. The first dielectric layer is disposed on the second type semiconductor layer. The first dielectric layer has at least one opening therein to expose at least one part of the second type semiconductor layer. A first shortest distance between an edge of the opening of the first dielectric layer and a side surface of the second type semiconductor layer is greater than or equal to 1 μm. The first electrode is partially disposed on the first dielectric layer and is electrically coupled with the exposed part of the second type semiconductor layer through the opening of the first dielectric layer.
According to some embodiments, a thermoelectric system includes a plurality of thermoelectric elements forming a thermoelectric array, the thermoelectric elements having a cooling side and a heating side. The system further includes at least one heat exchanger on at least one of the cooling side and the heating side, the heat exchanger being in thermal communication with at least some of the thermoelectric elements. In addition, the system includes a substrate generally positioned between the thermoelectric elements and the heat exchange element. The substrate comprises an electrical isolation layer, a support element configured to receive the heat exchanger and a plurality of interconnecting tabs configured to place adjacent thermoelectric elements in electrical communication with one another.
A semiconductor optical emitting device comprises an at least partially transparent substrate and an active semiconductor structure arranged on a first side of the substrate. A first portion of light generated by the active semiconductor structure is emitted through the substrate from the first side of the substrate to a second side of the substrate along a primary light emission path. The second side of the substrate has a groove formed therein with at least first and second surfaces configured to reflect respective additional portions of the light generated by the active semiconductor structure along respective first and second angled light emission paths. The first and second angled light emission paths may be in opposite directions to one another and substantially perpendicular to the primary light emission path, although numerous other light emission path arrangements are possible.
A GaN based light emitting diode device which emits polarized light or light of various degrees of polarization for use in the creation of optical devices. The die are cut to different shapes, or contain some indicia that are used to represent the configuration of the weak dipole plane and the strong dipole plane. This allows for the more efficient manufacturing of such light emitting diode based optical devices.
Methods for forming a photovoltaic device include adjusting a deposition power for depositing a buffer layer including germanium on a transparent electrode. The deposition power is configured to improve device efficiency. A p-type layer is formed on the buffer layer. An intrinsic layer and an n-type layer are formed over the p-type layer.
Disclosed is a polycrystalline-type silicon solar cell which can be produced at low cost by forming a polycrystalline silicon film having a PN junction in a simple manner. Specifically, an amorphous silicon film produced by sputtering using a dopant-containing silicon target is polycrystallized with plasma, and a PN junction is formed in the amorphous silicon film, thereby producing a polycrystalline silicon film having a PN junction. The polycrystalline silicon film having a PN junction is used as a silicon substrate for a polycrystalline-type silicon solar cell. Also disclosed is a technique for producing a dopant-containing silicon target from a silicon ingot.
A method for fabricating a Cu—In—Ga—Se film solar cell is provided. The method comprises: a) fabricating a molybdenum back electrode on a substrate; b) fabricating a Cu—In—Ga—Se absorbing layer on the back electrode by fractional sputtering in a plurality of sputter chambers; c) performing an annealing; d) fabricating an In2Se3 or ZnS buffer layer on the Cu—In—Ga—Se absorbing layer; e) fabricating an intrinsic zinc oxide high impedance layer on the In2Se3 or ZnS buffer layer; f) fabricating an indium tin oxide film low impedance layer on the intrinsic zinc oxide high impedance layer; g) fabricating an aluminum electrode on the indium tin oxide film low impedance layer.
A method of preparing Cu(In,Ga)SSe2 Cu(In,Ga) (S,Se)2 (CIGSS) absorber layers uses coated semiconductor nanoparticle and nanowire networks. The nanoparticles and nanowires containing one or more elements from group IB and/or IIIA and/or VIA are prepared from metal salts such as metal chloride and acetate at room temperature without inert gas protection. A uniform and non-aggregation CIGS precursor layer is fabricated with the formation of nanoparticle and nanowire networks utilizing ultrasonic spaying technique. High quality CIGSS film is obtained by cleaning the residue salts and carbon agents at an increased temperature and selenizing the pretreated precursor layer.
An oxide superconducting thin film includes a substrate having a single crystal structure, the main face of the substrate and a crystal face of the single crystal structure having an angle therebetween; an intermediate layer formed on the main face of the substrate and having an axis oriented in a direction perpendicular to the crystal face; and a superconducting layer formed on the intermediate layer and containing, as a main component, an oxide superconductor having a c-axis oriented in a direction perpendicular to the surface of the intermediate layer. A superconducting fault current limiter and a method of manufacturing an oxide superconducting thin film are also provided.
Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 μm and, for example, is made from low grade Si.
A method of fabricating a flexible photovoltaic film cell with an iron diffusion barrier layer. The method includes: providing a foil substrate including iron; forming an iron diffusion barrier layer on the foil substrate, where the iron diffusion barrier layer prevents the iron from diffusing; forming an electrode layer on the iron diffusion barrier layer; and forming at least one light absorber layer on the electrode layer. A flexible photovoltaic film cell is also provided, which cell includes: a foil substrate including iron; an iron diffusion barrier layer formed on the foil substrate to prevent the iron from diffusing; an electrode layer formed on the iron diffusion barrier layer; and at least one light absorber layer formed on the electrode layer.
Provided herein are methods, apparatuses and systems for fabricating photovoltaic cells and modules. In certain embodiments, the methods, apparatuses and systems involve coating ferromagnetic substrates with thin film solar cell materials and using magnetic force to constrain, move or otherwise manipulate partially fabricated cells or modules. According to various embodiments, the methods, apparatuses and systems provide magnetically actuated handling throughout a photovoltaic cell or module fabrication process, from forming photovoltaic cell layers on a substrate to packaging the module for transport and installation. The magnetically manipulated processing provides advantages over conventional photovoltaic module processing operations, including fewer mechanical components, greater control over placement and tolerances, and ease of handling. As a result, the methods, apparatuses and systems provide highly efficient, low maintenance photovoltaic module fabrication processes.
A light emitting device includes a first layer that generates light by injection current and forms a waveguide for the light, and an electrode that injects the current into the first layer, wherein the waveguide has a first region, a second region, and a third region, the first region and the second region connect at a first reflection part, the first region and the third region connect at a second reflection part, the second region and the third region extend to an output surface, a longitudinal direction of the first region is parallel to the output surface, and a first light output from the second region at the output surface and a second light output from the third region at the output surface are output in parallel to one another.
A semiconductor light emitting device includes: a light emission structure in which a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer are sequentially stacked; a first electrode formed on the first conductive semiconductor layer; an insulating layer formed on the second conductive semiconductor layer and made of a transparent material; a reflection unit formed on the insulating layer and reflecting light emitted from the active layer; a second electrode formed on the reflection unit; and a transparent electrode formed on the second conductive semiconductor layer, the transparent electrode being in contact with the insulating layer and the second electrode.
A silicon carbide substrate capable of reducing on-resistance and improving yield of semiconductor devices is made of single-crystal silicon carbide, and sulfur atoms are present in one main surface at a ratio of not less than 60×1010 atoms/cm2 and not more than 2000×1010 atoms/cm2, and oxygen atoms are present in the one main surface at a ratio of not less than 3 at % and not more than 30 at %.
A method of forming a semiconductor structure. The semiconductor structure has a semiconductor substrate and an nFET and a pFET disposed upon the substrate. The pFET has a semiconductor SiGe channel region formed upon or within a surface of the semiconductor substrate and a gate dielectric having an oxide layer overlying the channel region and a high-k dielectric layer overlying the oxide layer. A gate electrode overlies the gate dielectric and has a lower metal layer abutting the high-k layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer. The metal layer scavenges oxygen from the substrate (nFET) and SiGe (pFET) interface with the oxide layer resulting in an effective reduction in Tinv and Vt of the pFET, while scaling Tinv and maintaining Vt for the nFET, resulting in the Vt of the pFET becoming closer to the Vt of a similarly constructed nFET with scaled Tinv values.
The semiconductor device includes a first transistor including a first impurity layer containing boron or phosphorus, a first epitaxial layer formed above the first impurity layer, a first gate electrode formed above the first epitaxial layer with a first gate insulating film formed therebetween and first source/drain regions, and a second transistor including a second impurity layer containing boron and carbon, or arsenic or antimony, a second epitaxial layer formed above the second impurity layer, a second gate electrode formed above the second epitaxial layer with a second gate insulating film thinner than the first gate insulating film formed therebetween, and second source/drain regions.
Provided are three-dimensional nonvolatile memory devices and methods of fabricating the same. The memory devices include semiconductor pillars penetrating interlayer insulating layers and conductive layers alternately stacked on a substrate and electrically connected to the substrate and floating gates selectively interposed between the semiconductor pillars and the conductive layers. The floating gates are formed in recesses in the conductive layers.
It is an object to manufacture a highly reliable display device using a thin film transistor having favorable electric characteristics and high reliability as a switching element. In a bottom gate thin film transistor including an amorphous oxide semiconductor, an oxide conductive layer having a crystal region is formed between an oxide semiconductor layer which has been dehydrated or dehydrogenated by heat treatment and each of a source electrode layer and a drain electrode layer which are formed using a metal material. Accordingly, contact resistance between the oxide semiconductor layer and each of the source electrode layer and the drain electrode layer can be reduced; thus, a thin film transistor having favorable electric characteristics and a highly reliable display device using the thin film transistor can be provided.
To provide a transistor which includes an oxide semiconductor and is capable of operating at high speed or a highly reliable semiconductor device including the transistor, a transistor in which an oxide semiconductor layer including a pair of low-resistance regions and a channel formation region is provided over an electrode layer, which is embedded in a base insulating layer and whose upper surface is at least partly exposed from the base insulating layer, and a wiring layer provided above the oxide semiconductor layer is electrically connected to the electrode layer or a part of a low-resistance region of the oxide semiconductor layer, which overlaps with the electrode layer.
A thin film transistor and a fabrication method thereof are provided. A metal patterning layer is formed on the metal oxide semiconductor layer of a thin film transistor to shield the metal oxide semiconductor layer from the water, oxygen and light in the environment.
A field effect transistor (FET) having one or more fins provides an extended current path as compared to conventional finFETs. A raised source terminal is disposed on a fin adjacent to a sidewall spacer of a gate structure. The drain terminal and a first portion of the gate structure overlie a first well of a first conductivity type. A raised drain terminal is disposed such that it is spaced apart from the gate structure sidewalls. In some embodiments the drain terminal is disposed on a second, separate fin. the drain terminal and a second portion of the gate structure overlie a second well of a second conductivity type.
In a cell region of a first major surface of a semiconductor substrate of a first conductivity type, a first well of a second conductivity type is in an upper surface. A diffusion region of a first conductivity type is in the upper surface in the first well. A first gate insulating film is on the first well, and a first gate electrode on the first gate insulating film. A second well of a second conductivity type is in the upper surface of the first major surface on a peripheral portion of the cell region. A second gate insulating film is on the second well, and a thick field oxide film is on the peripheral side than the second gate insulating film. A second gate electrode is sequentially on the second gate insulating film and the field oxide film and electrically connected to the first gate electrode. A first electrode is connected to the first, second well and the diffusion region. A second electrode is connected on a second major surface of the semiconductor substrate. A gate wiring is on the field oxide film, going around a periphery of the cell region, and electrically connected to the second gate electrode. The gate wiring is a silicide of a constituting substance of the second gate electrode.
Embodiments of the invention provide processes to selectively form a cobalt layer on a copper surface over exposed dielectric surfaces. Embodiments described herein control selectivity of deposition by preventing damage to the dielectric surface, repairing damage to the dielectric surface, such as damage which can occur during the cobalt deposition process, and controlling deposition parameters for the cobalt layer.
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
A method of manufacturing a semiconductor device includes forming a trench that includes a needle defect, depositing a high density plasma oxide over the trench including the needle defect, removing the part of the high density oxide and the liner oxide over the needle defect by applying an oxide etch, and after the step of applying the oxide etch, etching back the needle defect by applying a polysilicon etch.
A method of removing an epoxy band from an electrostatic chuck includes securing the electrostatic chuck in a servicing fixture, applying a thermal source to the epoxy band to breakdown a plurality of adhesive bonds securing the epoxy band to the electrostatic chuck, forming a hole in the epoxy band and pulling the epoxy band from the electrostatic chuck. A system for removing an epoxy band from an electrostatic chuck is also described.
A stepped elastic positioning structure for a semiconductor carrier includes a plurality of transversely and longitudinally arranged walls and a plurality of recesses defined by the walls. On the walls of the semiconductor carrier is formed a plurality of L-shaped stop blocks, each of the stop blocks has an elastically deformable free end which is capable of elastically restricting the semiconductor in the recess, and improving the easiness for putting in or taking out the semiconductor. The end of each of the stop blocks is a stepped structure, plus the elastic deformability of the stop blocks, which makes the recess capable of holding different sized semiconductors.
A liquid processing apparatus includes a substrate retaining part that retains a substrate in a horizontal position and rotates the substrate, first and second processing liquid supply nozzles disposed to supply first and second processing liquids, respectively, to the substrate, liquid receiving cups disposed to appropriately position an upper end thereof above the substrate and to receive the first or second processing liquid that has been supplied to the substrate, a first tubular outer cup including an upper opening and disposed around the liquid receiving cup, vertically movable between a lifted position to which the first tubular outer cup is lifted so that its upper end is positioned above the liquid receiving cup, and a lowered position lower than the lifted position, and a second tubular outer cup disposed externally to the first tubular outer cup. The tubular outer cup is selected according to the kind of processing liquid.
An object is to manufacture a semiconductor device including an oxide semiconductor film, which has stable electric characteristics and high reliability. A crystalline oxide semiconductor film is formed, without performing a plurality of steps, as follows: by utilizing a difference in atomic weight of plural kinds of atoms included in an oxide semiconductor target, zinc with low atomic weight is preferentially deposited on an oxide insulating film to form a seed crystal including zinc; and tin, indium, or the like with high atomic weight is deposited on the seed crystal while causing crystal growth. Further, a crystalline oxide semiconductor film is formed by causing crystal growth using a seed crystal with a hexagonal crystal structure including zinc as a nucleus, whereby a single crystal oxide semiconductor film or a substantially single crystal oxide semiconductor film is formed.
A semiconductor device includes a first semiconductor layer, a second semiconductor layer and a third semiconductor layer. The second semiconductor layer is formed over the first semiconductor layer and includes a recess in a vertical direction towards the first semiconductor layer. The third semiconductor layer is formed in the recess of the second semiconductor layer and includes a seam or void in the recess.
An apparatus includes a substrate having a strained channel region, a dielectric layer over the channel region, first and second conductive layers over the dielectric layer having a characteristic with a first value, and a strain-inducing conductive layer between the conductive layers having the characteristic with a second value different from the first value. A different aspect involves an apparatus that includes a substrate, first and second projections extending from the substrate, the first projection having a tensile-strained first channel region and the second projection having a compression-strained second channel region, and first and second gate structures engaging the first and second projections, respectively. The first gate structure includes a dielectric layer, first and second conductive layers over the dielectric layer, and a strain-inducing conductive layer between the conductive layers. The second gate structure includes a high-k dielectric layer adjacent the second channel region, and a metal layer.
A semiconductor component includes a substrate, a molded package, and a semiconductor chip. The semiconductor chip is suspended on the molding compound above the substrate in the molded package in such a way that a cavity mechanically decouples the semiconductor chip from the substrate. The cavity extends along an underside facing the substrate.
A semiconductor device has a flipchip semiconductor die mounted to a first substrate using a plurality of first bumps. An opening or plurality of openings is formed in the first substrate in a location central to placement of the flipchip semiconductor die to the first substrate. A plurality of semiconductor die is mounted to a second substrate. The semiconductor die are electrically connected with bond wires. An encapsulant is over the plurality of semiconductor die and second substrate. The second substrate is mounted to the first substrate with a plurality of second bumps. An underfill material is dispensed through the opening in the first substrate between the flipchip semiconductor die and first substrate. The dispensing of the underfill material is discontinued as the underfill material approaches or reaches a perimeter of the flipchip semiconductor die to reduce bleeding of the underfill material. The underfill material is cured.
A dielectric stack and method of depositing the stack to a substrate using a single step deposition process. The dielectric stack includes a dense layer and a porous layer of the same elemental compound with different compositional atomic percentage, density, and porosity. The stack enhances mechanical modulus strength and enhances oxidation and copper diffusion barrier properties. The dielectric stack has inorganic or hybrid inorganic-organic random three-dimensional covalent bonding throughout the network, which contain different regions of different chemical compositions such as a cap component adjacent to a low-k component of the same type of material but with higher porosity.
The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
In an embodiment of the present invention, a semiconductor device comprises a non-fuse area that has a non-fuse via, a non-fuse line, and a non-fuse dielectric stack. The semiconductor device further comprises a fuse area that has a fuse via, a fuse line, and a fuse dielectric stack. The fuse dielectric stack comprises at least a first dielectric and a second dielectric material. The fuse via is at least partially embedded in the first dielectric material and the fuse line is embedded in the second dielectric material.
An organic light emitting diode display includes a substrate including a display region displaying an image and a peripheral region surrounding the display region, a plurality of pad wires formed in the peripheral region of the substrate, and a plurality of bumps formed between the plurality of pad wires. The organic light emitting diode display blocks or relieves impact which is generated when a temporary upper protective film is half-cut and applied to a plurality of pad wires or an insulating layer by forming a plurality of bumps between the plurality of pad wires, thus preventing a damage to the pad wires or the insulating layer.
A coil inductor and buck voltage regulator incorporating the coil inductor are provided which can be fabricated on a microelectronic element such as a semiconductor chip, or on an interconnection element such as a semiconductor, glass or ceramic interposer element. When energized, the coil inductor has magnetic flux extending in a direction parallel to first and second opposed surfaces of the microelectronic or interconnection element, and whose peak magnetic flux is disposed between the first and second surfaces. In one example, the coil inductor can be formed by first conductive lines extending along the first surface of the microelectronic or interconnection element, second conductive lines extending along the second surface of the microelectronic or interconnection element, and a plurality of conductive vias, e.g., through silicon vias, extending in direction of a thickness of the microelectronic or interconnection element. A method of making the coil inductor is also provided.
A system and method of manufacture of an integrated circuit packaging system includes: a leadframe with a conductive layer on a leadframe active side for protecting a lead pad and a routable trace, the leadframe having an overmold recess at a leadframe inactive side; an overmold layer in the overmold recess, the overmold layer exposed between the lead pad and the routable trace for forming the lead pad and routable trace; an encapsulation directly on the conductive layer, the lead pad, the routable trace, and the overmold layer; and an external interconnect at the leadframe inactive side.
An electronic device comprises a display stack that includes an active matrix display operable using thin film transistor (TFT) circuitry. The display stack also includes a light guide layer capable of illuminating the active matrix display. A glass substrate of the active matrix display has a first side and a second side opposite the first side, wherein the glass substrate includes the TFT circuitry disposed on the first side and one or more through-glass vias that electronically connect portions of the TFT circuitry disposed on the first side of the glass substrate to one or more electronic connectors or electronic circuitry disposed on the second side of the glass substrate.
A non-linear element (e.g., a diode) with small reverse saturation current is provided. A non-linear element includes a first electrode provided over a substrate, an oxide semiconductor film provided on and in contact with the first electrode, a second electrode provided on and in contact with the oxide semiconductor film, a gate insulating film covering the first electrode, the oxide semiconductor film, and the second electrode, and a third electrode provided in contact with the gate insulating film and adjacent to a side surface of the oxide semiconductor film with the gate insulating film interposed therebetween or a third electrode provided in contact with the gate insulating film and surrounding the second electrode. The third electrode is connected to the first electrode or the second electrode.
There is provided a semiconductor device. The semiconductor device includes a plurality of trench transistors in an active region, and an interconnection disposed in an edge region, the interconnection configured to transfer a voltage to the plurality of trench transistors, in which the edge region comprises a substrate, a first insulating layer, a first electrode, a second insulating layer, and a second electrode, disposed in that order.
In a display device having driving circuits formed on the same substrate where pixels are formed, the lateral frame area of the display device is reduced. A gate signal line driving circuit is placed in parallel with a source signal line driving circuit, so that no driving circuits are provided in at least two opposing directions out of four directions with respect to a pixel region. With the above-described structure, the area the gate signal line driving circuit occupies in prior art is removed to reduce the width (side to side) of the display device. Therefore a display device that has a small frame area in the lateral direction can be provided.
A display device includes a first insulation layer on a substrate, gate wires on the first insulation layer, the gate wires extending in a first direction, a second insulation layer on the gate wires, data wires on the second insulation layer, the data wires extending in a second direction crossing the first direction, pixels at intersection regions of gate wires and data wires, respectively, the pixels being connected to respective gate wires and data wires, and data leading diodes having an island form and connected to the data wires, the data leading diodes being configured to induce breakage of the first insulation layer when external static electricity passes through the data wires.
A metal oxide semiconductor field effect transistor (MOSFET) includes a semiconductor substrate and an interlayer dielectric (ILD) over the semiconductor substrate. A gate structure is formed within the ILD and disposed on the semiconductor substrate, wherein the gate structure includes a high-k dielectric material layer and a metal gate stack. One or more portions of a protection layer are formed over the gate stack, and a contact etch stop layer is formed over the ILD and over the one or more portions of the protection layer. The metal gate stack includes aluminum and the protection layer includes aluminum oxide.
Methods and structures provide an electrostatic discharge (ESD) indicator including an electric field sensitive material configured to undergo a specific color change in response to an electric field. An exposure of the structure to an ESD can be visually determined via the specific color change of the ESD indicator.
Techniques for fabricating self-aligned contacts in III-V FET devices are provided. In one aspect, a method for fabricating a self-aligned contact to III-V materials includes the following steps. At least one metal is deposited on a surface of the III-V material. The at least one metal is reacted with an upper portion of the III-V material to form a metal-III-V alloy layer which is the self-aligned contact. An etch is used to remove any unreacted portions of the at least one metal. At least one impurity is implanted into the metal-III-V alloy layer. The at least one impurity implanted into the metal-III-V alloy layer is diffused to an interface between the metal-III-V alloy layer and the III-V material thereunder to reduce a contact resistance of the self-aligned contact.
According to one embodiment, a nitride semiconductor device includes semiconductor stacked layers provided on a substrate and including a nitride semiconductor; a source electrode and a drain electrode provided on the layers and being in contact with the layers; and a gate electrode provided on the layers and provided between the source electrode and the drain electrode. The layers have a first barrier layer, a second barrier layer, and a carrier running layer interposed between the first barrier layer and the second barrier layer. The second barrier layer and the carrier running layer are removed in a region in which the source electrode on the layers is provided. A part of the source electrode is in contact with the first barrier layer. And another part of the source electrode other than the part of the source electrode is in contact with the second barrier layer.
Devices and systems comprising driver circuits are disclosed for MOSFET driven, normally-on gallium nitride (GaN) power transistors. Preferably, a low power, high speed CMOS driver circuit with an integrated low voltage, lateral MOSFET driver is series coupled, in a hybrid cascode arrangement to a high voltage GaN HEMT, for improved control of noise and voltage transients. Co-packaging of a GaN transistor die and a CMOS driver die using island topology contacts, through substrate vias, and a flip-chip, stacked configuration provides interconnections with low inductance and resistance, and provides effective thermal management. Co-packaging of a CMOS input interface circuit with the CMOS driver and GaN transistor allows for a compact, integrated CMOS driver with enhanced functionality including shut-down and start-up conditioning for safer operation, particularly for high voltage and high current switching. Preferred embodiments also provide isolated, self-powered, high speed driver devices, with reduced input losses.
A silicon carbide semiconductor device includes: a semiconductor substrate made of silicon carbide single crystal and having a principal surface and a backside; and an ohmic electrode contacting one of the principal surface and the backside of the semiconductor substrate in an ohmic manner. A boundary between the ohmic electrode and the one of the principal surface and the backside of the semiconductor substrate is terminated with an element, which has a Pauling electronegativity larger than silicon and a binding energy with silicon larger than a binding energy of Si—H.
An imaging system may include an image sensor having backside illuminated near infrared image sensor pixels. Each pixel may be formed in a graded epitaxial substrate layer such as a graded n-type epitaxial layer. Each pixel may be separated from an adjacent pixel by an isolation trench formed in the graded epitaxial layer. The isolation trench may be a continuous isolation trench or may be formed from a combined front side isolation trench and backside isolation trench that are separated by a wall structure. A buried front side reflector may be provided that reflects light such as infrared light that has passed through a pixel back into the pixel, thereby effectively doubling the silicon absorption depth of the pixels.
A solid-state imaging apparatus includes: a solid-state imaging device photoelectrically converting light taken by a lens; and a light shielding member shielding part of light incident on the solid-state imaging device from the lens, wherein an angle made between an edge surface of the light shielding member and an optical axis direction of the lens is larger than an incident angle of light to be incident on an edge portion of the light shielding member.
A semiconductor device has a semiconductor die with a first conductive layer formed over the die. A first insulating layer is formed over the die with a first opening in the first insulating layer disposed over the first conductive layer. A second conductive layer is formed over the first insulating layer and into the first opening over the first conductive layer. An interconnect structure is constructed by forming a second insulating layer over the first insulating layer with a second opening having a width less than the first opening and depositing a conductive material into the second opening. The interconnect structure can be a conductive pillar or conductive pad. The interconnect structure has a width less than a width of the first opening. The second conductive layer over the first insulating layer outside the first opening is removed while leaving the second conductive layer under the interconnect structure.
A display device structure includes a substrate having an active region and an electrostatic protection circuit region. The first metal layer, the first insulation layer, and an amorphous silicon layer are sequentially disposed on the substrate; the first opening passes through the first insulation layer for exposing part of the first metal layer. The second metal layer, disposed on the first insulation layer or the amorphous silicon layer, fills the first opening to contact with the first metal layer; the second insulation layer and the flat layer are disposed on the second metal layer, in which the region of the flat layer overlaps the electrostatic protection circuit region. The second opening passes through the second insulation layer and the flat layer for exposing the second metal layer, in which the third metal layer fills the second opening to contact with the second metal layer.
The embodiment of the present invention discloses a touch unit, an array substrate, a liquid crystal cell substrate and a touch display device. The touch unit comprise a plurality of touch sub-units, each of which comprising a sensor thin film transistor (TFT), an sensing capacitor, a reading induction line and a memory capacitor, the capacitance of the memory capacitor being less than that of the sensing capacitor. Due to the memory capacitor is added to stabilize the voltage of the sensor TFT, the interference of noise upon the voltage of the sensor TFT is reduced, thus effectively improving the signal stability of the touch unit.
A 3D non-volatile memory device including a substrate that includes a first region and a second region; a pipe channel film that is formed on the substrate in the first region; a pipe gate that substantially encloses the pipe channel film; and a driving gate that is formed on the substrate in the second region and has at least one dummy pattern.
A FinFET device includes a plurality of fin structures positioned in and above a semiconducting substrate, wherein each of the fin structures includes a first portion of the semiconducting substrate, an undoped layer of semiconducting material positioned above the first portion of the semiconducting substrate, and a dopant-containing layer of semiconducting material positioned between the first portion of the semiconducting substrate and the undoped semiconducting material, wherein the dopant material is adapted to retard diffusion of one of boron and phosphorous. A gate electrode is positioned around at least the undoped layer of semiconducting material of each of the plurality of fin structures, wherein a height level of a bottom surface of the gate electrode is positioned approximately level with or lower than a height level of a bottom of the undoped layer of semiconducting material of each of the plurality of fin structures.
A dynamic memory structure includes a strip semiconductor material disposed on a substrate, a gate standing astride the strip semiconductor material and dividing the strip semiconductor material into a source terminal, a drain terminal and a channel region wherein a source width of the source terminal is larger than or equal to a channel width, a dielectric layer sandwiched between the gate and the strip semiconductor material, and a capacitor unit disposed on the substrate and including the source terminal serving as a lower electrode.
A memory cell with a recessed gate includes a semiconductor substrate, a shallow trench isolation, an active region, a gate electrode, a halogen-doped dielectric layer and at least a capacitor. The shallow trench isolation is disposed in the semiconductor substrate in order to define the active region. A source region and a drain region are respectively disposed on each end of the active region along a first direction. A gate trench is formed in the semiconductor substrate between the source region and the drain region, wherein the gate trench includes a sidewall portion and a curved-bottom surface. The curved-bottom surface has a convex profile when viewed from a cross-sectional view taken along a second direction perpendicular to the first direction. The gate electrode is disposed in the gate trench and the halogen-doped dielectric layer is disposed between the gate electrode and the semiconductor substrate.
A device with complementary non-inverted N-channel and inverted P-channel field effect transistors comprising a layer grown epitaxially on a substrate, a barrier layer, a two-dimensional electron gas in the first III-Nitride epitaxial layer, a second III-Nitride material layer, and a two-dimensional hole gas in the second III-Nitride epitaxial layer. A device with complementary inverted N-channel and non-inverted P-channel field effect transistors comprising a nitrogen-polar III-Nitride layer grown epitaxially, a barrier material layer, a two-dimensional hole gas, and a two-dimensional electron gas in the second III-Nitride epitaxial layer. A method of making complementary inverted P-channel and non-inverted N-channel III-Nitride field effect transistors. A method of making a complementary non-inverted P-channel field effect transistor and inverted N-channel III-Nitride field effect transistor on a substrate.
Aspects of the present disclosure describe a termination structure for a power MOSFET device. A termination trench may be formed into a semiconductor material and may encircle an active area of the MOSFET. The termination trench may comprise a first and second portion of conductive material. The first and second portions of conductive material are electrically isolated from each other. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
An epitaxial structure includes a patterned epitaxial growth surface defining a plurality of grooves. A graphene layer covers the patterned epitaxial growth surface. An epitaxial layer is formed on the patterned epitaxial growth surface, wherein a first part of the graphene layer is sandwiched between the substrate, and a second part of the graphene layer is embedded into the epitaxial layer.
A nanowire tunnel device includes a nanowire suspended above a semiconductor substrate by a first pad region and a second pad region, the nanowire having a channel portion surrounded by a gate structure disposed circumferentially around the nanowire, an n-type doped region including a first portion of the nanowire adjacent to the channel portion, and a p-type doped region including a second portion of the nanowire adjacent to the channel portion.
A switching component includes a control element and an integrated circuit. The integrated circuit includes a first transistor element and a second transistor element electrically connected in parallel to the first transistor element. The first transistor element includes first transistors, gate electrodes of which are disposed in first trenches in a first main surface of a semiconductor substrate. The second transistor element includes second transistors, gate electrodes of which are disposed in second trenches in the first main surface, and a second gate conductive line in contact with the gate electrodes in the second trenches. The control element is configured to control a potential applied to the second gate conductive line.
A method and a semiconductor device for incorporating defect mitigation structures are provided. The semiconductor device comprises a substrate, a defect mitigation structure comprising a combination of layers of doped or undoped group IV alloys and metal or non-metal nitrides disposed over the substrate, and a device active layer disposed over the defect mitigation structure. The defect mitigation structure is fabricated by depositing one or more defect mitigation layers comprising a substrate nucleation layer disposed over the substrate, a substrate intermediate layer disposed over the substrate nucleation layer, a substrate top layer disposed over the substrate intermediate layer, a device nucleation layer disposed over the substrate top layer, a device intermediate layer disposed over the device nucleation layer, and a device top layer disposed over the device intermediate layer. The substrate intermediate layer and the device intermediate layer comprise a distribution in their compositions along a thickness coordinate.
A semiconductor device includes a substrate; a device area of the substrate, the device area including a plurality of device unit cells; and a dummy cell array arranged around the device area. The dummy cell array includes a plurality of dummy unit cells repeatedly arranged in a first direction and a second direction perpendicular to the first direction, each of the dummy cell unit having a structure corresponding to a device unit cell. The device unit cell includes at least a first transistor in the device area. The structure of the dummy unit cell includes an active area and a gate line. For each dummy unit cell, the active area and the gate line extend beyond a cell boundary that defines the dummy unit cell.
A flash lamp with a gas fill for suppressing self-starting includes an elongate discharge tube having two electrodes arranged in the discharge tube at opposite ends of the discharge tube. A starting electrode for applying a starting voltage is arranged outside the discharge tube, and the discharge tube has a length of at least 1000 mm and is filled with a gas fill. In order to suppress undesired self-starting, the discharge tube is filled with a gas mixture which contains at least one inert gas and at least one gas suppressing self-starting.
A portable mass spectrometer that is carried to a sampling site to conduct analysis incorporates measures against erroneous operation. To prevent erroneous operation, when a measurement sample cannot be accurately analyzed because of contamination in the measurement sample, a criterion for aborting the sample measurement is provided and mass spectrometer control maintenance is performed. When urine is measured, the mass spectrometer detects the substances contained in the urine and automatically determines whether the sample is urine. The mass spectrometer then automatically selects an analysis condition specific to urine samples to make a measurement. Also with respect to sweat and saliva, the mass spectrometer similarly selects a specific analysis condition. The mass spectrometer automatically determines whether a sample, which is an internal standard sample contained in a sample case, is being measured on a measurement-by-measurement basis and automatically displays any error, interrupts the measurement, or carries out other processing.
An apparatus for an etching process includes a chamber, a plasma generator disposed in the chamber, a stacked structure disposed in the chamber to support a substrate thereon and including an electrode plate and an insulation coating layer on the electrode plate, electrode rods inserted into through holes of the stacked structure to penetrate through the stacked structure, directly contacting the substrate and spaced apart from sidewalls of the through holes of the stacked structure, at least one DC pulse generator generating a DC pulse to the electrode plate and the electrode rods, first connection lines connecting the DC pulse generator to the electrode rods, and at least one second connection line connecting the DC pulse generator to a lower portion of the electrode plate.
A distributed power arrangement to provide local power delivery in a plasma processing system during substrate processing is provided. The distributed power arrangement includes a set of direct current (DC) power supply units. The distributed power arrangement also includes a plurality of power generators, which is configured to receive power from the set of DC power supply units. Each power generator of the plurality of power generators is coupled to a set of electrical elements, thereby enabling the each power generator of the plurality of power generators to control the local power delivery.
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
An inspection system includes a primary optical system configured to irradiate a charged particle or an electromagnetic wave as a beam, a movable unit configured to hold an inspection target and move the target through a position where the beam is irradiated, and a TDI sensor configured to integrate an amount of secondary charged particles in a predetermined direction to sequentially transfer the integrated amount. The secondary charged particles are obtained by irradiating the beam onto the target while moving the movable unit in the predetermined direction. The inspection system further includes a prevention module configured to prevent an arrival of the beam at the target side or an arrival of the secondary charged particles at the TDI sensor during a time period from one transfer to the following transfer after the elapse of a predetermined length of time from the one transfer and until the following transfer.
Provided is a charged particle beam apparatus or charged particle microscope capable of observing an observation target sample in an air atmosphere or a gas environment without making significant changes to the configuration of a conventional high vacuum charged particle microscope. In a charged particle beam apparatus configured such that a thin film (10) is used to separate a vacuum environment and an air atmosphere (or a gas environment), an attachment (121) capable of holding the thin film (10) and whose interior can be maintained at an air atmosphere or a gas environment is inserted into a vacuum chamber (7) of a high vacuum charged particle microscope. The attachment (121) is vacuum-sealed and fixed to a vacuum partition of the vacuum sample chamber. Image quality is further improved by replacing the atmosphere in the attachment with helium or a light-elemental gas that has a lower mass than atmospheric gases such as nitrogen or water vapor.
An apparatus of plural charged particle beams with multi-axis magnetic lens is provided to perform multi-functions of observing a specimen surface, such as high-throughput inspection and high-resolution review of interested features thereof and charge-up control for enhancing image contrast and image resolution. In the apparatus, two or more sub-columns are formed and each of the sub-columns performs one of the multi-functions. Basically the sub-columns take normal illumination to get high image resolutions, but one or more may take oblique illuminations to get high image contrasts.
This invention provides for the efficient positioning of a sample to be analyzed by using either magnetic or electro-mechanical fields to retain the sample in the ionization region. In an embodiment of the present invention, the sample is contacted with a sampler device, which is inserted into a chamber and accurately positioned using electro-mechanical devices. In an embodiment of the invention, the influence of an electro-mechanical field on the sampler device enables the sample to be positioned in the ionization region to be contacted by particles that result in ionization of the sample whereby rendering the resulting ions available for analysis.
A plasma torch includes an electrically conductive cylindrical vessel, a hollow electrode, a first insulator, a concentric reducer, a tangential inlet, an electrode housing and a first electrode. The hollow electrode is aligned with a longitudinal axis of the electrically conductive cylindrical vessel and extends into the electrically conductive cylindrical vessel. The first insulator seals the electrically conductive cylindrical vessel around the hollow electrode. A non-conductive granular material is disposed between the electrically conductive cylindrical vessel and the hollow electrode. The concentric reducer is disposed within the electrically conductive cylindrical vessel and extends from the electrically conductive cylindrical vessel to the hollow electrode. The electrode housing is connected to the electrically conductive cylindrical vessel. The first electrode is aligned with the longitudinal axis of the electrically conductive cylindrical vessel and extends through the electrode housing into the electrically conductive cylindrical vessel.
The present invention relates to a method of extinguishing an electric arc, which occurs in low or high voltage switchgears, by pulse discharge. The electric arc is cut like a “fuse” by connecting a condenser (201) to both ends of the electric arc at the moment when it occurs and discharging the condenser (201) through the electric arc. The condenser is charged using a resistor (202) and a diode (203), and its discharge is adjusted by some auxiliary contacts.
A transfer switch mountable in a standard electrical panel connects either a utility supply or an auxiliary supply to an electrical system. An internal mechanical interlock prevents both the utility supply and the auxiliary supply from simultaneously being connected to the system. The transfer switch may utilize either a rocker-style or a blade style switch. A light-emitting diode provides an indication of whether the utility supply is connected to and a voltage is present at the utility supply terminal. A power meter provides an indication of the magnitude of power drawn from the auxiliary supply when the auxiliary supply is connected to the load.
Boron-comprising perylene monoimides and a process for producing the boron-comprising perylene monoimides are provided. The boron-comprising perylene monoimides are useful as building blocks for producing perylene monoimide derivatives and monoimide derivatives. The boron-comprising perylene monoimides are also useful for preparing dye-sensitized solar cells.
A ceramic electronic component with metal terminals comprising a chip component formed with terminal electrodes at both ends, and a pair of metal terminals comprising a flat plate portion having a flat plate portion facing face provided so that it faces an end face of said chip component and connected to said terminal electrodes via a joining portion , and a mounting portion connected to one end portion of said flat plate portion and extending approximately perpendicular to said flat plate portion, wherein said mounting portion has a mounting portion bottom face forming an angle of approximately 270 degrees with respect to said flat plate portion, and a mounting portion upper face forming an angle of approximately 90 degrees with respect to said flat plate portion, and a solder adhering prevention area having lower wettability than said mounting portion bottom face is formed.
A method of producing carbon macro-molecular structures includes dissolving a graphitic material in a solvent to provide a suspension of carbon-based macro-molecular structures in the solvent, and obtaining a plurality of the carbon macro-molecular structures from the suspension. The plurality of carbon macro-molecular structures obtained from the suspension each consists essentially of carbon. A material according to some embodiments of the current invention is produced according to the method of producing carbon macro-molecular structures. An electrical, electronic or electro-optic device includes material produced according to the methods of the current invention. A composite material according to some embodiments of the current invention has carbon macro-molecular structures produced according to methods of producing carbon macro-molecular structures according to some embodiments of the current invention. A hydrogen storage device according to some embodiments of the current invention has carbon macro-molecular structures produced according to methods of producing carbon macro-molecular structures according to some embodiments of the current invention. An electrode according to some embodiments of the current invention has carbon macro-molecular structures produced according to methods of producing carbon macro-molecular structures according to some embodiments of the current invention.
A wet electrolytic capacitor is provided. The capacitor contains an anode comprising an anodically oxidized pellet formed from a pressed and sintered powder, a cathode that contains a metal substrate coated with a conductive polymer, and a working electrolyte in communication with the anode and the cathode. The working electrolyte is in the form of a gel and comprises an ammonium salt of an organic acid, inorganic oxide particles, an acid, and a solvent system that comprises water. The working electrolyte has a pH value of from about 5.0 to about 8.0.
In a ceramic electronic component, a section of a first extraction section located closer to a first end surface defines a first thick section. The first thick section is at least about 1.5 times as thick as a first central section of a first opposed section in a direction. The length of the first thick section is within the range of about ¼ to about ¾ of a distance from a tip of a second opposed section closer to the first end surface, to the first end surface in the direction.
Disclosed herein are various embodiments of coil transducers configured to provide high voltage isolation and high voltage breakdown performance characteristics in small packages. A coil transducer is provided through and across which data or power signals may be transmitted and received by primary and secondary coils disposed on opposing sides thereof without high voltage breakdowns occurring therebetween. A central core layer separates the transmitting and receiving coils, and has no vias disposed therethrough. At least portions of the coil transducer are formed of an electrically insulating, non-metallic, non-semiconductor, low dielectric loss material.
A shielded electrical ribbon cable is disclosed. The cable includes a plurality of conductor sets including a first conductor set adjacent a second conductor set. Each conductor set includes one or more insulated conductors. The cable further includes first and second shielding films disposed on opposite sides of the cable forming cover portions and pinched portions, where the cover portions substantially surround each conductor set, and the pinched portions form pinched portions of the cable on each side of each conductor set. The insulated conductors in a conductor set are not in a same geometrical plane. A first insulated conductor of the first conductor set is nearest the second conductor set. A second insulated conductor of the second conductor set is nearest the first conductor set. The first and second insulated conductors have a center-to-center spacing S. The first insulated conductor has an outer dimension D1 and the second insulated conductor has an outer dimension D2. S/Dmin is in a range from 1.7 to 2, where Dmin is the lesser of D1 and D2.
Disclosed is a cathode active material (and secondary battery comprising the same) comprising a combination of a lithium manganese composite oxide having a spinel structure represented by the following Formula 1 with a lithium nickel composite oxide represented by the following Formula 2, the cathode active material having a broad potential region at 3.0 to 4.8V upon initial charge: LixMyMn2−yO4−zAz (1) wherein 0.9≦x≦1.2, 0
An infrared radiation element includes: a first insulating layer having heat insulating properties and electrically insulating properties; a heating element layer provided on the first insulating layer and configured to radiate infrared radiation when energized; and a second insulating layer provided on an opposite side of the heating element layer from the first insulating layer and having heat insulating properties and electrically insulating properties. The second insulating layer transmits the infrared radiation radiated from the heating element layer. The heating element layer has such a sheet resistance that impedance of the heating element layer matches impedance of space which is in contact with the second insulating layer.
A method of stabilizing a fuel containing a reactive sodium metal may include puncturing a cladding of a fuel pin enclosing the fuel containing the reactive sodium metal to form an injection passage and an extraction passage. A reaction gas may be injected into the fuel pin through the injection passage to react with the reactive sodium metal to form a stable sodium compound. A ratio of a product gas and a remaining quantity of the reaction gas exiting the fuel pin through the extraction passage is subsequently measured, wherein the product gas is a reaction product of the reaction gas and the reactive sodium metal within the fuel pin. Once the measured ratio indicates that a reaction between the reaction gas and the reactive sodium metal is complete, the injection passage and the extraction passage are sealed so as to confine the stable sodium compound within the fuel pin.
A method for collecting volatile radioactive substances. The method includes irradiating a volatile radioactive substance on or under a contaminated material surface using microwave radiation and vaporizing the volatile radioactive substance, wherein the volatile radioactive substance comprises at least one of cesium and iodine. The method further includes recovering the vaporized volatile radioactive substance from the contaminated material. The method may be accomplished with and/or without physically collecting or isolating the contaminated material.
An incremental signal is defined that includes at least one of a duration and a peak voltage that is less than a respective minimum programming time or minimum programming voltage step of a resistive memory element. A characterization procedure is repeatedly performed that at least involves: applying a signal to the memory element, the signal being incremented by the incremental signal during each subsequent application; measuring a first resistance of the memory element in response to the signal; and c) measuring a second resistance of the memory element after a time period has elapsed from the measurement of the first resistance with no programming signal applied. In response to the first and second resistance measurements of the characterization procedure, a characterization parameter of the memory element is formed.
A memory cell array includes a bit line, a complementary bit line, a first operation voltage supply circuit, a second operation voltage supply circuit, a first memory cell and a second memory cell. The first operation voltage supply circuit is electrically coupled to the bit line and the complementary bit line and used for supplying a first operation voltage. The second operation voltage supply circuit is electrically coupled to the bit line and the complementary bit line and used for supplying a second operation voltage. The first memory cell is electrically coupled to the bit line and the complementary bit line and used for receiving the first operation voltage. The second memory cell is electrically coupled to the bit line and the complementary bit line and used for receiving the second operation voltage. The first and second memory cells are located in a same column in the memory cell array.
A memory device includes a level shifter which includes a first input terminal, a second input terminal, a first output terminal configured to output a first signal, and a second output terminal configured to output an inverted signal of the first signal, a first buffer, a second buffer, a first node, and a second node. The first node, where an output terminal of the first buffer and the first input terminal of the level shifter are connected, is configured to hold a first data. The second node, where an output terminal of the second buffer and the second input terminal of the level shifter are connected, is configured to hold a second data.
Methods of operating an apparatus such as a computing system and/or memory device for memory endurance are provided. One example method can include receiving m digits of data having a first quantity of digits represented by a first data state that is more detrimental to memory cell wear than a second data state. The m digits of data are encoded into n digits of data having a second quantity of digits represented by the first data state. The value n is greater than the value m. The second quantity is less than or equal to the first quantity. The n digits of data are stored in an apparatus having memory cells.
The present invention is directed to a method for reading and writing an STT-MRAM multi-level cell (MLC), which includes a plurality of memory elements coupled in series. The method detects the resistance states of individual memory elements in an MLC by sequentially writing at least one of the plurality of memory element to the low resistance state in order of ascending write current threshold. If a written element switches the resistance state thereof after the write step, then the written element was in the high resistance state prior to the write step. Otherwise, the written element was in the low resistance state prior to the write step. The switching of the resistance state can be ascertained by comparing the resistance or voltage values of the plurality of memory elements before and after writing each of the plurality of memory elements in accordance with the embodiments of the present invention.
A memory cell comprises a magnetic tunnel junction (MTJ) structure that includes a free layer coupled to a bit line and a pinned layer. A magnetic moment of the free layer is substantially parallel to a magnetic moment of the pinned layer in a first state and substantially antiparallel to the magnetic moment of the pinned layer in a second state. The pinned layer has a physical dimension to produce an offset magnetic field corresponding to a first switching current of the MTJ structure to enable switching between the first state and the second state when a first voltage is applied from the bit line to a source line coupled to an access transistor and a second switching current to enable switching between the second state and the first state when the first voltage is applied from the source line to the bit line.
A non-volatile semiconductor memory device according to one embodiment includes: a cell array; and a data writing unit that repeatedly executes a write loop including a programming operation of applying a program voltage to a selected word line and a passage voltage to non-selected word lines during writing of data, in which, when a difference between the passage voltage used in an n-th write loop and the passage voltage used in an n+1-th write loop is expressed as ΔVn and when a condition of L
A memory controller and a method of calibrating the memory controller are provided. Input circuitry in the memory controller receives a differential pair of data strobe signals from a memory and generates a logical data strobe signal in dependence on a voltage difference between the differential pair of data strobe signals. Hysteresis circuitry, when active, increases by a predetermined offset a threshold voltage difference at which the input circuitry changes a logical state of the logical data strobe signal. Gate signal generation circuitry generates a data strobe gating signal, wherein the memory controller interprets the logical data strobe signal as valid when the data strobe gating signal is asserted. The memory controller performs a training process to determine a timing offset for the data strobe gating signal with respect to said logical data strobe signal, wherein the training process provides a first phase in which the hysteresis circuitry is active and a second phase in which the hysteresis circuitry is inactive.
A method of writing a memory cell includes, during a write cycle, causing a voltage level at a power terminal of the memory cell to change from a supply voltage level toward a first voltage level. The voltage level at the power terminal of the memory cell is maintained at the first voltage level for a first predetermined duration. The voltage level at the power terminal of the memory cell is maintained at a second voltage level for a second predetermined duration, where the second voltage level is between the first voltage level and the supply voltage level. During the write cycle, the voltage level at the power terminal of the memory cell is caused to change from the first voltage level toward the supply voltage level.
Methods and systems for channel skewing are described. One or more methods for channel skewing includes providing a number of groups of data signals to a memory component, each of the number of groups corresponding to a respective channel, and adjusting a phase of a group of data signals corresponding to at least one of the number of channels such that the group of data signals are skewed with respect to a group of data signals corresponding to at least one of the other respective channels.
Memory devices and methods are described that include a stack of memory dies and an attached logic die. Method and devices described provide for power management of portions of a stack of memory dies. Additional devices, systems, and methods are disclosed.
A memory device operable to provide multi-port functionality, which may comprise a single-port memory having a first operating frequency that is at least twice of a second operation frequency of a multi-port memory, a read synchronization module that synchronizes a set of read signals from the second operation frequency to the first operating frequency, a write synchronization module that synchronizes a set of write signals from the second operation frequency to the first operating frequency, a read/write signal selector that integrates a set of synchronized read signals and a set of synchronized write signals into a set of input control signals of the single-port memory, and a read out data synchronization module configured to synchronize a set of read out data from the single-port memory with the second operation frequency of the multi-port memory.
A method includes selecting a word line for programming in an array of analog memory cells that are arranged in rows associated with respective word lines and columns associated with respective bit lines. Word-line voltages, which program the memory cells in the selected word line, are applied to the respective word lines. Bit-line voltages, which cause one or more additional memory cells outside the selected word line to be programmed as a result of programming the selected word line, are applied to the respective bit lines. Using the applied word-line and bit-line voltages, data is stored in the memory cells in the selected word line and the additional memory cells are simultaneously programmed.
A method and apparatus for controlling the playback of video recorded by a sensing subsystem of a digital life recorder. The process identifies a selected video feed recorded by a camera of a sensing subsystem responsive to receiving user input. A segment of video from the selected video feed is identified using a personal computing device communicating with a digital life recorder. The digital life recorder records the selected video feed. A playback restriction associated with the segment of video is identified and generates a set of commands for restricting playback of the segment of video. A processor may then execute the set of commands.
Composite magnetic recording media are described. A composite structure is a structure that is formed of multiple components. For example, a composite magnetic recording medium may include a substrate, an underlayer formed over the substrate, the underlayer defining a coating surface, and a magnetic layer formed over the coating surface of the underlayer. Composite magnetic recording media constructed according to the materials and techniques disclosed may provide dimensional flexibility while exhibiting improved physical or electromagnetic characteristics. In some examples, dimensional flexibility may be achieved by pairing a substrate greater than or equal to approximately 4000 nanometers thick with an underlayer less than or equal to approximately 890 nanometers thick.
A magnetic recording medium and related method of manufacturing a magnetic recording medium that has a protective layer for the magnetic recording medium and that exhibits excellent corrosion resistance in the protective layer. The magnetic recording medium includes on a nonmagnetic substrate a magnetic layer and a protective layer formed on the magnetic layer. The protective layer is formed of a lower layer in contact with the magnetic layer and an upper layer formed on the lower layer. The material used in the lower layer is a metal having a standard electrode potential of −0.8 to 0.3 V.
In accordance with one embodiment of the described technology, a retract controller capacitor is charged using a back electromagnetic force voltage to produce a backup power source voltage, the retract controller capacitor is discharged to power a retract controller circuit, and an actuator arm of a storage drive is driven toward a desired location concurrently with the discharging operation.
An optical or magnetic storage medium is disclosed that includes a disc having layers of graphene on one or both sides of the disc to provide wear protection against scratches and mechanical abrasion.
An optical information recording medium is provided which comprises a laminate of unit structure sheets, each including an adhesive layer configured as an intermediate layer and at least one recording layer. The unit structure sheets are each made with the recording layer and the adhesive layer formed by applying materials in one specific application direction, and the unit structure sheets in one optical information recording medium are classifiable into pairs such that application directions therefor in each pair are shifted 180 degrees from each other.
A servo processor for an optical disk drive is provided that includes: an analog-to-digital converter for converting versions of photodetector output signals into digital signals; and a digital signal processor configured to receive the digital signals, the digital signal processor being further configured to determine a focus error signal (FES) and a tracking error signal (TES) from the digital signals, the digital signal processor being further configured to process TES and FES through servo algorithms to produce tracking and focus control signals.
In a holographic memory of an angle multiple recording system, when a hologram is reproduced, a light beam of a different polarizing direction is irradiated as reference light to a hologram recording medium and diffracted light is detected from the hologram recording medium.
An optical information recording medium has a first information recording layer (20) and a second information recording layer (40) each of which includes (i) a group of pre-pits (31, 51) constituting marks (32, 52) and spaces (33, 53) and (ii) a super-resolution film (23, 43), the marks (32, 52) and the spaces (33, 53) having different lengths, an average length of a smallest mark that is smallest in length and a smallest space that is smallest in length being less than or equal to a resolution limit of a reproduction optical system for reproducing information recorded on the first information recording layer (20) and the second information recording layer (40), the group of pre-pits (31, 51) being formed so that a push-pull signal for the reproduction optical system to reproduce the information recorded by the group of pre-pits is negative in polarity. This provides an inexpensive and high-capacity multilayer optical information recording medium based on a super-resolution technology.
Aspects of the disclosure pertain to a system and method for providing controllable steady state current waveshaping in a preamplifier of a data storage system (e.g., hard disk drive). The preamplifier provides an output including a write current waveform having a steady state current level that is controllable via the write block circuitry of the preamplifier. This enhances the ability of the waveform to promote improved on-track and off-track write performance.
The present disclosure proposes a method and an apparatus to enhance reverberated speech by applying reverberation detection in conjunction with reverberation cancellation. The reverberation detection is based on Kurtosis of cross correlation of LPC residue and outputs the result of the reverberation detection to the reverberation cancelling system. The reverberation cancellation receives the result from the reverberation detection, and the cancellation is based on dual adaptive filtering in LP residue and time domain.
Embodiments of the present invention provide an audio signal coding and decoding method and device. The coding method includes: dividing a frequency band of an audio signal into a plurality of sub-bands, and quantifying a sub-band normalization factor of each sub-band; determining signal bandwidth of bit allocation according to the quantized sub-band normalization factor, or according to the quantized sub-band normalization factor and bit rate information; allocating bits for a sub-band within the determined signal bandwidth; and coding a spectrum coefficient of the audio signal according to the bits allocated for each sub-band. According to embodiments of the present invention, during coding and decoding, signal bandwidth of bit allocation is determined according to the quantized sub-band normalization factor and bit rate information. In this manner, the determined signal bandwidth is effectively coded and decoded by centralizing the bits, and audio quality is improved.
An object is to provide a convenient display device which consumes sufficiently small amount of power and a method for driving such a display device. The display device can be in an off state with a still image displayed in a still image display mode in which a pixel electrode and a common electrode which are for applying a voltage to the display element are brought into a floating state so that a voltage applied to the display element is held, and a still image is displayed without further supply of a potential. The display device is put to an off state with a desired image displayed in the still image display mode, whereby the display device can have a higher level of security and can be more convenient.
An image display system includes an LCD (liquid crystal display) or other display driven by alternating current and driven in an inverted manner by a predetermined driving method on a pixel basis, and an LCD driving device for generating a Frame Rate Control (FRC) pattern which is the same as the pattern utilized by the predetermined driving method. The display is thereby driven so as to allow the display to make an expression in gradations higher (for example, 256 gradations) than gradations (for example, 64 gradations) natively supported by the display.
A spiked liquid crystal display (SLCD) includes a plurality of LCD devices. Each LCD device includes an LCD panel, and a drive circuit controlling a display of the LCD panel. The drive circuit includes an adjusting equipment storing a display parameter, and the display parameters of the adjusting equipments of at least two LCD devices of the plurality of LCD devices are different.
Array of light emitting device is provided as the backlight for a display apparatus. A control circuit and drive method are provided utilizing a multiple scan selection drive scheme and a charging-relaxation step to eliminate the flicker and to enhanced the speed of LC response.
A method of driving an active display device. The method including recovering a threshold voltage of a switching transistor connected to a pixel. The recovering including applying a negative bias voltage to the switching transistor prior to charging each pixel during a charging period. The negative bias voltage is applied to a drain of the switching transistor.
An organic light emitting diode (OLED) display device and a method for driving an OLED display panel are provided. The method includes the following steps. In a reset period, a plurality of scanning signals received by a plurality of pixels of the OLED display panel is simultaneously enabled, and a plurality of data-voltages received by the pixels are set to a reference-voltage. In a threshold voltage cancelling period, a system-high-voltage received by the pixels and the scanning signals are simultaneously enabled, and the data-voltages are set to the reference-voltage. In a scanning period, the scanning signals are sequentially enabled, and the data-voltages are set according to the corresponded displaying data within a plurality of displaying data.
A plurality of pixels are arranged at each intersection of a plurality of scanning lines and a plurality of signal lines, and respectively includes a liquid crystal element displaying grayscales according to a grayscale potential of each signal line during the selection of each scanning line. To two pixels which are adjacent to each other in an extending direction of a signal line and correspond to two scanning lines selected by a scanning line driving circuit in each selection period, a signal line driving circuit supplies a grayscale potential according to a grayscale computed as the weighted average of grayscales designated by display data supplied to a display control circuit for each of the two pixels.
A display panel includes a plurality of gate lines and a plurality of pixels disposed thereon, a gate driver which applies a gate signal to the gate lines, and a controller which controls the gate driver, where the controller includes a signal controller which generates a scanning start signal and a gate clock signal comprising a plurality of pulses, where the scanning start signal instructs to start a scanning of the gate signal, and a driving voltage modulator which generates a modulated gate-on voltage and a modulated gate-off voltage based on a basic gate-on voltage and a basic gate-off voltage, where the driving voltage modulator adds an overshoot voltage corresponding to a rising edge of a pulse of the gate clock signal to the basic gate-on voltage or adds an undershoot voltage corresponding to a falling edge of the pulse of the gate clock signal to the basic gate-off voltage.
In a liquid crystal display device, a data signal generation unit generates a data signal for controlling the orientation of liquid crystal. A plurality of transistors supply the data signal output from a source IC unit to a plurality of data signal lines of a liquid crystal display panel in a time sharing manner. A gate signal line controls each of the plurality of transistors. A fluctuation suppression unit is connected to the gate signal line that controls any one of the plurality of transistors, and suppresses, in accordance with a gate signal of the connected gate signal line, a voltage fluctuation in the data signal which occurs when another transistor changes from the ON state to the OFF state.
Technologies described herein generally provide for an improved augmented reality system for providing augmented reality images comprising a pre-operative image superimposed on a patient image. The accuracy of registering the pre-operative image on the patient image, and hence the quality of the augmented reality image, may be impacted by the periodic movement of an organ. Registration of the pre-operative image on the patient image can be improved by accounting for motion of the organ. That is, the organ motion, which can be described by a dynamical model, can be used to correct registration errors that do not match the dynamical model. The technologies may generate a sequence of 3-D patient images in real-time for guided surgery.
A unitary sheet-like merchandise labeling article that has a labeling tag flatly conjoined along a unifying flat bond zone with a flexible elastic layer that extends away from the tag and includes an elastic fastening loop. The loop sides that define the loop are wider than the thickness of the elastic layer. Further, the flexible elastic layer that extends away from the tag has a thickness greater than the thickness of the tag and has a dispersion zone adjacent the unifying flat bond zone. The dispersion zone allows dissipation of elastic loop in-line stretching forces sufficiently to reduce transmission of such forces into the bond zone.
The present invention is a method and system for autonomous learning of Braille by an unsighted user. The system allows the unsighted user to pass a card over an RFID reader so as to trigger an audible response that is indicative of an indicia (Braille word or character) embossed on the card. The embossed card further comprises an RFID tag and a series of raised indicia surfaces representative of a Braille-based word or character. The tag transmits a signal indicative of the word or character to the receiving (via receiver) micro-controller which will convert the signal to an audible tone to be transmitted through an output device. The system has a memory which holds a library of tones corresponding to a signal to be converted. An autonomous record mode allows the system user to record an audio input to be stored in the library, or utilize an interface port, or removable memory, for downloading an input.
An olfactory training device and method replicating one or more aromas typical of any man-caused or natural incident or accident, especially such aromas accompanied by or originating in open, smoldering, or smoking fire. Such aromas may originate from burning tissue, bones, cartilage, or other bodily materials. Such burning aromas may also originate from other synthetic or natural materials. One or more such olfactory training devices may be dispersed in a manner to engage the olfactory-sensory system of a trainee. The olfactory training device may be classroom-deployed, field-deployed, laboratory-deployed, or deployed via any type of setting-deployable training device or protocol.
Device, system and method, in a vehicle communication system, of providing guidance, route and safety information to a driver. Embodiments use the observation and storage of signal light timing information to make recommendations. Embodiments include computation of future times of signal light changes. Embodiments use information relating to the number of vehicles, location of vehicles, and speed of vehicles in a plurality of lanes approaching a signal to recommend lane changes to a driver. Embodiments include receiving timing information wirelessly about signal timing. Embodiments include using historical information to compute a risk value for a location and then generating a recommendation to a driver responsive to that risk value. Embodiments include using speed of travel on route options to compute an expected travel time, and then generating a recommendation to a driver responsive to those computed travel times.
A method controls vehicular traffic on a one-way roadway. A hardware sensor detects vehicular traffic on a roadway. A hardware traffic control device determines whether the vehicular traffic on the roadway has been moving exclusively in a first direction during a preceding period of time, such that the roadway is a one-way roadway on which current vehicular traffic is authorized to travel only in the first direction. The hardware sensor detects an errant vehicle that is traveling on the one-way roadway in a second direction that is opposite the first direction. In response to determining that the errant vehicle is traveling in the second direction on the one-way roadway, a warning signal is transmitted to vehicles, other than the errant vehicle, on the one-way roadway.
A method and apparatus for providing information about the source of a sound via an audio device is described. An ambient sound is detected (200) and specific sounds are identified in the detected ambient sound (202). Information about the source of the identified specific sounds is determined (204). An operational control characteristic of a generated audio stream rendered by an audio device is changed (206) and information about the source is provided to the audio device upon detection of said identified specific sounds (208).
The invention relates to a method for aiding the taxiing of an aircraft comprising a plurality of onboard propulsion means and which is able to move over an airport zone according to at least one specific taxiing procedure making it possible to reduce fuel consumption, the method being characterized in that it implements the following steps during the phase of taxiing of the aircraft on an airport:Checking of the taxiing conditions for the implementation of the said taxiing procedure and calculation of the implementation parameters of the procedure, Calculation of the taxiing performance data resulting from the implementation of the taxiing procedure, Display of the taxiing directives and performance related to the taxiing procedure, Monitoring of the parameters of the avionics systems during the implementation of the taxiing procedure.The invention applies to taxiing plan formulation systems and/or aircraft monitoring systems.
A remote water meter monitoring system is provided. A mesh network-type transceiver unit is coupled to a water meter housing having a water counting mechanism inside to transmit water consumption information as well as other sensor information, such as backflow detection, water pressure, and water metrics (e.g., residual chlorine and temperature) to a central server system via a bridge device and a corresponding mesh network. Mechanical energy from the water flowing through the water meter housing is converted to electrical energy via an energy conversion unit. An electrically powered shut off valve is remote addressable via the transceiver unit.
A touch-sensitive wireless device, such as a wireless telephone or wireless multimedia player, in conjunction with an interactive on screen display, effectively remotely controls a programmable multimedia controller or other system. User gestures, button presses or other touches to or movements of the touch-sensitive wireless device are effectively converted to information that is wirelessly transmitted to the programmable multimedia controller. Once received by the programmable multimedia controller, such information is processed and effectively translated so as to control the operation of the controller.
A system for dynamic configuration of telemetry data may comprise a client to place a library call to a configuration server, the library call including identifying information associated with the client. The system may further comprise a processor to receive, from the configuration server, one or more regular expressions for configuration of the telemetry data collected at the client, based on the identifying information, collect, at the client, the telemetry data based on predetermined criteria, match the one or more regular expressions to the telemetry data, based on the match, selectively provide the telemetry data based on the one or more regular expressions to produce filtered telemetry data, and periodically report the filtered telemetry to the server, the filtered telemetry data including or excluding the telemetry data matching the one or more regular expressions.
This disclosure provides a search device, a person loss prevention system and an operation method. The person loss prevention system comprises an electronic device and the search device. The search device includes a receiver and a transmitter electrically connected with the electronic device. The person loss prevention system instructs the transmitter to transmit a predetermined signal to the receiver by the operation method. After the receiver receives the predetermined signal, the receiver sends a feedback signal to the electronic device. The electronic device adjusts a waveform of a sound signal according to the feedback signal and transmits the sound signal to the search device. The search device plays the sound signal through a speaker unit. Thereby, the user of the electronic device immediately determines the position, the distance and the direction of the receiver.
Systems and methods for nonverbally communicating patient comfort data are disclosed herein. In some embodiments, the systems and methods may include one or more operations including receiving patient comfort data associated with one or more patients through a patient comfort level input device during a course of a treatment session, transmitting the patient comfort data associated with one or more patients received through the patient comfort level input device, and alerting one or more practitioners of the patient comfort data associated with one or more patients received through the patient comfort level input device. In some embodiments, the systems and methods may include at least one of the additional operations of receiving objective data indicating one or more particular treatment types substantially contemporaneously with a performance of the one or more particular treatment types and automatically generating one or more objective treatment session notes for inclusion within at least one of one or more patient charts and one or more medical records.
An improved alarm system for monitoring movement through a passageway defined by opposing sidewalls comprises a lower passage indicator disposed toward the lower ends of the sidewalls, an upper passage indicator disposed toward the upper ends of the sidewalls and a control mechanism configured to sound an alarm if one of the passage indicators indicates passage through the passageway and the other passage indicator does not. In a preferred embodiment, the alarm system is configured as a pool alarm and each passage indicator comprises an emitter/receiver that emits an infrared beam toward an opposing reflector to provide a lower beam and an upper beam. If only the lower beam is interrupted, indicating a child passing through the passageway, the control mechanism will generate an alarm signal. If both beams are interrupted, indicating an adult passing through the passageway, the control mechanism will not generate the alarm signal.
This invention relates to a tether device for use in a retail environment in conjunction with a cable lock security device. The cable lock device includes a cable having a free end which extends outwardly away therefrom after the cable lock is secured onto an article of goods. The tether is configured to receive the free end inside a lock channel alternatively lock and unlock this free end with the tether. The tether is intended to be secured onto a separable portion of an article of goods, while the cable lock is intended to be secured onto another separable portion. Thus, in locking the cable lock and the tether together, the two separable portions of the article of goods are thereby rendered generally inseparable.
A remote control includes a plurality of actuators and plurality of similarly-shaped icons for indicating the function of actuators. At least one of the actuators includes a locator bump that is positioned inside the icon on the actuator and extends above the surface of the actuator to provide tactile feedback to assist a user's finger in locating the actuator (for example, to turn on a lighting load when the control device is being operated in the dark space). The icon that has the locator bump inside of it is bigger than the second icon, such that the icons appear to be the same size to the human eye. In addition, the line weight of the first icon may be smaller than the line weight of the second icon, and there may be a gap between the first icon and the locator bump. For example, the first and second icons may be triangularly shaped or circularly shaped.
Methods, apparatuses, and computer program products are herein provided for associating notifications with alert functions of remote devices. A method may include causing transmission of an alert configuration signal to each of a plurality of remote devices. The alert configuration signal instructs each of the plurality of remote devices to perform an alert function. The method may further include receiving user input indicating the user's desire to associate a notification corresponding to an event with the alert function of at least one of the plurality of remote devices. The method may further include associating the notification with the alert function of the at least one of the plurality of remote devices such that the at least one of the plurality of remote devices performs the alert function when the event occurs. Corresponding apparatuses and computer program products are also provided.
Examples disclosed herein relate to systems and methods, which may receive wagers. The systems and methods may include scrape away functionality. The system, device, and/or method may include a plurality of reels with one or more paylines formed on at least a portion of the plurality of reels. The system, device, and/or method may include a memory which may include a plurality of scrape away structures. The system, device, and/or method may include a processor which may generate one or more areas where each area may cover one or more symbols. Further, the processor may remove the one or more areas to reveal one or more covered symbols based on a selected tool and a selected area.
The invention is directed to methods and gaming units for conducting a multi-player wagering game in which at least one of the players may win the occurrence of the wagering game by matching a game-winning pattern of game indicia on one or more game arrays having unique combinations of game indicia based on matching the game indicia on the game arrays to game indicia randomly selected for the occurrence of the wagering game. Each player matching a game-winning pattern may receive game-winning award, and may receive a game-winning award for each game array on which a game-winning pattern is matched. The method and gaming unit may further include an alternate outcome display wherein an outcome of a second wagering game may be displayed that corresponds to the outcome for the player on the one or more game arrays for the occurrence of the multi-player wagering game.
Wagering games include promotional events and promotional awards, such as the award of free or reduced cost goods and services. Promotional awards may be reward by the receipt of property logo symbols during game play. Promotional awards rewarded at one casino may be redeemable only at a second casino. Promotional awards may be rewarded based upon game play metrics of identified or anonymous players.
A method of operating a gaming system is disclosed. The method includes: enabling, using one or more processors, play of a first game on a gaming machine; enabling, using one or more processors, play of a second game on a user interface that is operatively coupled to the gaming machine, wherein the gaming system enables a player to choose which bonus game to play out of a plurality of bonus games independent of player ranking and bonus level, wherein each of the plurality of bonus games may be initiated on demand, wherein once the player chooses the bonus game to play on demand, the chosen bonus game is presented to the player via the player tracking user interface; and enabling, using one or more processors, wherein the gaming system enables a player to activate the second game displayed on the user interface.
A vehicle behavior data storage control system including a storage control device and an ECU is disclosed. Upon determining occurrence of an unexpected behavior, the storage control device stores an unexpected behavior data in a memory and transmits the unexpected behavior data. The ECU determines whether or not the unexpected behavior data matches an estimated behavior data indicative of a behavior estimated to occur due to control processing of the ECU. When both data match each other, the ECU transmits the matching information. The storage control device, upon receipt of the matching information, deletes or permits overwriting the unexpected behavior data stored in the memory.
An information collection device of an information collection system of a mining machine collects operation information from the dump truck. The information collection device transmits a position information request command to request the transmission of position information about the dump truck through a second wireless communication device at a predetermined time. When the dump truck whose response to the position information request command is received by the second wireless communication device can stay in the communication range of an in-vehicle wireless communication device until the communication of the operation information of the dump truck ends, the information collection device collects the operation information of the dump truck whose response is received by the second wireless communication device.
A multi view image display apparatus is provided. The multi view image display apparatus includes: a depth adjuster configured to adjust a depth of an input image; a renderer configured to render a multi view image based on the input image of which depth is adjusted; a display configured to arrange a multi view image in a preset arrangement pattern in order to display the multi view image; and a controller configured to control the depth adjuster to shift the depth of the input image based on depth information related to at least one object of the input image so that an object satisfying a preset criteria has a preset depth value.
Systems and methods for providing smooth level of detail transitions for geometric objects, such as geometric terrain tiles, are provided. In one embodiment, a parent geometric tile associated with a first level of detail can be partitioned into sub-tiles. The sub-tiles can be blended independently with child geometric tiles associated with a second level of detail. The blends can be adjusted as a function of camera distance over a transition range to provide a smooth level of detail transition. Various enhancements and modifications can be made to the level of detail transition, such as implementing a bias in the level of detail calculation, implementing an unpop algorithm over only a subset of the transition range, implementing a time based fade during a camera stop, and other enhancements.
Methods and apparatus for coherent manipulation and stylization of stereoscopic images. A stereo image manipulation method may use the disparity map for a stereo image pair to divide the left and right images into a set of slices, each of which is the portion of the images that correspond to a certain, small depth range. The method may merge the left and right slices for a depth into a single image. The method may then apply a stylization technique to each slice. The method may then extract the left and right portions of each stylized slice, and stack them together to create a coherent stylized stereo image. As an alternative to first extracting slices from a merged image and then applying a stylization technique to the slices, the method may first apply the stylization technique to the merged image and then extract slices from the stylized merged image.
A game apparatus generates an image of a three-dimensional virtual space as viewed from a predetermined viewpoint, an object being provided in the three-dimensional virtual space. Next, the game apparatus obtains a depth value (Z value) indicating a depth from the viewpoint in a line-of-sight direction in the three-dimensional virtual space for each pixel of the image. Further, the game apparatus detects a pixel corresponding to a contour of the object based on the depth value. Specifically, a plurality of pixels are specified as reference pixels. It is determined whether or not a pixel of interest corresponds to a contour, based on a change level of differences in depth value between the pixel of interest and the reference pixels.
A method to transmit a label between two images, characterized in that the method includes the following steps: providing a first image, the first image comprising several sets of connected points, each set being characterized by a label, providing a second image, from the second image, determining several sets of connected points, superimposing the two images to determine the common parts and non-common parts of the sets in the first and second image, giving each common part of the second image, the label of the set in the first image with which said part is common, giving each non-common part of the second image in contact with a single set of connected points in the first image, the label of said set, giving a new label to each non-common part of the second image not in contact with any set in the first image.
In order for registration of images for surgery, first, a three-dimensional reference image of a surgical area of a patient before surgery is acquired. Then, a grating-pattern light is provided towards the surgical area to acquire a first measurement image. Thereafter, a preliminary registration is performed between the acquired first measurement image and a pre-acquired three-dimensional reference image. Then, a grating-pattern light is provided towards the surgical area after cutting out the surgical area to acquire a second measurement image. Thereafter, a fine registration is performed between the acquired second measurement image and the pre-acquired three-dimensional reference image based on the preliminary registration result. Thus, an accurate registration result may be acquired at low cost in a short period of time.
A high speed filtering apparatus and a method for high precision restoration of a depth image are provided. The high speed filtering apparatus for high precision restoration of the depth image may include a block setting unit to set a first block including a target pixel, and to set a second block with respect to a central pixel distributed around the target pixel based on a size of the first block, a weight determining unit to determine a pixel weight with respect to each pixel in the second block, and to determine a block weight with respect to the second block by applying the pixel weight, and a processor to filter the target pixel based on the block weight, thereby accurately filtering the target pixel.
This invention is designed to offer ready access to an athlete's contact and health information for emergency responders at sporting events while providing improved security constraints to preserve the confidentiality of the athlete's information. The system offers new flexibility in the types of data fields that are collected, the duration of data availability, as well as to whom the data access privileges are granted.
An approach for scheduling clinical procedures based on defined environmental thresholds of medical units in healthcare facilities. In one embodiment, a computer system monitors environmental conditions of the medical unit in which clinical procedures will be performed utilizing a measurement system that includes an environmental device for monitoring the environmental conditions. The computer system further receives a schedule of the clinical procedures of the medical unit. The computer system further identifies environmental thresholds for the medical unit to be used for comparison against the environmental conditions of the medical unit. The computer system further compares environmental conditions to the environmental threshold to determine if the environmental thresholds are violated. In another embodiment, the computer system modifies the schedule of clinical procedures of the medical unit responsive to the determination.
In some embodiments, scripts may be used to perform parcel data acquisition, conversion, and clean-up/repair in an automated manner and/or through graphical user interfaces. The scripts may be used, for example, to repair geometries of new parcel data, convert multi-part parcel geometries to single part parcel geometries (explode), eliminate duplicate parcel geometries, append columns, create feature classes, and append feature classes. These scripts may be executed in a predetermined manner to increase efficiency. In some embodiments, different combinations of attributes may be appended to stored parcel data. In some embodiments, a tracking application may be used to track information about sources of data. In some embodiments, a tracking application may be used to track which system users are assigned to specific tasks (e.g., in a data acquisition project).
A base station associated with a cellular network may receive a request for a service from a user device. The base station may determine a current location of the user device. The base station may determine, based on the current location, a set of future locations for the user device. The base station may generate a set of schedules for the current location and the set of future locations. The set of schedules may allocate network resources to the user device at the current location and at each future location of the set of future locations. The base station may transmit the set of schedules to the user device.
Methods and systems for offering and providing trip-based vehicle insurance are provided. Information is received regarding a vehicle operator and a vehicle, and trip-based insurance policies including quantities of vehicle use units are offered to the customer. Based on selected coverage types, the insurance provider may generate an insurance quote for a policy having an amount of the vehicle use units and may facilitate a purchase transaction with the customer for the insurance policy. Once a policy is selected and purchased, the system and method monitor vehicle use to determine each use of a vehicle use unit. Each vehicle use unit generally corresponds to one vehicle trip, but additional vehicle trip limitations may be added that may result in additional charges when exceeded during the course of a vehicle trip.
Web session events are captured during different web sessions. A segmentation model is generated based on a number of occurrences of the web session events for different time stamp periods. The segmentation model plots a segmentation graph that may identify differences between the web session events with respect to time factors. The segmentation model may use the whole dataset of event occurrences as an input without any preliminary data segmentation or discrimination. The model can associate the web session events with the different geographic locations, reveal possible reasons for customer experience difference for the users from different locations and provide statistically sound explanation of this difference. The model is scalable and may work with big data acquired by web-based commerce sites with wide international customer base.
Security techniques and security mechanisms for wireless networks that transmit content such as advertisements. According to exemplary techniques, control messages comprising unrequested content (e.g., advertisement data) may be transmitted in response to a request from a client device, while in other exemplary techniques the control messages may be transmitted without any request from a client device. In some exemplary implementations, security mechanisms such as public key cryptography algorithms may be used to secure transmissions. In some of these techniques which implement public key cryptography, a user may be required to retrieve a public key from a source other than the wireless access point transmitting encrypted advertisements (e.g., a sign or terminal in a commercial entity transmitting such advertisements, or from a web service), such that the user may confirm that the encrypted content is from a source matching the retrieved public key and thus confirm the authenticity of a wireless access point.
A secure fob that enables a user to pay for an item or items without needing to present a mobile device. A secure fob may include a proximity capability to ensure that a mobile device is within a particular range, thereby eliminating the risk of fraudulent charges on a stolen fob. In such an embodiment, a fob may be disabled if the fob is not paired with the mobile device by virtue of being disconnected and/or physically separated from the mobile device. The secure fob also may include enhanced features to authorize transactions and locate the mobile device and/or the secure fob.
An automated method is provided for managing objects each provided with an RFID tag having at least one item of identification data associated with the object, the method including a step of reading at least one item of identification data stored in at least one RFID tag arranged on at least one object positioned at the reading site, and further including a deactivation of at least one RFID tag the item of identification data of which has been read so that it is not detected during a fraud detection step.A system implementing such a method is also provided.
A sender sends an email message to a receiver. The message includes an avatar representing the sender. Upon receiving the message, if the receiver has a question related to the message, the receiver sends the question to the sender via the avatar. After receiving the question, the avatar remote server device correlates the question with the message through a MSG-ID associated with the receiver or avatar. The avatar remote server device parses and analyzes the question and then searches mailboxes, agendas, previous answers, toDoLists, folders, resumes, and/or address books of the sender to find a corresponding answer for the question. Then, the avatar remote server device provides the answer to the receiver via the avatar. Alternatively, upon receiving the question, the avatar remote server device sends a notification to the sender. If the sender has an online connectivity, the sender provides the answer to the receiver via the avatar.
A system and method are provided. A virtual reality environment rendering module provides a virtual reality environment representative of one or more of a contact center, a predictive dialer, and a media collaboration session. The virtual reality environment includes avatars representative of resources and entities to be serviced by the resources. Characteristic(s) of the avatars are selected based on collected information of various types.
A method, device, and computer-readable storage medium storing instructions are provided for detecting controversial events that are reflected in user-generated content items. In a single-step approach, user-generated content items are received and analyzed by a controversial event detection module, which determines the likelihood that sets of content items reflect controversial events. In one example, public posts by users of a social networking service are grouped into snapshots of posts that are associated with an entity and were generated during a window of time. An event detection module may determine the likelihood that snapshots reflect events. In a two-step approach, event snapshots are provided to a controversy detection module, which determines the likelihood that event snapshots are controversial. In a blended approach, snapshots are provided to a controversy detection module, which determines the likelihood that snapshots are controversial events based in part on the event score.
An automated logistics system comprising radio frequency identification device (RFID) chips, an RFID reader-writer, a computer and a triggering-forwarding device is provided. The triggering-forwarding device forwards received signals of information input equipment to the computer by a network and can utilize output signals to trigger different operating states of other equipment connected with the triggering-forwarding device or a software system arranged on the other equipment; the output signals also can be used as check data for information read by the RFID reader-writer; and the triggering-forwarding device also can be used for receiving feedback information of the computer and displaying the feedback information by a display module. Due to addition of the triggering-forwarding device in the scene design of enterprise, software programming is simpler, the automated logistics system has strong applicability, identified targets are more definite and feedback information can be timely obtained to timely solve error problems.
According to certain aspects, a computer system may be configured to aggregate and analyze data from a plurality of data sources. The system may obtain data from a plurality of data sources, each of which can include various types of data, including email data, system logon data, system logoff data, badge swipe data, employee data, job processing data, etc. associated with a plurality of individuals. The system may also transform data from each of the plurality of data sources into a format that is compatible for combining the data from the plurality of data sources. The system can resolve the data from each of the plurality of data sources to unique individuals of the plurality of individuals. The system can also determine an efficiency indicator based at least in part on a comparison of individuals of the unique individuals that have at least one common characteristic.
An outage schedule management apparatus and a method are provided, wherein a topology change is executed in response to an outage schedule set up by a user input, and a validity determination is executed to system operation standard to approve an outage.
The specification relates to a client device utilizing an unintentional-selection module that disambiguates selection events for temporally proximate content. The client device records time stamps indicating a time a dynamic list is first presented and instances when the dynamic list is updated. An input selection indicating that a suggested search query has been chosen from the dynamic list of search suggestions is received and a time stamp for the input selection is recorded. A determination is made to see if the input selection is an unintentional selection. The input selection is determined as the unintentional selection when a difference between a time stamp for presenting a most recent dynamic list update and the time stamp of the input selection satisfies a user-specific threshold. The user-specific threshold is calculated with a machine learning system using user-specific latency times as training data.
This robot teaching system includes a teaching tool including an operation portion operated by a user to specify teaching positions and specifying the teaching positions, a measuring portion measuring positions and postures of the teaching tool, and a control portion determining the teaching positions for a robot. The robot teaching system is configured to specify the teaching positions continuously while the user operates the operation portion of the teaching tool.
A classifier that disambiguates among entities based on a dictionary, such as corpus of documents about those entities, is built by incorporating probabilities that an entity exists that is not in the dictionary. Given a document it is associated by the classifier with an entity. By incorporating out of collection probabilities into the classifier, a higher level of confidence in the match between an entity and a document is achieved.
Methods, systems, and computer program products for biometric authentication and more particularly to a method for classifying biometric data consisting in constructing, on the basis of a first universal statistical model and based on a set of first individual collections of biometric data, a second statistical model comprising a plurality of statistical sub-models and taking into consideration the biometric specificities of an individual or class of individuals, such that the first and second statistical models jointly define a highly discriminatory universal statistical model.
A simple format is disclosed and referred to as Elementary Network Description (END). The format can fully describe a large-scale neuronal model and embodiments of software or hardware engines to simulate such a model efficiently. The architecture of such neuromorphic engines is optimal for high-performance parallel processing of spiking networks with spike-timing dependent plasticity. Neuronal network and methods for operating neuronal networks comprise a plurality of units, where each unit has a memory and a plurality of doublets, each doublet being connected to a pair of the plurality of units. Execution of unit update rules for the plurality of units is order-independent and execution of doublet event rules for the plurality of doublets is order-independent.
Systems and methods for determining predictive model types are provided. A method may include generating a predictive model for a web page of a website, wherein the web page includes a configuration defining one or more objects presented with the web page, and wherein each object is associated with a predictive model. The method may include determining one or more predictive model types that are associated with the predictive model, determining one or more performance indicators that correspond to each determined predictive model type, wherein performance indicators represent one or more benefits to a website, selecting a predictive model type of the predictive model out of the one or more predictive model types, wherein the predictive model type is selected based on a performance indicator corresponding to the selected predictive model type, and determining a configuration of the web page using the selected predictive model type of the predictive model.
A man/machine dialogue system including: an RFID read/write station including a data processor; an antenna that is magnetically connected or coupled with the read/write station; and a man/machine dialogue member including a man/machine dialogue interface and an electronic tag. The electronic tag includes an internal memory and a processor and is positioned so as to be supplied with power, via magnetic coupling, by the read/write station and so as to be in contactless communication, via magnetic coupling, with the read/write station.
An antenna for a wireless IC device having improved energy transfer efficiency with a wireless IC, and a wireless IC device equipped with the antenna are constructed such that the antenna includes a coil pattern and spiral coupling patterns provided at the ends of the coil pattern and disposed so as to face each other. A coupling module including a wireless IC chip and a feeder circuit substrate including a feeder circuit arranged to be coupled to the wireless IC chip is mounted on the coupling pattern so as to define a wireless IC device. The coil pattern is an open type coil pattern. The coupling patterns are arranged close to each other to define a single LC resonator. Thus, energy is concentrated in the coupling patterns, thereby improving the energy transfer efficiency between the antenna and the wireless IC chip.
Provided are a card and card manufacturing method that enable clear visual recognition of a display in a display portion even if the card surface has been provided with a matte finish, and enable an improvement in texture related to position drift between a display device and a window portion, as well as an improvement in workability during manufacture. The card (1) has: a display portion (10); an electronic component that controls a display to the display portion (10); a surface layer (20) placed as the topmost layer of the card (1) and formed from a clear material; a mirror-surface portion (21) provided on a portion that overlaps the display portion (10); and a matte portion (22) provided on a portion outside the mirror-surface portion (21), said matte portion (22) having a coarser grain than the mirror-surface portion (21).
According to the present invention, an image forming apparatus which performs a printing job and an erasing job is provided. Included is a control unit which, in a case of performing the other job after any one of the printing job and the erasing job, controls a transporting unit of the sheet so that the sheet for the other job is transported to a predetermined standby position from a sheet feeding unit while the one job is performed.
This invention, which relates to retrieving an object from a video or a photo where the object matches a hand-drawn sketch, discloses a method for automatically estimating a perceptual bias level with respect to a feature of the sketch. The method allows estimation based on the sketch alone without involving an extra database. In one embodiment, the method comprises using an expectation-maximization tensor voting (EMTV) method to analyze a statistical distribution of the feature. The statistical distribution is analyzed by forming an objective function having the statistical distribution's information parameterized by the perceptual bias level, and then maximizing the objective function according to a set of iterative update rules. In another embodiment, the method for automatically estimating a perceptual bias level is incorporated into a method for retrieving one or more objects from an image or video database where the one or more objects match a hand-drawn sketch.
Embodiments of the present invention comprise an indicia reading terminal including operatively configured to interact with a storage module to store data, including location data, of a decodable indicia found in a captured document image. In one embodiment, the indicia reading terminal can be provided with one or more pre-stored information about the decodable indicia and/or the document. In another embodiment the indicia reading terminal can be provided with instructions and similarly operatively configured components that can identify information about the decodable indicia, store such information in a table, and utilize the tabulated data to process captured image data of subsequent documents.
An RFID system includes an RFID tag, an RFID reader, and a server. The RFID tag communicates to the server via encrypted information. The information may be encrypted with synchronized encryption keys. In this manner, the reader need not decrypt the information from the RFID tag. The effectiveness of malicious readers is thereby reduced, resulting in improved RFID tag security.
This specification describes technologies relating to biometric authentication based on images of the eye. In general, one aspect of the subject matter described in this specification can be embodied in methods that include obtaining images of a subject including a view of an eye. The methods may further include determining a behavioral metric based on detected movement of the eye as the eye appears in a plurality of the images, determining a spatial metric based on a distance from a sensor to a landmark that appears in a plurality of the images each having a different respective focus distance, and determining a reflectance metric based on detected changes in surface glare or specular reflection patterns on a surface of the eye. The methods may further include determining a score based on the behavioral, spatial, and reflectance metrics and rejecting or accepting the one or more images based on the score.
A system facilitates automatic recognition of facial expressions. The system includes a data access module and an expression engine. The expression engine further includes a set of specialized expression engines, a pose detection module, and a combiner module. The data access module accesses a facial image of a head. The set of specialized expression engines generates a set of specialized expression metrics, where each specialized expression metric is an indication of a facial expression of the facial image assuming a specific orientation of the head. The pose detection module determines the orientation of the head from the facial image. Based on the determined orientation of the head and the assumed orientations of each of the specialized expression metrics, the combiner module combines the set of specialized expression metrics to determine a facial expression metric for the facial image that is substantially invariant to the head orientation.
Systems and methods are disclosed for predicting one or more characteristics of a animal by applying computational methods to image(s) of the animal to generate one or more metrics indicative of the characteristics. Embodiments determine predictors of characteristics by creating a sample library of animals of a particular type, determining facial descriptor measurements for each animal, determining relationships between facial descriptor measurements and additional library data, and selecting predictors from these relationships. Other embodiments predict characteristics of animals not in the library and, optionally, categorize animals for particular discipline, training, management, care, etc. based on the characteristics. Other embodiments predict characteristics and determine strategies for group(s) of animals using predicted characteristics of individual animals. Embodiments are broadly applicable to domesticated animals including dogs, cats, cattle, oxen, llamas, sheep, goats, camels, geese, horses, chickens, turkeys, and pigs. Other embodiments predict certain characteristics of humans, including certain cognitive or developmental disorders.
A method facilitates selection of candidate matches for an individual from a database of potential applicants. A filter is calculated for the individual by processing images of people in conjunction with the individual's preferences with respect to those images. Feature sets are calculated for the potential applicants by processing images of the potential applicants. The filter is then applied to the feature sets to select candidate matches for the individual.
A disparity estimation method of stereoscopic image is provided. A matching cost computation is executed for a first image and a second image, and one extreme value is selected from cost values corresponding to estimating disparities for each pixel to obtain a matching point corresponding to each pixel. And a matching disparity corresponding to each matching point is adjusted based on edge detection according to a scan order.
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for remotely initiating lost mode on a computing device. A request that lost mode be initiated can include a message and contact information provided by the requesting user. Once authenticated, a command to initiate lost mode is sent to the lost device. Initiating lost mode includes locking the lost device and suppressing select functionality. The message and contact information are displayed and the lost device is enabled to contact the requesting user using the contact information. The lost device can also collect and transmit location data to the requesting user. The location data can be presented on a map indicating the lost devices location and the time the lost device was at the location. The location data can be scheduled to be resent to the user based on numerous factors such as a set schedule, rules or heuristic.
Various techniques and solutions are described for rule-based access to removable storage devices. For example, a request can be received to perform a file system operation using a removable storage device that is formatted with a file system that does not support access controls. A rules-based check of the received request can be performed by a service by checking the request against a plurality of rules. Based on results of the rules-based check, the request can be allowed or denied.
Techniques for recovering from unexpected removal of (or other unexpected power loss) a flash memory device from a computer system. An interpolated device driver notes whenever the flash memory device is unexpectedly removed, or otherwise unexpectedly powers off or enters a locked state. If the flash memory device is reinserted, the interpolated device driver reinitializes the flash memory device, and satisfies any flash memory device security protocol, so the flash memory device and the computer system can be restored to their status just before unexpected removal. The interpolated device driver caches requests to the flash memory device, and when status is restored to just before removal, replays those requests to the flash memory device, so the flash memory device responds to those requests as if it had ever been removed. The computer system does not notice any break in service by the flash memory device due to removal and reinsertion.
Methods and systems for obscuring the location of critical system files are provided. In particular, the locations of files stored within a file system are selected by applying various inputs to a hash algorithm. For system files, the inputs applied to the hash algorithm can include a user name and password. For data files, the information provided to the hash algorithm can include the file name. In addition to providing random file locations, a file system in accordance with embodiments of the present invention can homogenize other information, including file names, sizes and creation dates.
A method of implementing role based security in an enterprise content management system is provided and may include creating a role object; creating a role adapter object that is communicatively coupled to the created role object; creating a security adapter object that is communicatively coupled to the created role adapter object; and associating the security adapter object to a content class.
Techniques for detecting malicious content using simulated user interactions are described herein. In one embodiment, a monitoring module monitors activities of a malicious content suspect executed within a sandboxed operating environment. In response to detection of a predetermined event triggered by the malicious content suspect requesting a user action on a graphical user interface (GUI) presented by the malicious content suspect, simulating, a user interaction module simulates a user interaction with the GUI without user intervention. An analysis module analyzes activities of the malicious content suspect in response to the simulated user interaction to determine whether the malicious content suspect should be declared as malicious.
Example embodiments of the present invention relate to a system, apparatus and methods for preserving the integrity of a code to prevent it from being modified, maliciously or inadvertently, while it is in execution in the RAM of a computer platform. This method also may be referred to as code hardening. Code to be hardened in example embodiments of the present invention may be referred to as protected code. Example embodiments of the present invention are able to externally detect unauthorized stoppage of the hypervisor by employing (1) a launch-time metric of the protected code; (2) a run-time metric of the protected code; and (3) a liveliness indicator of the protected code.
A computer-implemented method for scanning data stored on cloud computing platforms may include (1) identifying a cloud computing service that hosts a plurality of cloud computing instances and a plurality of data volumes that store data for the plurality of cloud computing instances, (2) determining that a data volume within the plurality of data volumes that stores data for a cloud computing instance within the plurality of cloud computing instances is subject to a security scan, (3) detecting a computing system that is external to the cloud computing instance, and (4) performing the security scan on the data volume from the computing system that is external to the cloud computing instance instead of performing the security scan from within the cloud computing instance. Various other methods, systems, and computer-readable media are also disclosed.
Techniques are disclosed for authenticating users to a computing application. A mobile or tablet device is used to generate a security code. Near field communication (NFC) hardware on the mobile device is used to transfer the security code from the mobile device to a computer. To transfer the one-time value, a user simply taps an NFC enabled mobile device on an NFC enabled computing device (e.g. a laptop running a web browser used to access a web service). In one embodiment, doing so triggers a connection between the two devices and an application running on the mobile device transfers the security code to an NFC receiver application running on the computer. The receiving computer may be configured to auto-fill the received security code in the appropriate form field of the application authentication interface.