US09723770B2

A second tape feeding mechanism 20B can deal with a plurality of types of carrier tapes and has a biasing mechanism 25 that brings a biasing member 30 in which a recess portion 30b is provided in an abutment surface 30a into abutment with a carrier tape so as to bring the carrier tape into engagement with an outer circumferential surface of a sprocket 21B, and with a preceding tape kept in engagement with the sprocket 21B, a leading end portion of a following tape is inserted between the sprocket 21B and the preceding tape.
US09723768B2

A multicore shielded cable includes a first core wire group composed of a plurality of assembled core wires, a first binding tape wound around an outer circumference of the first core wire group, a first braided shield provided around an outer circumference of the first binding tape, a second binding tape wound around an outer circumference of the first braided shield, a second core wire group composed of a plurality of core wires arranged around an outer circumference of the second binding tape, a third binding tape wound around an outer circumference of the second core wire group, a second braided shield provided around an outer circumference of the third binding tape, and a jacket provided around an outer circumference of the second braided shield.
US09723767B2

On a circuit board configured to transmit a signal, a pulse transformer is provided on a path used for transmitting the signal of the circuit board. A shield member is provided on the circuit board to prevent noise, which is generated due to noise current flowing in a noise line pattern, from entering the pulse transformer. The shield member covers a part of a surface of at least one pulse transformer, the part intersecting concentric circles (which represent a magnetic field generated by the noise current) whose central axis extends along the direction in which the noise current flows.
US09723765B2

The exemplary embodiments herein provide an electronic display assembly having an electronic display surrounded by a front panel and a housing. An ingestion gap may be placed near a portion of the perimeter of the front panel while an exhaustion gap may be placed near an opposing portion of the perimeter of the front panel. A buffer zone may be defined between the ingestion gap and the exhaustion gap. A fan may be positioned to draw open loop fluid into the ingestion gap, through a channel behind the electronic display, and out of the exhaustion gap. This fan may also draw open loop fluid through an optional heat exchanger. A circulating fan may force circulating air through an optional heat exchanger.
US09723764B2

With respect to a stack unit in which a plurality of power cards and a plurality of coolers are stacked, each of the plurality of power cards housing semiconductor element, a technique for improving the fitting of a stack unit to a housing is taught. A stack unit is a unit that coolers and power cards are stacked. An outer frame binds a stack of the power cards and the coolers. The outer frame pressurizes the stack along with the stacked direction. Each of the coolers comprises a main body and a metal plate. The main body includes a flow channel of coolant and an opening provided at a position facing the power card. The metal plate has one surface closing the opening. A seal between the opening and the metal plate is secured by pressure of the outer frame.
US09723759B2

To avoid the need to operate in-chassis fans to cool rack-mounted servers in a data center, the data center is arranged into a hot aisle and a cold aisle. The cold aisle is adjacent to a first side of the rack mounted servers and receives cold air from a cold air supply unit. The hot aisle is adjacent to a second side of the rack-mounted servers and has a lower pressure than the cold aisle. Because of the pressure difference between the cold aisle and the hot aisle, cold air flows through the rack-mounted servers, cooling electronic equipment therein, into the hot aisle. Control systems are used to obtain sufficient cooling.
US09723748B2

A fan assembly for an electronics module is presented, the fan assembly includes a fan housing at least partially enclosing a fan, a first bracket assembly at a first end of the fan housing, the first bracket having a handle and a latching element, and a second bracket disposed on a second end of the fan housing. The handle is movable between an unlatched position for manual grasping of the handle and a latched position for allowing an air flow through the fan assembly.
US09723743B2

An electrical service interface system include an energy storage device and inverter mounted to a transformer tower, wherein each of the energy storage device and inverter include guide wheels configured to rollably mount the energy storage device and inverter to corresponding guide rails mounted to a support pad, and to align the energy storage device to the inverter, and the inverter to the transformer tower. In an installed configuration, the energy storage device electrically and mechanically couples to the inverter via a DC connector and one or more latching mechanisms, and the inverter mechanically and electrically couples to the transformer tower via an AC connector and one or more latching mechanisms.
US09723742B2

An integrated power rack for use in a data center is provided. The integrated power rack includes a top, a base, a first side and a second side extending between the base and the top, a back member extending between the top, the base, the first side, and the second side, a divider extending from the top to the base, the divider positioned between the first side and the second side, a revenue sub-compartment defined between the first side and the divider, the revenue sub-compartment configured to receive a plurality of revenue producing devices, and a power sub-compartment defined between the second side and the divider, the power sub-compartment housing power equipment that is configured to provide direct-current (DC) power to the revenue sub-compartment.
US09723740B2

The present disclosure relates to an electronic control apparatus for a vehicle, and the electronic control apparatus of the present disclosure includes: an electronic control element which includes an electronic control board which electrically controls each part of a vehicle, and a heating element which is positioned on a surface of the electronic control board; a cover and a base which accommodate the electronic control element; and a connector which is coupled to the electronic control element, in which an edge part where the cover and the base come into contact with each other is configured in a multi-step bent shape.
US09723732B2

A suspended segmented display array in one embodiment includes multiple cables offset from a wall via standoff members. Adjacent display panels attach to cables via finger releasable clamps and present varied and unique visual displays. A versatile and cost-effective display system thus is established that accommodates a wide range of content which can readily be changed out.
US09723728B2

A wiring board with a built-in electronic component includes a substrate having a cavity, an electronic component accommodated in the cavity, a conductive layer formed on the substrate and extending over the electronic component in the cavity, and a solder-resist layer formed on the conductive layer and having first and second openings such that the first openings are forming first pads including the conductive layer exposed by the first openings and that the second openings are forming second pads including the conductive layer exposed by the second openings. The second pads include portions of the conductive layer formed directly over the electronic component, respectively, and connected to the electronic component, the first pads include portions of the conductive layer formed on outer side with respect to the electronic component, respectively, and each second opening has an opening diameter which is formed smaller than an opening diameter of each first opening.
US09723726B2

A film composite with electrical functionality for application on a substrate includes at least one conductive structure, a first bonding coat, a film layer and a second bonding coat. The first bonding coat is disposed on an underside of the at least one conductive structure, wherein the first bonding coat has an adhesive effect for application of the at least one conductive structure on the substrate. The second bonding coat is disposed between an upper side of the at least one conductive structure and the film layer. The second bonding coat has an adhesive effect, by which the film layer adheres to the at least one conductive structure.
US09723725B2

In an example embodiment, a circuit interconnect includes a first printed circuit board (PCB), a second PCB, a spacer, and an electrically conductive solder joint. The first PCB includes a first electrically conductive pad. The second PCB includes a second electrically conductive pad. The spacer is configured to position the first PCB relative to the second PCB such that a space remains between the first PCB and the second PCB after the first electrically conductive pad and the second electrically conductive pad are conductively connected in a soldering process. The electrically conductive solder joint conductively connects the first electrically conductive pad and the second electrically conductive pad.
US09723720B2

In a device for producing and/or processing a workpiece, in particular circuit boards (1), in a work station (2), in particular for printing a corresponding blank or for checking finished circuit boards (1), at least one mark (15) is provided on the workpiece. In this arrangement, at least one reference (14), which can be brought into alignment with the mark (15), is provided in the work station (2).
US09723717B2

A substrate structure, a semiconductor package and a manufacturing method of semiconductor package are provided. The substrate structure comprises a conductive structure, an electrical component, a package body and a ring-shaped conductive structure. The conductive structure comprises a first conductive layer and a second conductive layer. The first conductive layer has a lower surface. The second conductive layer and the electrical component are formed on the lower surface of the first conductive layer. The package body encapsulates the conductive structure and the electrical component and has an upper surface. The ring-shaped conductive structure surrounds the conductive structure and the electrical component and is disposed at the edge of the upper surface of the package body to expose the conductive structure.
US09723710B2

A multi-layered electronic system has: a support substrate which supports at least a primary conductive track and a conductive shorting element, which are electrical isolated from one another. A security layer has at least a conductive security connection and a flexible switch element providing an electrical interruption to the conductive security track. The conductive security connection electrically engages the primary conductive track. The flexible switch element is coplanar with the conductive security connection. A dielectric substrate, to which the security layer is affixed, is secured to the support substrate. The electrical interruption of the conductive security connection is bridged by the switch element contacting the conductive shorting element under an actuation force provided from the direction of the dielectric substrate, the switch element being biased away from the conductive shorting element in the absence of the actuation force.
US09723707B2

A power module substrate includes a circuit layer, an aluminum layer arranged on a surface of an insulation layer, and a copper layer laminated on one side of the aluminum layer. The aluminum layer and the copper layer are bonded together by solid phase diffusion bonding.
US09723703B2

A laser-sustained plasma light source for transverse plasma pumping includes a pump source configured to generate pumping illumination, one or more illumination optical elements and a gas containment structure configured to contain a volume of gas. The one or more illumination optical elements are configured to sustain a plasma within the volume of gas of the gas containment structure by directing pump illumination along a pump path to one or more focal spots within the volume of gas. The one or more collection optical elements are configured to collect broadband radiation emitted by the plasma along a collection path. Further, the illumination optical elements are configured to define the pump path such that pump illumination impinges the plasma along a direction transverse to a direction of propagation of the emitted broadband light of the collection path such that the pump illumination is substantially decoupled from the emitted broadband radiation.
US09723702B2

A filament for a light bulb includes a tube and a filament material within the tube, wherein the filament material is configured to be in a liquid state while the light bulb is in use.
US09723699B1

Aspects comprise apparatus and methods for wirelessly powered lighting products. One aspect comprises an apparatus that generates light from a wirelessly coupled power source. The apparatus comprises a first conductive loop configured to enclose an area, the first conductive loop configured to resonate and generate an induced current when excited by a magnetic field generated by a transmitter. The apparatus further comprises a first set of one or more capacitive elements coupled to the first conductive loop, the coupled first conductive loop and first one or more capacitive elements configured to form a first resonant circuit. The apparatus also comprises a first set of one or more lighting devices integrated with the first conductive loop, the first set of one or more lighting devices each configured to generate a light based on the induced current that flows through the first set of one or more lighting devices.
US09723698B2

A remote control system and method for lighting apparatus may include at least a remote-controlled lighting apparatus and an intelligent communication device. The lighting apparatus comprises a lighting unit, a first central processing unit (CPU) and a first communication unit, and the intelligent communication device comprises a second CPU, a second communication unit and at least a button and a storage unit. The storage unit is configured to store a control program, the Universally Unique Identifier of the lighting apparatus and at least an operating command of the lighting apparatus corresponding to the sequential key-in signal. When activated, the control program can execute the operating command stored in the storage unit corresponding to the sequential key-in signal input by a user, and send the operating signal to the lighting apparatus through the second communication unit to remotely control at least a lighting unit of the lighting apparatus.
US09723690B2

The present disclosure discloses a method and a device for adjusting indoor brightness and a smart home control system. The method includes: detecting a display device to obtain brightness of the display device; generating indoor brightness based on the brightness of the display device; and adjusting brightness of an indoor lighting device based on the indoor brightness.
US09723684B2

An LED backlight driving circuit is disclosed. The present disclosure relates to the technical field of display, whereby the technical problem of the incorrect detection of the short circuit detection module when the open circuit malfunction occurs to one LED backlight unit and the output voltage of the LED backlight driving circuit rises can be solved.
US09723674B2

A current driver connected with light emitting diode (LED) bars of the maximum number N of channels and driving LED bars of M channels to be driven, includes: PWM input terminal configured to receive PWM-modulated external dimming pulse having duty cycle with a target light quantity common to the LED bars of the M channels; pulse measurement circuit configured to measure period and pulse width of the external dimming pulse and generate digital period data and pulse width data; interface circuit connected to external processor and configured to receive enable data and phase difference setting data; M current sources of the M channels to be driven and respectively connected with corresponding LED bars, and configured to be On-and-Off-switched in response to internal dimming pulse; and pulse generator configured to generate M internal dimming pulses and distribute the M internal dimming pulses to the M current sources.
US09723671B2

AC LED light engines powered directly from the AC power line contain circuitry of resistors, capacitors, diodes and transistors which enables a single string LEDs connected to series to efficiently produce light with a relatively low level of flicker as perceived by the human eye. The LEDs are driven by a current which is alternately capacitively-limited and resistively-limited. Capacitively-limited pulses of current are interposed between resistively-limited pulses of current so that the resulting output current ripple is at frequencies of 240 Hz or above which the human eye cannot perceive. The combination of resistively-limited current and capacitively-limited current results in a current drain from the power line which is generally sinusoidal and can have a power factor in excess of 0.70.
US09723670B2

A power supply device includes a power conversion module and a power regulating module. The power conversion module is configured to convert an AC electric power into a DC electric power. The power regulating module includes a microprocessor, a voltage-dividing resistor, a constant-voltage regulator, and a constant-current regulator. The voltage-dividing resistor is electrically connected to the setting resistor and the microprocessor. The constant-voltage regulator is electrically connected to the power conversion module, the dividing resistor, and the setting resistor; The constant-current regulator is electrically connected to the power conversion module and the microprocessor. A constant voltage is coupled to the dividing resistor and the setting resistor to impress a first adjustment signal and a second adjustment signal based on the setting resistor such that a driving signal outputted from the power regulating module to the power conversion module is adjusted to yield a desired voltage and a desired current.
US09723668B2

A switching converter for supplying power to a load, includes: an output circuit including at least a switching transistor, an inductive element, and a rectifying element configured to rectify a current flowing to the inductive element according to switching of the switching transistor; a control circuit configured to drive the switching transistor; a first capacitor configured to generate a power source voltage for the control circuit between both ends of the first capacitor; a start-up circuit installed between an input line to the switching converter and the first capacitor and configured to charge the first capacitor with an input voltage of the input line; and a discharge circuit configured to discharge the first capacitor when the switching converter is started up.
US09723661B2

An LED driver circuit includes a primary circuit and a circuit electrically isolated from the primary circuit, a transformer having a primary winding configured to receive power from an alternating current source and to generate power in a first secondary winding configured to provide power to the electrically isolated circuit, and to generate power in a second secondary winding configured to provide power to the primary circuit, and a conductor connected to an end of the first secondary winding and configured to connect a winding driver signal to the first secondary winding to generate power in the second secondary winding.
US09723660B2

A post mounted lamp includes: a lamp post; one or more light emitting diode (LED) devices disposed proximate to the top of the lamp post; a power factor (PF) correction circuit disposed proximate to the bottom of the lamp post; wires disposed in the lamp post to deliver PF corrected electrical power from the PF correction circuit to the one or more LED devices; and circuitry disposed proximate to the top of the lamp post to operate the one or more LED devices using the PF corrected electrical power.
US09723657B2

A method of three-dimensionally shaping articles, such as articles that are difficult to transport, includes the following successive steps: placing at least one flexible cord (1) on a former (10), the cord (1) incorporating a heating electrical resistance surrounded by at least a first set of yarns of thermoplastic polymer material; connecting the flexible cord (1) to an electrical power supply for a given duration to cause the thermoplastic polymer of at least the first set of yarns surrounding the heating resistance to soften, the cord then taking on the shape imposed by the former (10); cooling the cord; and optionally removing the former (10) in order to obtain the three-dimensional object.
US09723656B2

An automated mobile vehicle configured to autonomously provide coverage for inoperable infrastructure components at various locations. In accordance with disclosed embodiments, a plurality of automated mobile vehicles are deployed to provide emergency lighting, a wireless network, audio, video, etc., at an indoor and/or outdoor event area.
US09723654B2

There is provided an information processing system including a service provider unit, a communication terminal and an information processing unit. The communication terminal includes a terminal first communication section, a terminal second communication section to communicate with the information processing unit through a first communication channel, a terminal third communication section to communicate with the information processing unit through a second communication channel, and a terminal communication control section. The information processing unit includes a unit first communication section to communicate with the communication terminal through the first communication channel, a unit second communication section to communicate with the communication terminal through the second communication channel, a unit communication control section to switch communication channels with the communication terminal from the first communication channel to the second communication channel, and a unit processing section to perform service processing with the service provider unit.
US09723649B2

A method and an apparatus are provided for improving availability of a circuit switched (CS) service to a user equipment (UE). The UE sends at least one location area update (LAU) message, to a core network (CN), to initiate an LAU procedure. A release of a CS signaling connection between the UE and the CN is detected due to a failure in the LAU procedure. An ongoing PS signaling connection between the UE and the CN is identified, when the CS signaling connection between the UE and the CN is released. The ongoing PS signaling connection is released. A public land mobile network (PLMN) is selected for obtaining CS services from the core network, when the ongoing PS signaling connection is released.
US09723634B2

An example method in a user equipment comprises generating a random access preamble signal and transmitting the random access preamble signal. This generating of the random access preamble signal comprises generating a Single-Carrier Frequency-Division Multiple Access (SC-FDMA) random access preamble signal comprising two or more consecutive preamble symbol groups, each preamble symbol group comprising a cyclic prefix portion and a plurality of identical symbols occupying a single subcarrier of the SC-FDMA random access preamble signal. The single subcarrier for at least one of the preamble symbol groups corresponds to a first subcarrier frequency and the single subcarrier for an immediately subsequent one of the preamble symbol groups corresponds to a second subcarrier frequency.
US09723629B2

There is provided a wireless communications system (1000) including a wireless device (100) and a wireless communications node (300). The wireless communications node (300) transmits in a reference signal sequence to the wireless device (100) a first code sequence (485) and a second code sequence (486). The first code sequence (485) carries information identifying a physical resource block that carries an enhanced physical downlink control channel (ePDCCH) and the second code sequence (486) carries information identifying a control format indicator.
US09723621B2

A method, a computer program product, and an apparatus are provided. The apparatus determines a degree of a link based on interference observed from at least one other link, determines a priority of the link based on the determined degree, and decides whether to yield based on the determined priority. The priority of the link may further be based on a determined data rate of the link. The apparatus may transmit the priority to another device via a request to send (RTS) signal and/or a clear to send (CTS) signal. The apparatus may also determine a priority associated with an active link and decide whether to yield to the active link by comparing the determined priority of the link with the priority of the active link.
US09723616B2

A method and apparatus assigning Physical Resource Blocks, PRBs, to a User Equipment, UE, in a wireless communication network having a plurality of cells, includes determining a Physical Cell Identifier, PCI, of a cell from the plurality of cells. Selecting a power level pattern of multiple PRBs for allocation, and assigning at least one of the multiple PRBs to the UE.
US09723615B2

Embodiments of the disclosure provide a system and method for providing channel feedback information (CFI) from a user equipment device to a base station. CFI is transmitted from the user equipment device on first and second communication channels. The user equipment device is operable to measure the channel rank of a downlink channel and to select a preferred channel rank that is used to configure the CFI that is transmitted to the base station. The base station is operable to use the preferred channel rank to interpret the CFI transmitted by the user end device.
US09723613B2

A carrier allocating apparatus including processing circuitry and a method and terminal, where the processing circuitry is configured to: determine a carrier parameter according to parameter information of the terminal, where the carrier parameter is configured to indicate a carrier needed by the terminal, and the carrier parameter includes a carrier type, the carrier type includes a Legacy Carrier Type (LCT) and a New Carrier Type (NCT), where the parameter information of the terminal includes a current carrier configuration of the terminal and a service type; perform a corresponding carrier allocation on the basis of the determined carrier parameter. A demand for a carrier is determined according to parameter information of the terminal, and then the needed carrier is allocated to the terminal. The apparatus can improve quality of service of the terminal in a system and improve user experience.
US09723612B2

A method for communicating with wireless user devices includes receiving a signal at a DAU, the signal residing within a first frequency band and processing the signal at the DAU. The method also includes transmitting the processed signal from the DAU and receiving the transmitted signal at a DRU. The method further includes converting the signal to a second frequency band different than the first frequency band.
US09723611B2

The present invention relates to a wireless communication system and more specifically, to a method for supporting a basic service set (BSS) in a wireless LAN system and an apparatus therefor. According to one embodiment of the present invention, a method for supporting a BSS by an access point (AP) in a wireless LAN system can comprise the steps of: scanning an overlapping BSS (OBSS); and selecting a primary channel for a new BSS of the AP from channels for which a beacon is not detected during the OBSS scanning. The primary channel can be selected from all channels except the secondary channel of the OBSS. In addition, if the new BSS supports an operating channel having a 4 MHz, 8 MHz or 16 MHz channel bandwidth, a primary channel having a 2 MHz channel bandwidth can be chosen for the new BSS.
US09723610B2

A device for transmitting data to a network includes a source subsystem and a communication subsystem. The source subsystem generates a first data packet that includes first timing information that is based on a time that the first data packet is generated. The first timing information is generated responsive to a first timing generator included in the source subsystem. The communication subsystem is coupled to the source subsystem via one or more abstraction layers and is configured to modify the first data packet to generate a modified data packet for transmission to the network. The modified data packet includes the first timing information and second timing information that is based on a time that the modified data packed is transmitted. The communications subsystem includes a second timing generator that is linked to the first timing generator through the one or more abstraction layers to generate the second timing information.
US09723591B2

Independent signalling method for bearer management in a communication network with transporting bearer resource request message of both the UE and RN via Base station to managing entity of RN within EPC, as a signalling message over uplink channel referred to as ‘Union of Resource Request (UR Request)’ message. The bearer resource response message referred to as ‘Independent Admission Response (IA Response)’ from one of the management entity of EPE or management entities of UE and RN within EPC are transported as a signalling message to Evolved Packet Edge (EPE) via Base station over the downlink channel. This manages bearer setup signalling as a single loop, by transportation of ‘UR Request’ signalling message and receiving one “Independent Admission Response” signalling message over uplink and downlink channels respectively. EPE is a conglomeration of network nodes comprising of UEs, RNs and all other network nodes that communicate over EPC via Base station.
US09723589B2

A method and electronic device are disclosed herein. The electronic device includes a display and at least one processor. The at least one processor is configured to implement the method, including receiving a first notification for a first application, generating, by at least one processor, a first notification page including at least a part of the first notification, generating an abstract page including a first object related to the first notification and displaying the abstract page on a display, and switching from displaying the abstract page to displaying the first notification page in response to detecting an input signal selecting the first object, wherein the abstract page and the first notification page are generated and displayed based on a same application or home application.
US09723587B2

Embodiments of the present invention provide a movement information processing method and system, a user equipment, and an access network device. In one embodiment, a UE measures a characteristic parameter of a cell to be measured, and then obtains movement information of the UE according to a change of the characteristic parameter within a predetermined time. In this way, the UE can send the movement information to an access network device and the access network device executes a movement-related operation according to the movement information.
US09723580B2

Synchronization of plural outputs of data transported by a wireless network is facilitated by bandlimiting a sample clock signal controlling a rate at which data is processed by the network's devices and/or bandlimiting wall time data controlling the real time for presenting a datum.
US09723575B2

The present disclosure provides a power control method and a wireless device, in a cluster comprised of wireless devices including a first wireless device and a second wireless device, comprising: receiving power control information including a second data channel transmission power, from the second wireless device; determining a first data channel transmission power based on the second data channel transmission power; and controlling data channel transmission power of the first wireless device according to the first data channel transmission power; wherein, the first data channel transmission power is a power allowing the first wireless device to reach all wireless devices in the cluster, and the second data channel transmission power is a power allowing the second wireless device to reach all wireless devices in the cluster.
US09723570B2

Embodiments of the present invention disclose a power control method and apparatus, where the method includes: performing a slow fading evaluation on an uplink channel of a UE to obtain a slow fading value of the uplink channel; comparing the slow fading value with a target slow fading value to obtain a first comparison result; generating, according to the first comparison result, first control signaling of a downlink control channel corresponding to the uplink channel, where the first control signaling is used to instruct the UE to adjust transmit power of the UE on the uplink channel; and sending the first control signaling to the user equipment UE. In the embodiments of the present invention, making full use of power efficiency, improving a cell throughput, and reducing neighboring cell interference.
US09723569B2

The present invention is designed to provide a radio communication system which can control uplink transmission power adequately even in an HetNet environment. A radio communication system having a first radio base station apparatus and a second radio base station apparatus that is configured to able to communicate with the first radio base station apparatus is provided; and, in this radio communication system, the first radio base station apparatus has a first communication quality measurement section that measures the received quality of an uplink reference signal transmitted from a user terminal, and generates first received quality information, and a reporting section that reports the first communication quality information to the second radio base station apparatus, and the second radio base station apparatus has a second communication quality measurement section that measures the received quality of the uplink reference signal transmitted from the user terminal, and generates second communication quality information, a correction value determining section that determines a correction value for the transmission power of the user terminal on the uplink based on the first communication quality information and the second communication quality information, and a reporting section that reports the determined correction value to the user terminal.
US09723567B2

A method implemented in an access point (AP) having N antennas used in a wireless communications system including two first client devices each of which has M antennas and two second client devices each of which has N antennas, where M and N are even is disclosed. The method comprises: performing interference alignment (IA) in common vector spaces; and delivering M+N streams. Other methods, systems, and apparatuses also are disclosed.
US09723564B2

Systems and methods for power management of a mobile electronic device. During operation of a modular mobile electronic device, module power characteristic data of a plurality of modules coupled to the electronic device is collected. Each module is coupled to the electronic device via a respective module interface of the electronic device. A module power model is updated for at least one module of the plurality of modules based on module power characteristic data collected for the at least one module. A context-aware power budget of the electronic device is updated based on updating of the module power model for the at least one module. Module power flow of the electronic device is adapted based on updates to the context-aware power budget. Adapting module power flow includes adapting allocation of power in real-time to at least one power consumer module coupled the electronic device via a respective module interface.
US09723562B2

A position-based mobile terminal power management device, includes a positioning module connected to the power management and control module; a network connection monitoring module connected to the power management and control module; a power management and control module connected to the positioning module, network connection monitoring module, storage module, and terminal function module respectively; a storage module connected to the power management and control module; and a terminal function module connected to the power management and control module. With the device, a mobile terminal can automatically enable or disable the accessory devices thereof according to the position of the mobile terminal, thus saving power and facilitating use by a user.
US09723547B2

Embodiments describe methods, apparatuses and logic for a user equipment (UE) to connect to an access point (AP) in a wireless local area network (WLAN) based on credentials from a UE's home third generation partnership project (3GPP) network. In some embodiments, the UE may receive selection policy parameters from the WLAN including a network access identifier (NAI) realm. The UE may also receive selection policy parameters from the 3GPP network. The UE may compare the selection policy parameters of the WLAN with the selection policy parameters of the 3GPP network and discover roaming relationships between service providers and the relative priorities of different networks, and create a network list based on the comparison. The UE may then associate with an AP of the WLAN based on the prioritized network list.
US09723544B2

Registration rejections are reported to a universal integrated circuit card (UICC). Remote access can be provide to registration rejection data stored in the UICC, the registration rejection data can be transmitted to a service provider, one or more UICC applications can be executed based on the registration rejection data, and/or the registration rejection data can be logged or tracked. In addition, action taken by the UICC can be automated based on the registration rejection using artificial intelligence.
US09723542B2

According to an embodiment of the present invention, a method for transmitting a discovery signal related to device to device (D2D) communication by a first UE in a wireless communication system comprises: mapping a codeword related to a discovery signal to two or more pairs of physical resource blocks (PRBs) on a time axis; and transmitting the mapped codeword, wherein a first pair of PRBs of the two or more pairs of PRBs includes a resource area for a first signal and whether an n-th (n>=2) pair of PRBs of the two or more pairs of PRBs includes the resource area for the first signal is determined according to whether a next subframe of a subframe including an (n−1)-th pair of PRBs is for an uplink transmission.
US09723536B2

In an Long Term Evolution (LTE) environment, LTE base stations may collect relevant data from subscribing wireless devices, as well as from nearby LTE base stations and WLAN access points. Based on the collected data, as well as data of the base station itself, the base station may make a determination as to whether to institute offloading of some or all of the subscribing UEs. Rather than independently communicating the offload command to each of the UEs, the base station may issue a broadcast notification that may be decoded by all of the UEs for performing offloading. In order to mitigate a surge of offloading, the base station can include surge prevention parameters in the broadcast message to distribute or reduce offloading.
US09723526B2

A technique forwards handover data in a wireless communication system. A base station apparatus includes a first buffer for storing downlink data of a terminal, a handover agent for, when the terminal performs a handover, performing scheduling on data which is stored in the first buffer for at least one terminal including the terminal that performs the handover so that an interruption time of the at least one terminal is reduced in order to forward the data to a target base station, and a communication unit for transmitting the data according to a scheduling result of the handover agent.
US09723505B2

A method and a system for handling in-device coexistence interference in a user equipment are provided. The method includes detecting in-device coexistence interference between one or more of a plurality of carrier frequencies of Long Term Evolution (LTE) radio technology and at least one frequency of non-LTE radio technologies, determining at least one of the one or more of the plurality of LTE carrier frequencies for which a measurement object is configured, and transmitting interference information associated with the at least one LTE carrier frequency affected by the in-device coexistence interference. The interference information includes a measurement object identifier of the at least one carrier LTE frequency, Direction of Interference (DOI), and time domain multiplexing assistance information. The method further includes receiving a configured method from the network entity which help mitigate the in-device coexistence interference at the user equipment.
US09723501B2

A device may be configured to determine a current state of each of multiple operator network devices that provide a service via an operator network. The device may determine an allowable event at an operator network device based on the current state of the operator network device and model information that models behavior of the operator network device for the service. The device may monitor events at the operator network devices during a session. The device may detect that an allowable event for the operator network device does not occur during the session. The device may determine that a fault occurred at the operator network device during the session based on the allowable event not being detected at the operator network device. The device may provide fault information that indicates the fault occurred at the operator network device.
US09723494B2

A method includes identifying a location of at least on of a plurality of electronic devices within an area of interest. The method includes, based on at least the location of the at least one of the plurality of electronic devices, determining signal strength at a plurality of points within the area of interest. The method includes providing a modification of the area of interest to improve the signal strength at one of the plurality of points.
US09723483B2

A mobile electronic device according to an embodiment has an identifier, a determiner, and a permitter. The identifier identifies the operating system of a mobile terminal to which its own device is connected and determines whether the identified operating system is a prescribed operating system. If the identifier determines that the identified operating system is the prescribed operating system, the determiner performs processing to determine whether or not authentication data held in its own device and authentication data held in an authentication data holding device that can communicate via a network match. If the determiner determines that there is a match, the permitter permits data processing using processing data held in a processing data holding device that can communicate via the network.
US09723471B2

Triggering an event of interest in a mobile device based on communications established with nearby wireless devices can include receiving a challenge of the event of interest; obtaining a corresponding expression of a combination key with reference to the event in response to the challenge; receiving an identified data of the wireless devices in the vicinity of the mobile device; comparing the identified data with the expression to determine if the expression is a true value; and executing the event of interest in response to the true value.
US09723467B2

An interoperability gateway performs a method for setting Quality of Service for a bearer in response to an emergency event. The method includes the interoperability gateway performing: receiving a indication of an emergency event for a first user, wherein the first user is operating a first device in a first network of a first network type; responsive to receiving the indication, determining a set of devices related to the first user, wherein the set of devices includes the first device and at least a second device operating in a second network of a second network type; instructing the second network to modify at least one Quality of Service setting for the second device.
US09723460B1

A method and system for managing email or other messaging and attachments to messages which are forwarded to devices having limited processing and memory capacity. The method includes the steps of: receiving a user configuration categorizing messages for the user by elements of the message; accessing the user message datastore upon receipt of at least one new message for the user to a user data store; comparing said at least one new message to a set of user specific rules; rendering a message summary including at least one link accessible by the processing device, the link enabling action with respect to the message when selected by the user; and outputting the message summary to a user device.
US09723457B2

A vehicle-to-vehicle (V2V) communication device manages a cluster including the V2V communication device and at least one of other V2V communication device. The V2V communication device determines a cluster description specifying one or more characteristics of the cluster indicates the cluster description over a cellular network to a network node. The network node receives the cluster description and, on the basis of the received cluster description, assigns to the cluster a set of resources for V2V communication. The network node sends a resource assignment over the cellular network to the V2V communication device. The resource assignment indicates the assigned set of resources. The V2V communication device receives the resource assignment and assigns resources from the set of resources to the V2V communication devices of the cluster. Further, the V2V communication device indicates the assigned resources to the at least one further V2V communication device of the cluster.
US09723454B2

A method for freight vehicle monitoring includes obtaining historical telecommunications data, performing vehicle location identification using the historical telecommunications data, wherein performing the vehicle location identification comprises using a machine learning based algorithm to determine one or more meaningful vehicle locations, identifying, based on the one or more meaningful vehicle locations, if one or more telecommunications devices are those of a freight vehicle occupant, and tracking a location of the one or more telecommunications devices identified as those of a freight vehicle occupant.
US09723451B2

The present application relates to a method for providing location information of a terminal (30) and in a communication network (10). According to the method, a location information indicating a location of the terminal (30) in the communication network (10) is determined by the terminal (30). Furthermore, a time information indicating a time at which the terminal (30) is located at the location indicated by the location information is determined by the terminal (30). The location information and time information is transmitted by the terminal (30) to a base station (20) or to another terminal (30) of the communication network (10).
US09723450B2

A system to infer place data is disclosed that receives location data collected on a user's mobile electronic device, recognizes when, where and for how long the user makes stops, generates possible places visited, and predicts the likelihood of a user to visit those places.
US09723445B1

Interactions between users on mobile devices can be facilitated by making the users aware when other users have performed similar searches. In one embodiment, when two users executing a mapping application on a mobile device each perform a similar search in a similar geographic area, the server that receives and performs the search request can make each user aware of the other's presence, for example by displaying an icon indicating the other user on the mapping application. The search results may be refined to indicate search results in a geographic area common to the geographic search areas of each user.
US09723442B2

Method and apparatus to analyze and present location information in an easy-to-digest manner are disclosed. In one embodiment, each piece of location information can include a piece of location-designating information and a piece of location-related information. Location-designating information is primarily for identifying location. Location-related information is information related to location-designating information. The location-designating information and the location-related information can be supplied by a mobile device. With the help of location-related information, each piece of location-designating information can be more accurately transformed into a label to help identify a location. The amount of location information can be reduced. All of the location-designating information pertaining to a given area can be consolidated into one piece of location-designating information related to the label. Consolidation of some of the information may not occur if a piece of location-related information changes by more than a preset value. To better present location information in an easy-to-digest manner, location information can be compared to standards. Presentation can be on a display with respect to a reference location.
US09723439B2

Some demonstrative embodiments include apparatuses, systems and/or methods of Neighbor Awareness Networking (NAN) Geo-Fencing. For example, an apparatus may include circuitry configured to cause a Neighbor Awareness Networking (NAN) device to process a plurality of geo-fencing parameters of a geofence from an application on the NAN device; and perform geo-fencing with another NAN device based on the geo-fencing parameters.
US09723438B2

Techniques for use in a wireless communication device for displaying a map are described. The device receives via a user interface a selection of a hypertext link object in an electronic file or message. The object is associated with a URL string which includes a server address and location data corresponding to a location. When a mapping application is installed in the device, the device executes the mapping application for rendering a map of the location in response to receiving the selection of the object. When the mapping application is not installed in the device, the device executes a web browser of the device for receiving and displaying a map image of the location in response to receiving the selection of the object.
US09723432B2

An information providing system provides delivery information using identification information of an object equipped with a wireless communication function. The information providing system includes a registering unit that registers in advance first link information linking the identification information of the object to the delivery information; a generating unit that generates second link information linking the identification information of the object to delivery information different from the delivery information of the first link information, based on the identification information of the object and identification information of a plurality of information terminals, acquired by communication with the information terminals, which can communicate with the object; and an information providing unit that delivers the delivery information linked by the second link information.
US09723429B2

The present invention relates to a method for processing notification messages in a machine-to-machine (M2M) system and devices for same, the method comprising the steps of: processing by an M2M device one or more notification messages; and transmitting the processed notification message(s), wherein: the one or more notification messages are generated as an originator device detects a change in the resources to subscribe to comprising, as a child resource, a subscription resource configured in the originator device; the one or more notification messages comprise implementation information configured based on the policy information configured in the originator device for the processing of the one or more notification messages; the one or more notification messages are processed based on the implementation information; the one or more processed notification messages are transmitted comprising the implementation information; and the subscription resource and the resources to subscribe to exhibit a data structure uniquely addressable by using a unique address.
US09723425B2

Improved methods and devices for processing low-frequency audio data are provided. A bass extraction process may involve applying low-pass filters to received audio object signals, to produce extracted low-frequency audio signals. The bass extraction process may be performed prior to a process of rendering audio objects into speaker feed signals. A bass management process may involve routing the extracted low-frequency audio signals to the one or more speakers capable of reproducing low-frequency audio signals.
US09723423B2

An acoustic transducer has a back plate having a fixed electrode, a diaphragm that is opposed to the back plate with a gap interposed therebetween and that serves as a movable electrode, and a stopper protruding from a face of the back plate or the diaphragm, which is on a side of the gap. The stopper includes a conductive section electrically isolated from the fixed electrode and the movable electrode. The conductive section comes in contact with a front face of the fixed electrode or the movable electrode opposed to the stopper through deformation of the diaphragm.
US09723422B2

The application relates to an audio processing system and a method of processing a noisy (e.g. reverberant) signal comprising first (v) and optionally second (w) noise signal components and a target signal component (x), the method comprising a) Providing or receiving a time-frequency representation Yi(k,m) of a noisy audio signal yi at an ith input unit, i=1, 2, . . . , M, where M≧2; b) Providing (e.g. predefined spatial) characteristics of said target signal component and said noise signal component(s); and c) Estimating spectral variances or scaled versions thereof λV, λX of said first noise signal component v (representing reverberation) and said target signal component x, respectively, said estimates of λV and λX being jointly optimal in maximum likelihood sense, based on the statistical assumptions that a) the time-frequency representations Yi(k,m), Xi(k,m), and Vi(k,m) (and Wi(k,m)) of respective signals yi(n), and signal components xi, and vi (and wi) are zero-mean, complex-valued Gaussian distributed, b) that each of them are statistically independent across time m and frequency k, and c) that Xi(k,m) and Vi(k,m) (and Wi(k,m)) are uncorrelated. An advantage of the invention is that it provides the basis for an improved intelligibility of an input speech signal. The invention may e.g. be used for hearing assistance devices, e.g. hearing aids.
US09723420B2

A system and method for measuring the performance of a plurality of transducers integrated in one or more loudspeakers is described. The method simultaneously drives each transducer to emit sounds corresponding to distinct orthogonal test signals. A listening device senses sounds produced by the orthogonal test signals and analyzes the sensed audio signal to determine the performance of each transducer. By using orthogonal test signals, the multiple transducers may be measured and/or characterized simultaneously and with limited affect from extraneous noises.
US09723419B2

Provided are a system and method for evaluating sound system performance, comprising: representing an audience space is represented on a surface of a sphere. The sphere has a center that is substantially collocated with a center of a sound system. An efficiency of the sound system is calculated by determining an amount of energy produced by the sound system that reaches the audience space projected onto the sphere relative to a total amount of energy produced by the sound system. A metric is generated for a function by normalizing the efficiency by a ratio of an area of the audience space relative to a total area of the sphere to produce a score for the performance of the sound system.
US09723417B2

An apparatus and a method for inputting audiogram using a touch input are provided. An audiogram input apparatus includes: an input receiver configured to receive a touch input from a user; a data processor configured to generate an audiogram corresponding to the touch input; and a display unit configured to display the generated audiogram.
US09723414B2

A method performs signal processing in a binaural hearing device that has first and second hearing aids with first and second microphones producing first and second signals and with first and second sound generators. The first and second signals ascertain a direction of a main sound source. A deviation in the direction from a frontal direction prompts the hearing aid that is closer to the main sound source to be defined as the local hearing aid and the hearing aid that is more remote from the main sound source to be a remote hearing aid. The local hearing aid, in one frequency band, filters the first signal using an angle-dependent first filter factor, and thus produces a first filtered signal. The first signal, the second signal and/or the direction of the main sound source is used for determining an adaptation coefficient, a first adapted signal and a local directional characteristic.
US09723411B2

A piezoelectric speaker driving system includes a band splitter, a plurality of gain producers, an adder, a piezoelectric speaker, a sound compensator and a gain-adjusting device. The band splitter receives a first audio signal and splits the first audio signal into band signals. The gain producers gain the band signals respectively. The adder receives the gained band signals to generate a second audio signal. The piezoelectric speaker outputs a sound according to the second audio signal. The sound compensator analyzes a sound pressure level of the sound to generate a control signal. The gain-adjusting device adjusts the gains of the gain producers according to the control signal.
US09723409B2

A vehicle audio system includes a vehicle panel having an inner surface and an outer surface defining an exterior surface of the vehicle. A transducer is mounted to the vehicle panel being configured to be connected to and operated by an amplifier. The transducer has a base mounted to the vehicle panel and causes the vehicle panel to vibrate and create an audio output.
US09723406B2

A set of audio output devices may be established and configured to output channel specific audio. Once established, the channel configuration may be changed and updated in response to events such as changes to user preference, or the addition or subtraction of audio output devices to the network. In some embodiments, the reconfiguration may be performed on the fly while audio content is being outputted by the audio output devices.
US09723405B2

Apparatus (301) for switchable attenuation of a differential input signal from a microphone includes positive and negative non-attenuating paths (406, 410) have n- and p-type MOSFETs (421, 422, 423, 424) in back-to-back configurations; positive and negative attenuating paths (405, 409) have n- and p-type MOSFETs (415, 416, 418, 419) in back-to-back configurations in combination with resistors; a gate driver (425) applies a drive signal of one polarity (QNEG) to gates of the n-type MOSFETs in the attenuating paths and the p-type MOSFETs in the non-attenuating paths, and a drive signal of opposite polarity (QPOS) to the gates of the p-type MOSFETs in the attenuating paths and the n-type MOSFETs in the non-attenuating paths; and the state of the MOSFETs depends on the drive signals at their gates, and thus the input signal may be routed via either the non-attenuating paths or the attenuating paths by controlling the drive signals.
US09723400B2

An acoustic device having a housing and an acoustic transducer is disclosed. The housing has a transducer space for the acoustic transducer, and a back volume space. The back volume is filled with a sound adsorber material. The sound adsorber material in the back volume space is configured to virtually increase the size of the back volume space, and shift the resonant frequency of the back volume space. The acoustic chamber for the acoustic transducer and the sound adsorber material is integral to the split-shell housing of the acoustic device. The sound adsorber material is retained in a portion of the acoustic chamber by an acoustically permeable material that facilitates gas exchange within the back volume space, and between the sound adsorber material and the transducer space. The acoustically permeable material is configured in different arrangements to facilitate the gas exchange.
US09723398B2

A modular loudspeaker includes a plurality of chambers and a plurality of vibration plates. Each vibration plate is fixed to two chambers, to cause the chambers to be secured to each other in a certain orientation by the vibration plates. A vibrator is attached to each vibration plate. A processor and a wireless communication unit are received in each chamber. The vibrator attached to each vibration plate is electrically connected to the processor, and the processor is configured to control the vibrator to vibrate when the loudspeaker receives a wireless audio signal via the wireless communication unit, thereby causing the vibration plate to vibrate and output sound.
US09723393B2

A wireless headset receives audio data wirelessly from a television receiver and outputs audio to the user through earphones. The wireless headset includes an inertial sensor that detects an orientation of the user's head. If the orientation of the user's head indicates that the user is sleeping, then wireless headset turns off the wireless receiver, thereby saving battery life.
US09723390B2

A case for a mobile device includes portion having a port configured to receive a power cord input, an aperture configured to receive an earbud, an electrical contact configured to engage a charging contact of the earbud, an electrical connection configured to engage the port with a power input port of the mobile device, and an electrical connection configured to engage the port with the electrical contact of the earbud.
US09723385B2

A procedure for transferring wavelengths, and a system that operates in accordance with the procedure. The system comprises at least one network terminal, each including a switch and a controller. A plurality of wavelength sets are applied to the switch. The controller is arranged to operate the switch such that the switch (a) selects at least one wavelength from at least one of the plurality of wavelength sets, based on electrical monitoring at a port module external to the network terminal, and (b) outputs the at least one wavelength to an output of the at least one network terminal.
US09723379B2

Automated infrastructure management systems and methods document infrastructure elements within a facility, provide a comprehensive record of all network-connected equipment within a facility, and facilitate trouble shooting of network-connected equipment. An automated infrastructure management system includes a plurality of intelligent patch panels, each comprising a plurality of connector ports connected to individual communication channels of a network, a controller in communication with at least some of the intelligent patch panels that obtains connectivity information for the intelligent patch panel's ports, and management software in communication with the controller. The management software performs various functions including correlating the interconnection information for the intelligent patch panels with the physical location information for telecommunications in its database, applying energy management policies to a respective communication channel, providing real time physical location information for devices connected to communication channels to a network switch, and displaying real time physical location information of the devices.
US09723375B2

A method of processing an interactive service and an apparatus thereof are disclosed. The present invention includes sending a discovery message to a second screen application, receiving a request for descriptions of the second screen support services, sending a response with the descriptions, receiving a trigger, and delivering the trigger to the second device using a trigger service.
US09723370B2

A smart receiver and smart transmitter for CATV networks where distortion is minimized using a spectrum analyzer.
US09723364B2

Methods, apparatus, systems and articles of manufacture for media monitoring based on predictive signature caching are disclosed. Disclosed example methods include processing historical metering data provided by a meter monitoring media presented at a monitored site to predict media exposure to occur at the monitored site during a future monitoring interval. Disclosed example methods also include obtaining reference signatures representative of reference media predicted to be presented at the monitored site during the future monitoring interval. Disclosed example methods further include providing the reference signatures to the meter prior to the future monitoring interval to cache at the meter to perform media monitoring during the future monitoring interval.
US09723359B2

As part of a communication session, a wireless source device can transmit video component data and metadata to a wireless sink device. The wireless source device can intercept the video component data prior to the video component data being rendered by the wireless source device, and the wireless sink device can generate a frame of video data based on the video component data and the metadata.
US09723358B1

Disclosed is a USB docking station and a control method thereof. The USB docking station comprises a micro controller, a first signal multiplexer and a second signal multiplexer, a video signal processor, and a video signal converter. The first signal multiplexer chooses and outputs a first video signal from a first data signal output from a first electronic device. The second signal multiplexer chooses and outputs a second video signal from a second data signal output from a second electronic device. According to a first control signal from the first electronic device or a second control signal from the second electronic device, the micro controller controls the video signal processor to process the first video signal or the second video signal. The video signal converter converts the processed first video signal or the processed second video signal to a video output signal for displaying.
US09723356B2

A method for providing information which is performable by a display device is provided. The method includes: receiving at least one piece of broadcasting program information; obtaining at least one of viewing history information which relates to at least one piece of content that was watched before a predetermined point of time and recording information which relates to at least one piece of content that was recorded before the predetermined point of time; and displaying at least one piece of broadcasting program information from among the at least one piece of broadcasting program information which corresponds to the predetermined point of time on a first region of the display device based on the predetermined point of time, and displaying at least one of the viewing history information and the recording information on a second region of the display device based on the predetermined point of time.
US09723350B2

A control device is provided. The control device includes a communication interface unit which requests and receives menu information from a broadcast receiver, a determination unit which determines a control mode of the control device, a user interface unit which displays the received menu information in a user interface window according to the determined control mode, and a control unit which, if a command to control the broadcast receiver is input through the user interface unit, controls the communication interface unit to transmit the input control command to the broadcast receiver.
US09723337B2

A distribution control system includes a generating unit configured to generate still image data from content data; a converting unit configured to convert the still image data into video data; and a transmitting unit configured to transmit the video data to a communication terminal.
US09723328B2

One particular implementation of the present invention may take the form of a method and system for encoding decoding 3-D multimedia content. In one example, visual content having a plurality of source frames may be processed to create a plurality of first and second type frames from each of the plurality of source frames. The plurality of first and second type frames may be arranged to create modified content, and generating a distinguishing signal for the visual content, which may distinguish the first type frame from the second type frame. In another examples, the present invention may take the form of a method decoding 3-D multimedia content encoded with at least content frames and null frames. The method may operate to receive the 3-D multimedia content, extract at least one content frame, at least one null frame, and display information. The method may further operate to reconstruct the content and null frames in a display-sequential manner using the display information to indicate the display order of the at least one content frame. In some examples, the method and system for encoding and decoding multimedia content may encode the multimedia content such that the at least one null frame may not be displayed by a display device.
US09723324B2

When a block (MB22) of which motion vector is referred to in the direct mode contains a plurality of motion vectors, 2 motion vectors MV23 and MV24, which are used for inter picture prediction of a current picture (P23) to be coded, are determined by scaling a value obtained from averaging the plurality of motion vectors or selecting one of the plurality of the motion vectors.
US09723319B1

Systems and methods of managing H.264 compliant video that lacks B Frames include decoding without the use of a significant video frame buffer. This variant of the H.264 standard may include a flag indicating that the video does not include B Frames. The video may be used in applications, such as computer games, in which processing of B Frames introduces undesirable lag.
US09723318B2

Methods and devices transform image data, which are transformed by a compression filter before being compressed and stored in a reference image memory. In an extension, an inverse transformation to that of the compression filter is performed by a decompression filter when image data from the reference memory are read out and decompressed. The methods and devices can be used for image compression methods and image decompression methods that use reference image memories.
US09723314B2

A system, circuit and method are provided herein for reducing perceived flicker in video images transmitted using compression and bit rate control. According to one embodiment of the method, a parameter used in the video compression scheme is stored. The parameter stored is one that is subject to adjustment during normal operation of the video compression scheme. Compressed video frame data issued by a compression encoder is used to test for a still-picture condition. When a still-picture condition is detected, the value of the parameter used by the video compression scheme is fixed to the stored value for the duration of the still-picture condition. An embodiment of the system includes an encoder, buffer, bit rate controller, and flicker reduction circuit. An embodiment of the flicker reduction circuit includes a still-picture detection circuit operably coupled to a compressed data path beginning at the output of the encoder.
US09723311B2

A method and a device for encoding/decoding images are disclosed. The method for encoding images comprises the steps of: deriving a scan type of a residual signal for a current block according to whether or not the current block is a transform skip block; and applying the scan type to the residual signal for the current block, wherein the transform skip block is a block to which transform for the current block is not applied and is specified on the basis of information indicating whether or not transform for the current block is to be applied.
US09723304B2

The present technique relates to an image processing device and a method therefor allowing rate control to be performed more easily. An image encoding device that encodes image data to generate an encoded stream includes: a setting unit configured to set binary parameters used for defining the size, the accumulated data amount, and the like of a hypothetical decoder defined in the encoded stream obtained by encoding the image data in binary data generated by arithmetic coding; an encoding unit configured to encode image data to generate an encoded stream; and a transmitting unit configured to transmit the binary parameter set by the setting unit and the encoded stream generated by the encoding unit to an image decoding device that decodes the encoded stream via a predetermined transmission path such as a recording medium or a network. The present disclosure can be applied to image processing devices, for example.
US09723303B2

Embodiments of the invention are directed to a system for generating video test pattern signals from definitions contained in a text-based definition file. The definition file allows the user to create generic definitions for test signals that can be interpreted to create test signals in a variety of formats, raster sizes, color spaces, sample structures, frame modes, and bit depths. A parametric generator uses one or more engines to then generate the desired test pattern from the definition file.
US09723301B2

Because neighboring frames may affect how a current frame is perceived, we examine different neighborhoods of the current frame and select a neighborhood that impacts the perceived temporal distortion (i.e., when frames are viewed continuously) of the current frame most significantly. Based on spatial distortion (i.e., when a frame is viewed independently of other frames in a video sequence) of frames in the selected neighborhood, we can estimate initial temporal distortion. To refine the initial temporal distortion, we also consider the distribution of distortion in the selected neighborhood, for example, the distance between the current frame and a closest frame with large distortion, or whether distortion occurs in consecutive frames.
US09723296B2

A method and system to determine the disparity associated with one or more textured regions of a plurality of images is presented. The method comprises the steps of breaking up the texture into its color primitives, further segmenting the textured object into any number of objects comprising such primitives, and then calculating a disparity of these objects. The textured objects emerge in the disparity domain, after having their disparity calculated. Accordingly, the method is further comprised of defining one or more textured regions in a first of a plurality of images, determining a corresponding one or more textured regions in a second of the plurality of images, segmenting the textured regions into their color primitives, and calculating a disparity between the first and second of the plurality of images in accordance with the segmented color primitives.
US09723295B2

An image processing apparatus includes an image-frame reading section that reads one or more image frames from a moving image, a region-boundary-line-information receiving section that receives information concerning a region boundary line in the read image frames, a region dividing section that expands a division region starting from a point on the region boundary line and divides the inside and outside of the region boundary line with division lines, which connect points of brightness, an opening processing section that leaves a first division line between a pair of the region boundary lines and opens a second division line, a separating section that separates regions in the image frames in units of a region surrounded by the first division line, and a first depth-value giving section that gives, to the region surrounded by the first division line, a depth value representing a distance degree of the region.
US09723293B1

Techniques for identifying usable projection areas within an environment and projecting content onto these areas are described herein. The systems described herein may include one or more projectors, one or more cameras, and one or more computing devices. In some instances, the described techniques may utilize the one or more cameras to identify a flat projection surface. After identifying this surface, the techniques may use depth detection, edge detection, or other techniques to determine whether the surface includes any objects protruding there from. If so, then the techniques may identify the size and location of these objects and may store an indication that these objects occlude a portion of the flat projection surface and, therefore, that the locations associated with these objects are not usable projection areas. The techniques may then deduct the locations of the objects from the initially identified projection surface to determine the usable projection areas.
US09723292B2

An imaging device includes a multifocal main lens having different focal distances for a plurality of regions, an image sensor having a plurality of pixels configured of two-dimensionally arranged photoelectric converting elements, a multifocal lens array having a plurality of microlens groups at different focal distances disposed on an incident plane side of the image sensor, and an image obtaining device which obtains from the image sensor, a plurality of images for each of the focal distances obtained by combining the multifocal main lens and the plurality of microlens groups at different focal distances.
US09723291B2

A plurality of video input units generate video frames and provide shooting characteristics. A 3D video frame generator creates a 3D video frame by combining a plurality of video frames, which are provided from the plurality of video input units, respectively, and provides 3D video frame composition information indicating a composition type of the plurality of video frames included in the 3D video frame, and resolution control information indicating adjustment/non-adjustment of resolutions of the video frames. A 3D video frame encoder outputs an encoded 3D video stream by encoding the 3D video frame provided from the 3D video frame generator. A composition information checker checks 3D video composition information including the shooting information, the 3D video frame composition information, and the resolution control information. A 3D video data generator generates 3D video data by combining the 3D video composition information and the encoded 3D video stream.
US09723288B2

An image processing apparatus includes a receiving unit configured to receive at least two parallax images that are obtained from a subject image captured via a single optical system, where the at least two parallax images include an image in a first viewpoint direction and an image in a second viewpoint direction, an average calculating unit configured to calculate, for each pixel, an arithmetic average and a geometric average between the image in the first viewpoint direction and the image in the second viewpoint direction, a ratio calculating unit configured to calculate, for each pixel, a ratio of the arithmetic average to the geometric average, and a disparity calculating unit configured to calculate, on a pixel-by-pixel basis, a disparity between the image in the first viewpoint direction and the image in the second viewpoint direction based on the ratio.
US09723284B2

A method comprising: capturing, by an electronic device, a first incident light sample and generating an image based on the first incident light sample; capturing, by the electronic device, a second incident light sample and identifying a light source type associated with the second incident light sample; and adjusting a white balance of the image according to the light source type.
US09723279B1

A projector adapted to project an image includes an imaging section adapted to image a projection surface on which the image is projected, and output an image obtained by imaging, an identification section adapted to identify a projection area in which the image is projected based on the image output by the imaging section, a mask processing section adapted to mask an outside of an area, which includes the projection area identified by the identification section, on the image output by the imaging section, a discrimination section adapted to determine which one of a first state, in which the projector is used alone, and a second state, in which the projector and another projector project images side by side, is set, and a setting section adapted to set an area to be masked by the mask processing section in accordance with a determination result of the discrimination section.
US09723277B2

A projection method, a projection apparatus and an electronic device are provided. The method may include: acquiring a target content to be projected in an electronic device; determining a projection parameter for the target content; adjusting a beam output mode of a light path changing module for projection beams of the target content based on the projection parameter; and based on the beam output mode, projecting, via the light path changing module, the projection beams of the target content into a first region of a projection carrier located away from the electronic device by a first distance, where the area of the first region varies with the beam output mode. With the projection method, the projection apparatus and the electronic device in the application, the area of the projection region can be adjusted easily, so that multiple users can use the electronic device to watch the projection conveniently.
US09723274B2

An imaging system and method of a trailer backup assist system is provided and includes a camera having an image sensor. The camera is mounted on the rear of a vehicle and images a target provided on a trailer. A controller is included for adjusting an image capture setting of the camera based on a status input from a vehicle lighting system, image data from the camera, and locational input from a positioning device.
US09723272B2

A vision system of a vehicle includes a plurality of cameras with exterior overlapping fields of view. The vision system is operable to calibrate at least one of the cameras and includes a plurality of targets disposed at locations near the vehicle and within the fields of views of the cameras. A display device is operable to display images captured by the cameras of the vision system. A plurality of user inputs may be provided and a user may selectively actuate the user inputs to manipulate images captured by the cameras to align portions of a target in overlapping regions of the captured images of adjacent cameras to calibrate the cameras. The vision system may calibrate cameras automatically, such as responsive to the targets moving into the fields of views of the cameras, whereby the vision system may calibrate the cameras as the vehicle is moved along an assembly line.
US09723267B2

A method and apparatus to create and transmit transport multiplexes comprising one or more levels of service over a network. In one embodiment, the level of service comprises high definition (HD) content or programs, and the transmitted multiplexes are distributed over a plurality of downstream RF carriers in a cable network simultaneously. A head-end architecture for performing the multiplexing and distribution of multiple HD programs over the multiple carriers (i.e., in a “wideband” configuration) is disclosed. CPE having one or more wideband tuners is also disclosed, the CPE being adapted to receive the multiplexed HD content from the various RF carriers, and demultiplex it in order to permit decoding and subsequent viewing by the user. The use of multiple HD source programs with the multiplex advantageously provides for enhanced statistical multiplexing by providing a larger “pool” of constituent inputs and available carriers.
US09723265B2

Systems and methods for videoconferencing using an avatar are described. The presence of a user may be detected by analyzing video captured by a digital camera. The avatar may be provided to a remote device to represent the detected user.
US09723264B2

In one embodiment, an apparatus comprises a memory that stores executable instructions and a processor that executes the instructions in order to determine, for plural received compressed video inputs, at least one motion vector included in each of the plural compressed video inputs; calculate, based on the determined motion vectors, a motion value corresponding to each of the plural compressed video inputs, the motion values representing a level of motion over several frames for each of the plural compressed video inputs; and select, based on the calculated motion values, at least one of the plural compressed video inputs to be displayed.
US09723263B2

An audio processor for a video conference system receives an audio signal from content to be shared over a video conference and an audio signal from a network. The audio signal from the shared content and the audio signal from the network are mixed together for output to a speaker. The audio processor may also receive a local audio signal from a microphone. The local audio signal is mixed with the audio signal of the shared to content to generate an outbound signal.
US09723255B2

A signal switching system includes a first connector, a second connector, a switch unit, a first comparator, and a second comparator. The first connector is electronically coupled to a television. The second connector is electronically coupled to a video playback device. The first comparator is electronically coupled between the first connector and the switch; and the second comparator is electronically coupled between the second connector and the switch. The first comparator outputs a control command to the switch unit according to the voltage of the first connector, and the second comparator outputs a control command to the switch unit according to the voltage of the second connector. The switch unit selectively outputs a first signal or a second signal to the first connector or the second connector according to the control commands output from the first comparator and the second comparator.
US09723253B2

A method for generating optically machine readable code is provided. The method includes capturing an image with a user device, automatically generating, by the user device, an optically machine readable code comprising information about the image recorded during the capturing of the image, and associating the optically machine readable code and the image. A computer readable storage medium storing one or more programs and an apparatus are also provided.
US09723247B2

A vehicle entertainment system includes a tablet unit and a cradle. The tablet unit includes a display and a touch screen input device disposed on a front surface, a first electrical connection, a first mounting mechanism, and a wireless receiver. The wireless receiver is configured to receive media data from a wireless network and the touch screen input device is configured to receive input from a user. The cradle is disposed in a headrest in a vehicle and includes a second electrical connection and a second mounting mechanism. The tablet unit is electrically connected to the cradle via the first and second electrical connections, and is physically coupled to the cradle via the first and second mounting mechanisms upon mounting the tablet unit to the cradle.
US09723240B2

A computational sensing array includes an array of sensing elements. In each sensing element, a first signal is generated from a transducer. A second signal is produced by a collection unit in response to receiving the first signal. The second signal may be modified, in a conditioning unit. A sensing element preprocessing unit generates a word representing the value of the modified second signal, and may produce an indication of change of the first signal. A current value of the word may be stored in a state holding element local to the sensing element, and a previous value of the word may be retained in a further state holding element local to the sensing element.
US09723231B2

A write control unit selects, in a row or column direction, N storing units from N×N storing units for storing pixel data of N (N≧2) read lines of image pickup devices and writes the data in sets of N pixels thereto, and switches a selection direction for selecting the storing units each time writes of the data of N lines are completed. A read control unit selects, in a direction different from the selection direction, N storing units and starts parallel reads of the data of N lines during writes of the data of every N-th line. Each storing unit to be first selected in the writes of the data of every N-th line performs write and read operations using different terminals, and each of the remaining storing units performs write and read operations using a common terminal.
US09723230B2

A multi-spectral imaging (MSI) device can include an imaging plane and a diffractive optic. The imaging plane can include at least two groups of pixels an array of pixels for sensing at least two spectral bands. The at least two spectral bands can include a first spectral band and a second spectral band. The diffractive optic can be configured for diffracting an electromagnetic wave into the at least two spectral bands and focusing each spectral band component of the electromagnetic wave onto the group of pixels for the spectral band to generate an image.
US09723228B2

Various techniques are disclosed for providing an infrared imaging module that exhibits a small form factor and may be used with one or more portable devices. Such an infrared imaging module may be implemented with a housing that includes electrical connections that may be used to electrically connect various components of the infrared imaging module. In addition, various techniques are disclosed for providing system architectures for processing modules of infrared imaging modules. In one example, a processing module of an infrared imaging module includes a first interface adapted to receive captured infrared images from an infrared image sensor of the infrared imaging module. The processing module may also include a processor adapted to perform digital infrared image processing on the captured infrared images to provide processed infrared images. The processing module may also include a second interface adapted to pass the processed infrared images to a host device.
US09723219B2

In one aspect, the present disclosure relates to a method for configuring one or more imaging sensors of an imaging device to capture digital images for digital pulse recognition demodulation. In some embodiments, the method includes initializing one or more imaging sensors of the imaging device, determining a subset of the one or more imaging sensors to configure, setting a configuration for each of the one or more imaging sensors of the subset by defining a region of interest as a metering area for each of the one or more imaging sensors of the subset and automatically adjusting a setting for each of the one or more imaging sensors of the subset, and adjusting input parameters of a demodulation function based on a device profile of the imaging device. In some embodiments, the adjusted setting is locked to prevent further adjustment of the adjusted setting.
US09723210B2

An image processing apparatus comprising: a first obtaining unit configured to obtain a focal length of an imaging optical system; a second obtaining unit configured to obtain a distance to a subject; a setting unit configured to set a movable range for a correction unit configured to correct camera shake, based on the focal length and the distance to a subject; and a calculation unit configured to calculate a correction amount for correcting the camera shake within the movable range that was set by the setting unit, based on a camera shake signal from a camera shake detection unit configured to detect camera shake and output the camera shake signal.
US09723207B2

Provided is an imaging device that prevents glare resulting from light that leaks out from a subject display area of a display section in an OVF mode.A finder device can be switched between the OVF mode and an EVF mode. A subject display area and an information display area are set in an EVFLCD. In the OVF mode, nothing is displayed in the subject display area of the EVFLCD, and an information image is displayed in the information display area. An EVF shutter is set such that the light transmittance of a first area, which corresponds to the subject display area, becomes a low transmittance and the light transmittance of a second area, which corresponds to the information display area, becomes a high transmittance. The first area, which is set at low transmittance, blocks light that leaks from the subject display area.
US09723198B2

A camera module and an auto focusing method of the camera module are provided, the camera module including a VCM (Voice Coil Motor) including a rotor including a lens distanced from a reference plane, in a case no driving signal is applied, a posture detection sensor determining a posture of the VCM; an ISP (Image Signal Processor) generating a driving signal for driving the VCM using an optimum focus value of the lens calculated by an auto focus algorithm in response to a posture of the VCM determined by the posture detection sensor, an image sensor changing lens-passed light to a digital signal, and a controller controlling the VCM, the posture detection sensor, the image signal processor and the image sensor.
US09723194B2

A photographing apparatus includes a photographing unit that captures an image from incident light thereon; a communication status checking unit that checks a communication status of the photographing apparatus; a resolution determination unit that sets a resolution for a first image file for the captured image according to the communication status; a file generation unit that generates the first image file from the captured image, the first image file having the set resolution; and a communication unit that transmits the first image file to an external device.
US09723187B2

Provided is a light amount adjusting apparatus comprising a base that has a rotary drive unit, and a rotating unit that is arranged rotatably about a predetermined axis with respect to the base, and drives aperture blades by rotating with the rotary drive unit, wherein one of the base and the rotating unit is provided with two arc-shaped parts to be engaged around the axis, the other is provided with two engaging parts engaging with each of the arc-shaped parts to be engaged.
US09723179B2

According to one aspect, embodiments herein provide a TDI image sensor comprising an array of light sensing elements, at least one clock, and an image processor, wherein the at least one clock is configured to operate a first plurality of the light sensing elements to transfer accumulated charge to an adjacent element at a first phase and to operate a second plurality of the light sensing elements to transfer accumulated charge to an adjacent element at a second phase, and wherein the image processor is configured to read out a first signal from the first plurality of light sensing elements corresponding to a total charge accumulated at the first phase, to read out a second signal from the second plurality of light sensing elements corresponding to a total charge accumulated at the second phase, and to combine the first signal and the second signal to generate an image.
US09723171B2

Systems and methods are directed towards generating a verified unique watermark. More specifically, the systems and methods are directed towards generating a watermark that is as long as possible without any repetition. Such watermarks are possible by selecting characteristics of the watermark and methods for producing the watermarks (e.g., dandy rollers). By producing longer unique watermarks, users would be capable of generating longer rolls of paper whereby more sheets can be produced that each possesses a unique watermark. With the unique watermark, users can identify what information is printed on each sheet as well as authenticate the contents of each individual sheet.
US09723164B2

An image reading device includes a plate on which a document to be scanned is placed, a cover that is movable between an open position and a closed position at which the cover contacts the document, a position detecting unit configured to detect a position of the cover, an imaging unit configured to emit light towards the plate and having an image sensor configured to detect light reflected by the document, and a control unit configured to determine a size of the document based on a detection result of the position detecting unit and a detection result of the image sensor.
US09723162B2

An image forming apparatus includes: a schedule information generation unit that generates schedule information including an order of execution of received jobs; an acquisition unit that acquires resource information related to a resource used to execute a job; a prediction unit that predicts a timing of occurrence of an event that possibly occurs in the apparatus as the received jobs are executed in accordance with the order of execution on the basis of the schedule information and the resource information; a display information generation unit that generates display information for displaying a period of execution of the job to be executed and the timing of occurrence of the event along the same time axis, and for displaying a degree of influence of the event on execution of the job; and a display controller that controls display of the display information.
US09723153B2

A system and method for generating Call Detail Records (CDR) to optimize network usage notifications to a mobile device subscriber. The system and method can include a billing system module that determines CDR generation parameters for the mobile device subscriber based on the mobile device subscriber's network usage, including increasing CDR generation when the mobile device subscriber's network usage relative to a predetermined quota is high and/or decreasing CDR generation when the mobile device subscriber's network usage relative to the predetermined quota is low. The CDR generation parameters can be applied to control CDR generation for the mobile device subscriber.
US09723145B2

A system and method include a contact center to provide an interaction between a customer and agent. An analytics server connects with the contact center to parse a text of the interaction and determine an intent and a topic of the interaction based on the parsed text. The analytics server determines an implicit survey score for the interaction based on comparing the intent and the topic of the interaction with an intent and a topic of an interaction that was correlated with an explicit survey score.
US09723135B2

A method for handling calls to be moved within a system having an unmonitored domain and a monitored domain can include the step of upon first arrival of a call at said unmonitored domain, a context of said call based on a called number, a calling number, and any redirection number(s) included in said call can be provided. Another step of the method can include, for each movement of said call between said unmonitored domain and said monitored domain, providing a unique number to be temporarily used for said particular movement, based on said call context, while avoiding that said unique number is used to move any other call within the system at the same time. An apparatus for can be configured to facilitate performance of the method (e.g. communication system, a device, non-transitory memory, etc.).
US09723131B1

Techniques for providing friction-free transactions using geolocation and user identifiers are described herein. These techniques may ascertain a user's location based on a location of a mobile device. A transaction between the user and a merchant may be completed with zero or minimal input from the user based on the geolocation of the mobile device and the user identifiers. In some implementations, a transaction initiated earlier is completed when the mobile device arrives at the merchant. Additionally, a parent-child or similar relationship may be established between multiple devices. Security on the mobile device based may be provided by biometric identification and calculation of variance from regular movement patterns. Advertisements may be sent to the mobile device based on bids from merchants near to the mobile device. Promotions may be sent to the mobile device when more than a threshold number of mobile devices are located at the same merchant.
US09723129B2

The present invention relates to a voice call establishing method and apparatus. The method includes: receiving a voice call request, and generating an internal trigger signal according to the voice call request; detecting an acceleration characteristic value of a mobile terminal and/or a characteristic value of a distance from the mobile terminal to a target object within a preset time threshold; and if an initial value of the acceleration characteristic value is a first characteristic value and does not change within the preset time threshold, establishing a first voice call; and if the acceleration characteristic value changes from the first characteristic value to a second characteristic value within the preset time threshold, and the characteristic value of the distance changes from a first distance characteristic value to a second distance characteristic value, establishing a second voice call.
US09723127B1

A system for the delivery of scriptures that includes: a plurality of images stored in a database; at least one scripture associated with each image, wherein said scriptures are stored in the database; a software application, where the software application includes instructions on syncing and linking an image within the plurality of images to a scripture; and a portable electronic device, where the portable electronic device stores the software application and is adapted to provide access to the plurality of images and associated scriptures. The portable electronic device may be a smartphone or a tablet. The plurality of images preferably includes emoticons.
US09723120B2

According to another aspect, a mobile electronic device includes a display unit and a control unit. The display unit displays thereon additional information associated with an application program. Upon accepting a first operation performed with respect to the additional information, the control unit display a screen provided by the application program as a background of the additional information.
US09723114B2

Several embodiments include a mobile device. The mobile device can include a circuit board configured to interconnect one or more electronic components and a chassis shell adapted to form an outer perimeter of the mobile device and to enclose the circuit board. The chassis shell can have an integral unibody that includes a contact feature integral to the chassis shell. A sensor system can be in contact with the chassis shell on an opposite side of the contact feature. The contact feature enables the sensor system to detect touch events when a user interacts with the contact feature.
US09723106B2

A system comprising a plurality of service nodes, a controller and a network device in communication with the controller. Each of the plurality of service nodes is configured to support one or more service functions to establish a service function chain that includes a plurality of service functions to be performed by routing traffic among the plurality of service nodes. The controller is configured to generate provisioning information for the service function chain. The provisioning information includes at least one condition upon which a service function reclassification or branching operation is to be performed by at least one service node. The network device is in communication with the controller, and is configured to distribute the provisioning information for the service function chain to the plurality of service nodes using a distributed routing protocol.
US09723099B2

In one embodiment, a managed cache system, includes a cache memory to receive storage units via an uplink from a transmitting client, each storage unit including a decodable video unit, each storage unit having a priority, and enable downloading of the storage units via a plurality of downlinks to receiving clients, and a controller processor to purge the cache memory of one of the storage units when all of the following conditions are satisfied: the one storage unit is not being downloaded to any of the receiving clients, the one storage unit is not currently subject to a purging exclusion, and another one of the storage units now residing in the cache, having a higher priority than the priority of the one storage unit, arrived in the cache after the one storage unit. Related apparatus and methods are also described.
US09723086B2

A dual-device tutorial system can facilitate user learning about a “primary” device by providing explanatory information on a “supporting” device while the user interacts with the primary device. The primary and supporting devices can be devices of different types. From a user perspective, the primary device can operate exactly as it would in normal (non-tutorial) use and can send event messages and/or other signals to the supporting device. Based on the event messages and/or other signals, the supporting device can provide explanatory information responsive to user interactions with the primary device.
US09723082B2

Systems, devices, and methods are provided for the management of multiple sensor control devices and/or multiple reader devices in an in vivo analyte monitoring environment, and also for resolving conflicts when merging data collected by different reader devices.
US09723080B2

A storage apparatus includes a storage unit for storing data read/written by a host computer and provides the host computer with a storage area of the storage unit as one or more volumes. The storage management computer includes a first memory for storing task information including contents of an operation process performed on the storage apparatus, as well as a scheduled starting time and scheduled termination time of a process. In the case where first task information is stored in the first memory, when resources used in the process of second task information stored in the first memory are the same as resources used in the process of the first task information, the storage management computer computes times required for executing the first task information and the second task information, based on a time during which the processes of the first and second task information conflict with each other.
US09723079B2

A system and method for link detection and link initialization across a range of communication media is disclosed. In an embodiment, the method includes intercepting, by a subcontroller of a first storage element, an attempt by a controller of the first storage element to establish communication with a second storage element via a first communication medium. In response to the intercepting of the attempt, a link initialization signal is provided for transmission to the second storage element via a second communication medium. The second communication medium is independent of the first communication medium. When a response is received from the second storage element indicating a successful link initialization, an indication of success is provided from the subcontroller to the controller. The indication of success corresponds to the first communication medium. In one example, the controller includes an SAS controller, and the second communication medium is an optical communication medium.
US09723076B2

A media server machine may be configured to provide media content within a datastream. This datastream may be provided to a media device that is configured to present the media content on a display. Also, this datastream may contemporaneously contain an “app-sync indicator” for the media content. The app-sync indicator is a data structure that signals the media device to launch an application on a companion device. By providing the app-sync indicator contemporaneously with the media content in the datastream, the launching of the application on the companion device may be synchronized with the media content. The app-sync indicator may specify the application to be launched. Also, the app-sync indicator may specify supplemental content to be presented by the launched application on the companion device.
US09723068B2

A computer-implemented method includes identifying a primary computing platform, identifying one or more secondary computing platforms, and identifying a requesting virtual server. The requesting virtual server resides on the primary computing platform and is associated with one or more requesting clients. One or more donating virtual servers are identified. The donating virtual servers reside on the primary computing platform and are associated with one or more donating clients. One or more external virtual servers are identified. The external virtual servers reside on the secondary computing platforms. A resource donation scenario is determined. The resource donation scenario includes one or more resource exchanges between the requesting virtual server and the donating virtual servers. A resource adjustment scenario is determined. The resource adjustment scenario includes one or more resource exchanges between the external virtual servers. A corresponding computer program product and computer system are also disclosed.
US09723063B2

Methods are provided for determining, based on input parameters associated with a computing device and a network over which the computing device is connected to another computing device (such as a server), suitable transport parameters for requesting and receiving data, where the transport parameters are determined for efficient transmission with less susceptibility to interruptions and delays. The input parameters may be provided continuously in order to determine, on a real-time or near real-time basis, continuously updated transport parameters. Transport parameters may be rewarded and/or punished based on historical network data. Accordingly, embodiments enable the computing device and/or server to dynamically adjust transport parameters to provide a data rate that is chosen to accommodate changing network conditions.
US09723061B1

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for a transport protocol independent communications library. In one aspect, a method includes receiving a communication request from a client device and processed according to a selected transport protocol, generating a response to the communication request, the response including data responsive to the communication request and one or more feature values specifying one or more communication features for the communication request, each communication feature being independent of the selected transport protocol, and providing the response to the communication request according to the selected transport protocol.
US09723058B2

A computer-implemented method for automatically registering an application with an enterprise system. The method includes, obtaining the application associated with the enterprise system, wherein the application is pre-configured for subsequent registration with the enterprise system such that the registration establishes a trust relationship between the application and the enterprise system. The method further includes installing the application on a host device, and in conjunction with installing the application, automatically requesting the registration of the application with the enterprise system.
US09723047B2

Methods and systems are described for enabling network-initiated control of streaming of segmented content from a content delivery node to at least one client, said client being configured to access at least part of said segmented content on the basis of a manifest file, wherein a method may comprise: receiving a first manifest file identifying one or more segments and location information for locating one or more content delivery nodes configured to transmit said one or more segments to said at least one client; in response to said reception of said first manifest file, providing channel set-up information; and, establishing at least one streaming control channel between said at least one client and a control channel server function associated with said content delivery node on the basis of said control channel set-up information, said at least one client being configured for receiving at least one manifest file update message via said streaming control channel.
US09723044B1

A system and method for generating a channel includes a channel engine that retrieves candidate content items based on a topic from heterogeneous data sources. The channel engine generates a stream of content with selected content items and populates the stream of content for the channel and providing the stream of content to users associated with the channel. In response to receiving feedback, the channel engine modifies the at least one topic based at least in part on the feedback. The scoring engine generates a second stream of content from the first stream of content that is personalized for the first user based at least in part on a model. Other users can subscribe to the second stream.
US09723037B2

A method, computer-readable medium and system for enabling communication associated with a webpage are disclosed. One or more communication interfaces may be used to associate content with one or more regions of a webpage. The one or more communication interfaces may be associated with the one or more regions of the webpage. Each communication interface may enable users to submit content for access by at least one other user. In this manner, content may be associated with one or more regions of a webpage, thereby enabling users to more readily and efficiently communicate and/or provide context for content.
US09723035B1

Techniques are described for creating real-time reports of meeting attendance. A calendar is accessed to determine the scheduled time and participants of a meeting. During the scheduled time of the meeting, locations of the scheduled participants are determined by obtaining position information from mobile devices carried by the participants. A meeting report is generated for any one or more of the participants, listing those participants who are present at the meeting. Relative positions of the attending participants may also be shown.
US09723032B2

A method of establishing a communications session for communication of data with respect to at least two user devices in a data communications network. A client-server connection request is received from at least one of the at least two user devices. Call party details of a telephone call are received. The telephone call involves at least a first telephony user device and a second telephony user device. The call party details include a first identity associated with the first telephony user device and a second identity associated with the second telephony user device. At least one of the first and second identities comprises a telephone dialing number. A separate communications session is established on the basis of the first and second identities received in the call party details.
US09723029B2

An embodiment provides a user equipment that includes a processor configured to receive a Session Initiation Protocol (SIP) NOTIFY message transmitted by a network component as a result of a registration event. The SIP NOTIFY message contains at least a portion of information included in a first SIP message sent between a first user equipment and the network component. Another embodiment provides method and apparatus for a network node to determine whether filter criteria include one or more indicators that specify the need for information, and including in a second SIP message the information specified by the one or more indicators.
US09723028B2

A distributed file system for devices is described. In an embodiment, each data element stored on one of the devices has an associated location and availability attribute. The location attribute is stored co-located with the data element. The availability attribute and a copy of the location attribute are stored by a metadata service. When a client on a device needs to access a data element, it sends a request to the metadata service to find the location of the data element. If the data element is available, this information is provided to the client and this may involve waking a dormant device which holds the data element. Where the data element is not available, read only access may be granted to a cached copy of the data element. Where replication is used and one of the devices holding a replica is unavailable, the system may use write off-loading.
US09723025B2

A method and system for managing entitlements provided by a target system in an organization is provided. In one embodiment, a user of an organization may utilize services provided by an identity management system to request for resources stored in one or more target systems of the organization. Upon receiving the request, the identity management system may identify if an account is associated with the user that enables the user access to the resource in one of the target systems. In some examples, the identity management system may provision a new account for the user, associate the new account with the user and grant an entitlement to the new account, wherein the entitlement enables the user to access the requested in the target system.
US09723022B2

Domain classification based on domain co-occurrence information derived from client request behavior is provided. The network requests of clients are analyzed to determine domain and time information. Distance information is generated based on the time between requests for a plurality of domains. The distance information for individual clients is combined to generate distance information for domain pairs. The distance information represents an amount of time or other measurement between queries associated with the two domains of the pair. By examining the client requests, a measure of the distance or relatedness of two domains may be determined. Co-occurrence information for a first set of domains is generated based on the co-occurrence of domains in the first set with domains in a second set of domains. Based on the co-occurrence information, a domain classification can be generated for domains in the first set of domains.
US09723018B2

Computer-implemented methods and systems for categorizing a uniform resource locator (URL) based on web content associated with the URL are disclosed. In one aspect, a method includes identifying a first URL using a first URL collection method, assigning, using an electronic processor, a first categorization priority to the first URL based on the first URL being identified using the first URL collection method, categorizing, the first URL based on the first categorization priority, identifying a second URL using a second URL collection method, assigning, using an electronic processor, a second categorization priority different than the first categorization priority based on the second URL having been identified using the second URL collection method; and categorizing, using an electronic processor, the second URL based on the second categorization priority.
US09723016B2

A method of detecting exploit kits includes receiving, at an input port of a computer, indication of HTTP (Hypertext Transfer Protocol) traffic. The HTTP traffic is clustered into a web session tree according to a client IP (Internet Protocol. A client tree structure of the web session tree is generated. The client tree structure is compared with tree structures of exploit kit samples.
US09723015B2

Detecting malware-related activity on a computer by detecting activity associated with the creation of a data object, where the activity is performed by a process, where the process is an instance of a computer software application that resides in a computer memory and that is executed by a computer, and where the data object is configured to persist after termination of the process, determining a string that identifies the data object, searching for a portion of the string that identifies the data object within any areas of the computer memory storing static portions of the computer software application, and performing a computer-security-related remediation action responsive to determining that the portion of the string that identifies the data object is absent from the searched areas of the computer memory.
US09723011B2

Access to a user profile of a user device at a location may be provided to a destination device upon detecting that the location is within a proximity of a destination location. An expiring token may be generated, associated with the user profile, and communicated to the second device. Access to the user profile provided to the destination device may be terminated upon an expiration of the expiring token.
US09723006B2

There is disclosed in an example a computing apparatus, including: a process deprivilging engine operable for: recognizing that a process has an undetermined reputation; intercepting a first access request directed to a first resource; determining that the first resource is not owned by the process; and at least partially blocking access to the first resource. There is further disclosed a method of providing the process deprivileging engine, and one or more computer-readable mediums having stored thereon executable instructions for providing the process deprivileging engine.
US09723004B2

A network drive system for controlling access to a network drive based on location information on a communication device according to the present technology includes: a storage unit storing a network drive that stores security data and general data; a receiving unit receiving a request for access to the network drive from a first communication device; a location checking unit checking whether the distance between the first communication device and a second communication device designated as a device for controlling access to the network drive is within a critical value; and a policy setting unit that applies a policy allowing the first communication device to access general data stored in the network drive or applies a policy disallowing the first communication device to access general data stored in the network drive, according to results of the determining by the location checking unit.
US09723001B2

A security device may be utilized to provide security measures to an electronic device that may incorporate the security device or be coupled to it. The security measures may comprise authentication (e.g., authentication of devices, users, or activities), and/or encryption measures (e.g., encrypting or decrypting exchanged data). A transaction or access via the security device may be authenticated by communicating an authentication request by the security device to an authentication server, which may generate, in response, a sequence of information requests that are sent to the security device. The security device may then generate, in response, a sequence of responses that are sent to the authentication server, with the sequence of responses comprising a sequence of reported values each of which are unique. The authentication server may then authenticate the security device based on comparing of the sequence of reported values with a sequence of expected values that identifies the security device.
US09722995B2

Access is controlled to managed resources in a stateless web server architecture including a stateless web server computing platform; a resource locator map portion of the stateless web server computing platform providing a unique resource locator code representing each managed resource in a stateless web server architecture, wherein the managed resource is assigned to a plurality of application program components; a set of servlet filters disposed in a portion of the stateless web server computing platform, each servlet filter associated with one of the application program components; a resource locator matcher portion of the stateless web server computing platform, responsive to a user request to a unique resource locator, matching a pattern in the user request to one or more of the application program components using a corresponding servlet filter; and a request dispatcher portion of the stateless web server computing platform sending the user request to the matched application program component, wherein the application program component receives and processes the user request.
US09722983B2

The present invention relates to the field of access to a high-security network, and more particularly to a device allowing secure access, for example for management and maintenance operations.There is described a connection device making it possible to connect any maintenance apparatus to a high-security network without compromising the trust of the system. The device contains a client of the maintenance application package only the inputs-outputs of which are offloaded onto the maintenance apparatus. It has authentication means and means for performing a protocol break between the maintenance apparatus and the high-security system. In this way, only said connection device needs to be trusted and the maintenance may be effected from any terminal.
US09722966B2

In a computing device a domain name system (DNS) query is generated and sent, and a check is made as to whether a verified DNS response to the DNS query is received. The computing device is determined to be inside a particular network if a verified DNS response is received, and is determined to be outside that particular network if a verified DNS response is not received. A DNS response can be determined to be verified if both the DNS response has an expected value and the DNS response is digitally signed by a trusted authority, and otherwise can be determined to be not verified.
US09722965B2

A method to send an alert for nonproductivity associated with a conversation is provided. The method may include recording a plurality of communication outputs of at least two users engaged in a remote message exchange or a remote conversation. The method may also include creating a plurality of text tokens based on the recorded plurality of communication outputs. The method may include analyzing, by a graphical text analyzer, the created plurality of text tokens to determine whether the plurality of text tokens has fallen below a threshold. The method may further include sending an alert to the plurality of users involved in the conversation if it is determined that the plurality of text tokens has fallen below the threshold.
US09722941B2

A communication device includes: a plurality of output ports; a plurality of queues in which packets are stored so as to be sorted into groups of packets that are output from an identical output port in an identical time period, from among the plurality of output ports; a plurality of first selectors that respectively corresponds to the plurality of output ports, and each of which switches a queue from which packets that are output from the output port are read, between the plurality of queues each time the time period elapses; and a second selector that switches a first selector from which packets are output, between the plurality of first selectors, at time intervals in accordance with output rates of packets of the plurality of output ports.
US09722940B2

A method for implementing the application for speaking right of a Long Term Evolution (LTE)-based broadband trunking system, a Mobility Management Entity (MME), a network subsystem, a broadband wireless access subsystem and the LTE-based broadband trunking system are disclosed. The method includes: the broadband wireless access subsystem sending a trunking speaking right update request to the network subsystem, receiving the trunking speaking right update accept message returned by the network subsystem, and sending the trunking speaking right update accept message to a speaking right seizing terminal; and the broadband wireless access subsystem receiving the speaking right occupation prompt message sent by the network subsystem, and sending the trunking speaking right occupation prompt message and updated configuration information via a multicast control channel of an enhanced Multimedia Broadcast Multicast Service (eMBMS).
US09722937B2

In some embodiments, a motor drive system includes a communication subassembly electrically coupled to a control subassembly for providing communication between the control subassembly and at least one external device. The control subassembly and the communication subassembly transmit and receive control data independently of messaging data, greatly enhancing performance and reducing the workload of processors on the control subassembly and communication subassembly. Additionally, the control subassembly and the communication subassembly transmit message data via sequence count based messaging. Communications between the communication subassembly and the control subassembly may include a series of timeout periods and retries, increasing reliability.
US09722935B2

A communications controller is provided. The communications controller includes a flow manager that classifies a packet flow serviced by more than one transmission points (TPs) as one of a plurality of slices in accordance with at least one of a nature of the packet flow, a load status of each of the plurality of slices, and feedback information provided by the more than one TPs, and alters a classification of the packet flow in accordance with the load status of each of the plurality of slices, and feedback information provided by the TPs served by the communications controller. The communications controller also includes a memory coupled to the flow manager, the memory stores a packet of the packet flow in one of a plurality of packet queues in accordance with the classification of the packet flow.
US09722933B2

A data flow is received at a network processor that includes a plurality of frames. A first set of frames in the plurality of frames are passed from the network processor to a general processor for processing by the general processor. A flow acceleration request is received at the network processor from the general processor based at least in part on inspection of a first frame in the first set of frames. The flow acceleration request is received subsequent to passing at least two of the first set of frames to the general processor. A particular frame in the plurality of frames received subsequent to the first set of frames is processed by the network processor such that it is accelerated relative to processing of the first set of frames by the general processor and bypasses the general processor.
US09722928B2

In one embodiment, a link utilization threshold is assigned to a first link. Link utilization of the first link and of one or more second links is monitored. The first link is considered to be out-of-policy (OOP) in the event that the link utilization of the first link surpasses the link utilization threshold. In response to the first link being considered OOP, action is taken. An excess utilization of the first link is determined. One or more prefixes currently routed over the first link whose collective per prefix utilization exceeds the excess utilization are determined. Provided that the collective per prefix utilization of the one or more prefixes currently routed over the first link, if added to the link utilization of the one or more second links, would not cause the one or more second links to be considered OOP, the one or more prefixes are redirected over them.
US09722925B2

A method and apparatus of a device that exports Border Gateway Protocol (BGP) data in sFlow samples. The device generates separate tables for BGP attribute information, community list information, and autonomous systems path (AS_PATH) attribute information, where each entry in the BGP attribute information table is associated with an entry in the community list information table and an entry in the AS_PATH attribute information table. The device further populates a BGP route information table that defines a mapping from a network address prefix to an entry in the BGP attribute information table. The device generates a sFlow sample related to the network address prefix using the BGP attribute information table, the community list information table, the AS_PATH attribute information table, and the BGP route information table.
US09722920B2

An apparatus generates routing data that defines, in a system in which a plurality of switches are connected to each other in a tree-shaped structure, a communication route between a plurality of end switches located at a lower level in the tree-shaped structure and a plurality of upper-level switches located at a level higher than the plurality of end switches in the tree-shaped structure, so that a first upper-level switch that switches communication data from a first node connected to a first end switch among the plurality of end switches to a second node connected to a second end switch among the plurality of end switches is identical with a second upper-level switch that switches communication data from the second node to the first node. The apparatus stores the generated routing data in a memory provided for the apparatus.
US09722915B2

A system and method for multicast routing using peer groups includes a router. The router includes a control unit and a memory coupled to the control unit. The memory stores one or more first multicast routing entries. The control unit is configured to receive a multicast packet on an input interface, determine one or more properties of the multicast packet, determine one or more output interfaces based on the properties and the first multicast routing entries, and forward copies of the multicast packet on each of the output interfaces. The router is configured to be coupled to a peer router via an inter-chassis link (ICL). The first multicast routing entries include one or more second multicast routing entries associated with multicast routing trees associated with the router and one or more third multicast routing entries associated with multicast routing trees associated with the peer router.
US09722913B2

A method for engineering traffic in a communications system includes determining a set of delay constraints associated with a traffic flow over the communications system, and excluding non-convex constraints from the set of delay constraints, thereby producing a set of convex constraints. The method also includes selecting a path solution for the traffic flow in accordance with the set of convex constraints, and sending information regarding the path solution to nodes in the communications system.
US09722912B2

The present disclosure describes system and methods for network planning. The systems and methods can incorporate network traffic demands, availability requirements, latency, physical infrastructure and networking device capability, and detailed cost structures to calculate a network design with minimum or reduced cost compared to conventional methods. In some implementations, the method include providing an initial, deterministic set of failures, and then successively performing a network optimization and a network availability simulation to determine which failures most impact the performance of the network model. The high impact failures can then be provided back into the system, which generates an improved network design while still maintaining minimum cost.
US09722909B2

In a multiple interface, low power and lossy network comprising a plurality of nodes, a low transmission power and medium transmission power topology are defined for the network and a channel-hopping schedule is defined for the devices operating in each topology. A sender determines that data is capable of being transmitted via a link on the low transmission power topology. The sender determines the transmission parameters for the transmission of the data over the link on the low transmission power topology and determines a low transmission power channel for transmission of the data. The sender transmits the determined channel and the transmission parameters to the receiver. The sender transmits the data via the determined channel in the low transmission power topology.
US09722886B2

A computer-implemented method, a computer program product, and a system for selecting a host from a plurality of host for an application pattern component using a service level agreement (SLA) requirement are provided. The computer-implemented method for selecting a host from a plurality of hosts for an application pattern component using a service level agreement requirement can include receiving the service level agreement requirement for the application pattern component. The method can include receiving a first capability metric of the host from the plurality of hosts. The method can include determining whether the first capability metric of the host from the plurality of hosts is sufficient for the service level agreement requirement. The method can include selecting the host in response to the host being sufficient for the service level agreement requirement.
US09722885B2

Aspects of the present disclosure involve provisioning customers of an aggregator, such as a reseller, of a content delivery network (CDN). Content requests to the CDN are processed in accordance with the virtual IP (VIP) address at which the request was received, according to a property template bound to the VIP. The template is selected by the customer and involves discrete parameters for the reseller. Cache fills of the network are processed without direct knowledge by the CDN of the customer origin through a combination of some request attribute, e.g., alias host of the customer, and an attribute of the reseller to make a DNS request to a name server outside the CDN. Another aspect involves receiving a property template selection, an origin and an alias from a customer of the reseller, and providing appropriate DNS entries to validate the customer and provide origin information to the CDN.
US09722869B2

A machine may generate and store a correlation among multiple identifiers of the user that enable access to an application through multiple systems. For example, the user may have a first identifier for using a first social network system, and a second identifier for using a second social network system, and the machine may generate and store a correlation between the first identifier and the second identifier. The machine may identify the user based on the first identifier and access a database that stores the correlation. The machine may then access a configuration of the application based on the correlation and configure the application in accordance with the configuration. The machine may generate a visual representation of the configured application, provide the visual representation to a device of a further user, receive an indication of an opinion of the further user on the visual representation, and present the indication.
US09722868B2

A cloud extension agent can be provided on a customer premise for interfacing, via an outbound secure connection, cloud based services. The cloud extension agent can reach the cloud based services through existing firewall infrastructure, thereby providing simple, secure deployment. Furthermore, the secure connection can enable substantially real-time communication with a cloud service to provide web-based, substantially real time control or management of resources on the customer premises via the cloud extension agent.
US09722866B1

Implementation resources are operated in a manner furthering a particular purpose while excluding use of the implementation resources for other purposes. At least some of the implementation resources have capacity that is usable to implement multiple other resources. The capacity of the implementation resources is allocated in a manner that satisfies one or more conditions on the capacity of the implementation resources that is used. Generally, the capacity is allocated in a manner that reduces the likelihood that resources initiated close in time will fail together should underlying implementation resources fail. The implementation resources may be hardware devices that implement virtual computer systems.
US09722864B2

Systems, methods, and apparatus to configure embedded devices are described. An example apparatus includes a network interface to communicatively couple the apparatus with a network, an antenna to receive a radio frequency signal including 1) configuration data and 2) power, a memory coupled to the antenna to receive the power and to store the configuration data, a network configurer to retrieve the configuration data from the memory and to configure the network interface based on the retrieved data, and a power source other than the antenna to provide power to the memory and the network configurer during operation of the network configurer.
US09722863B2

The health of a computing network is checked to determine whether there is a current fault in the network or a prediction of a potential fault in the network. The fault can be any type of fault, including a link failure, a failure in the transmitter of data over the link, a failure in the receiver of the data, or any other type of failure. If a fault or potential fault is indicated, a deterministic approach is provided for finding the source of the fault or potential fault within the network. The deterministic approach uses current values for selected operational parameters of components within the network, as well as historical data to determine the source.
US09722860B2

An interface accesses a server for managing usage of a plurality of frequency resources allocated to a first wireless system and acquires information indicating the usage. Based on the acquired information, a control unit selects, amongst the frequency resources, a frequency resource to be used by a second wireless system. The control unit determines whether, after the information is acquired at a first time point, reacquisition of the information at a second time point is successful, which second time point is scheduled to reacquire the information from the server. If the reacquisition is unsuccessful, the control unit allows a frequency resource for the second wireless system to be selected based on the information acquired at the first time point even from the second time point onward.
US09722851B1

Features are described with regard to the analysis of network and content characteristics that may affect the retrieval of network content, and the determination by a network computing device, based at least partly on that analysis, of whether a client computing device should bypass the network computing device and retrieve requested and related content directly from content sources. Additional features are described with regard to the determination of network resources to be cached, and to the determination of a computing device from which to initiate the caching. The network computing component or the client computing device can also monitor characteristics of the network connection between the computing devices and with other computing devices associated with content providers.
US09722850B2

A flow bonder at a CMTS and another at a cable modem distribute packets of a service flow over multiple channels and collect them in the downstream direction respectively; vice versa in the upstream direction. The service flow may include video and data streams that are provided to the CMTS via an IP network. IP header information is stripped form video packets and remultiplexed with packets of other video streams. The remultiplexed video stream packets are combined into a composite stream, which is transported using multiple bonded-flow RF channels over an HFC.A set top box receives the composite stream and separates data from video packets based on IP information. Video packets are assembled according to information from a multiple program transport stream table based on a program selected by a user.
US09722848B2

Examples include techniques for using a modulation and coding scheme (MCS) for downlink transmissions. In some examples information elements (IEs) for either a physical multicast channel (PMCH) or a physical multicast control channel (PMCCH) include information to indicate an MCS for downlink transmission over a PMCH or PMCCH between an evolved Node B (eNB) and user equipment (UE). For these examples, the information in the IEs include indications of whether higher order modulation for quadrature amplitude modulation (QAM) have or have not been enabled. Both the UE and the eNB may operate in compliance with one or more 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) standards.
US09722843B2

A system comprises an analog front end (AFE), an analog-to-digital converter (ADC), and alias detection circuitry. The AFE may be operable to receive an analog signal via a communication medium, wherein a first frequency band of the analog signal is occupied by an OFDM symbol and a second frequency band of the analog signal is occupied by first aliases generated during digital-to-analog conversion of the OFDM symbol. The ADC is operable to digitize the particular band of the analog signal to generate a digital signal, wherein, during the digitization, aliasing of the first aliases results in second aliases which fall into the first frequency band. The alias detection circuitry is operable to detect the second aliases in the first frequency band of the digital signal, and process the digital signal based on the detected second aliases to generate an output signal.
US09722841B1

Disclosed are techniques for channel-based coding for wireless communications. A transmitter includes circuitry and multiple antennas. The circuitry selects a subset of the antennas, determines a respective channel response for each of the antennas in the subset, generates a respective coded system for each of the antennas in the subset, and transmits the coded symbols using the antennas in the subset.
US09722826B2

Methods, systems, and devices are described for wireless communications. More particularly, the described features relate to techniques for adjusting a modulation and coding scheme (MCS) to account for different airtime utilizations (available airtime actually utilized by a device for transmissions) resulting from different MCSs. In one example, a method for wireless communication may involve: determining a media access control (MAC) efficiency for a station of a plurality of stations based at least in part on a real-time multi-user (MU) physical protocol data unit (PPDU) length, a real-time physical layer service data unit (PSDU) length of each of the plurality of stations, and a modulation and coding scheme (MCS) of the station; adjusting a goodput estimate of the station using the MAC efficiency; and, adjusting the MCS of the station using the adjusted goodput estimate.
US09722825B2

A telecommunications system is provided that can re-sample a digitized signal at a resample rate that is based on one or more factors to better utilize bandwidth. The factors can include the bandwidth of the signal that the digitized signal represents, the amount of bandwidth owned or used by the carrier, the full bandwidth of the designated RF band, the bandwidth of the serial link, the frame length of the serial link, the segmentation of the frames on the serial link, and the capability of the equipment at the receiving end of a serial link. The re-sampled signal can be transmitted to another unit that is remote to the unit transmitting the signal. The other unit can include a re-sampling device that restores the re-sampled signal to a digital signal that can be converted to an analog signal for wireless transmission.
US09722810B2

A method for synchronizing multicast message subflows in a switched network includes associating, with a processing device, a first destination identifier corresponding to a multicast message with a first queue that corresponds to a first output port of a switching device, associating, with a processing device, a second destination identifier corresponding to the multicast message with a second queue that corresponds to a second output port of the switching device, pausing the first queue in response to a message counter corresponding to the first queue crossing a first predetermined threshold, and unpausing the first queue in response to the message counter crossing a second predetermined threshold, wherein the message counter indicates a quantity of data that has been forwarded by the first queue but remains to be forwarded by the second queue.
US09722807B2

A computer network system for posting content at a web site includes computer servers configured to host a web site for a group of users, and a data storage configured to store an email address in association with a destination at the website. The computer servers can receive an electronic message at the email address by the computer servers from a user. A computer processor can automatically extract content from the electronic message. The computer servers can automatically post the content extracted from the electronic message at the destination at the website.
US09722805B2

An integrated security device, including: an encryption/decoding processing unit for executing processing necessary for authentication by using a logic circuit that forms an encryption/decoding function; a selector for selecting signals whose number corresponds to a specific number of lines from among signals from a plurality of intermediate nodes of the logic circuit in accordance with a selection signal; and a signal processing unit having a function of detecting a glitch caused by the signals corresponding to the specific number of lines, for implementing both a function of generating a physical random number and a function of generating a device identifier by a physical characteristic based on the glitch detected by switch-selecting the signals corresponding to the specific number of lines.
US09722795B2

Systems and techniques are described for digitally signing JavaScript Object Notation (JSON) messages. One of the techniques includes receiving a JavaScript Object Notation (JSON) message; and digitally signing the JSON message, wherein digitally signing the JSON message comprises: generating a digital signature information JSON object; inserting the digital signature information JSON object into the JSON message; generating a canonical representation of the JSON message with the inserted digital signature information JSON object; generating a digital signature of the canonical representation of the JSON message; and inserting the digital signature into the digital signature information JSON object.
US09722781B2

A mobile device may be associated with a vehicle for verification of software updates. The mobile device may be configured to receive a message including an encryption key with which a software update for the vehicle is encrypted, provide a user interface requesting user verification of installation of the software update, and responsive to receipt of the user verification, provide the encryption key to the vehicle to allow the vehicle to decrypt the software update. An update server may be configured to send a software update encrypted using an encryption key to a vehicle, receive a request from the vehicle requesting that the encryption key used to encrypt the software update be provided to a mobile device associated with the vehicle for verification of software updates, and send the encryption key to the mobile device responsive to the request.
US09722778B1

Methods and systems are provided for securing an integrated circuit device against various security attacks, such as side-channel attacks. By limiting the number of different challenge vectors that can be combined with a critical variable of an encryption operation, it becomes more difficult to create enough side channel measurements to successfully perform statistical side-channel analysis.
US09722777B2

The HOMOMORPHIC DATABASE OPERATIONS APPARATUSES, METHODS AND SYSTEMS (“HEDO”) transform transaction storage requests and homomorphic model queries using HEDO components into homomorphic model query results. In some implementations, the disclosure provides a processor-implemented method of securely querying a shared homomorphically encrypted data repository and performing cross-table homomorphic joins.
US09722776B2

The subject disclosure is directed towards a technology by which data is securely distributed using a homomorphic signature scheme and homomorphic network coding signature schemes. A homomorphic signature scheme for signing the data is based upon binary pairing with standard prime order groups. Sets of data are signed based upon dividing a larger block of data into smaller blocks, and separately signing each smaller block. The smaller blocks may be distributed to nodes of a network topology that are configured for network coding. In one alternative, the homomorphic signature scheme protects against changes to the block identifier. Proof data may be provided independent of a random oracle, may be provided by providing parameters for verification in a Groth-Sahai proof system, or may be provided by providing parameters for verification independent of a Groth-Sahai proof system.
US09722771B2

A power amplifier module can include one or more switches, a coupler module, input signal pins, and a controller having first and second output terminals. The input signal pins can receive a voltage input/output signal, a clock input signal, and a data input signal. The controller can (i) set a mode of the one or more switches using a synchronous communication protocol in which the controller outputs a synchronous clock signal on the first output terminal and a data signal on the second output terminal, when the power amplifier module is in a first operating mode, or (ii) set a mode of the coupler module using an asynchronous communication protocol in which the controller outputs a first asynchronous control signal on the first output terminal and a second asynchronous control signal on the second output terminal, when the power amplifier module is in a second operating mode.
US09722766B2

There are provided measures for reference configuration for flexible time division duplexing. Such measures exemplarily include obtaining a first configuration parameter and a second configuration parameter, determining an uplink reference configuration for a flexible uplink/downlink mode from said first configuration parameter, determining a downlink reference configuration for said flexible uplink/downlink mode from said second configuration parameter, and deriving an uplink/downlink configuration candidate set based on at least one of said first configuration parameter and said second configuration parameter.
US09722761B2

Systems and methods relating to configuring a Secondary Component Carrier (SCC) for a wireless device in a cellular communications network are disclosed. In some embodiments, the method comprises obtaining capabilities of the wireless device, where the capabilities indicate a frequency band combination supported by the wireless device. The frequency band combination supported by the wireless device includes a first frequency band supported by a base station and the wireless device used for a Primary Cell (PCell) of the wireless device and a second frequency band supported by the wireless device but not supported by the base station. The method further comprises identifying an overlap between the second frequency band supported by the wireless device but not supported by the base station and a third frequency band supported by the base station but not supported by the wireless device and configuring the SCC for the wireless device in the overlap.
US09722756B2

Provided are a method and a device for allocating a resource for an uplink control channel in a wireless communication system. The method for allocating a resource for an uplink control channel in a wireless communication system comprises: receiving at least one downlink subframe; and allocating a physical uplink control channel (PUCCH) resource for transmitting an acknowledgement/not-acknowledgement (ACK/NACK) for the at least one downlink subframe, wherein the PUCCH resource is allocated on the basis of a control channel element of a control channel for scheduling each of the at least one downlink subframe, and if a particular subframe that satisfies a particular condition is included in the at least one downlink subframe, a control channel element included in the special subframe is excluded from the control channel element used to allocate the PUCCH resource.
US09722755B2

A method and apparatus for transmitting or receiving channel quality control information through a physical uplink shared channel (PUSCH) in a wireless access system that supports hybrid automatic retransmit request (HARQ). In one embodiment, a user equipment (UE) receives a physical downlink control channel (PDCCH) signal including an initial uplink grant, transmits uplink data using two transport blocks based on the initial uplink grant, receives a negative acknowledgement (NACK) information for one of the two transport blocks, and transmits a channel quality control information along with the one of the two transport blocks which is retransmitted according to the NACK information or a new transport block through the PUSCH to which the HARQ is applied. A number of coded symbols required to transmit the channel quality control information (Q′) is calculated based on the initial uplink grant.
US09722746B2

Methods and apparatus for providing bandpass analog to digital conversion (ADC) in RF receiver circuitry of a wireless-communication device. The bandpass ADC includes first noise-shaping successive approximation register (NS-SAR) circuitry arranged in a first path and second NS-SAR circuitry arranged in a second path parallel to the first path, wherein the first and second NS-SAR circuitries are configured to alternately sample an analog input voltage at a particular sampling rate and to output a digital voltage at the particular sampling rate.
US09722745B2

A method and base station for coordinated multi point data transmission are disclosed. The method includes: a base station receiving a per-cell CQI value reported by a UE; looking up an SINR-CQI mapping table according to the per-cell CQI value, and acquiring a subband/broadband SINR value; performing CQI recalculation according to the subband/broadband SINR value, and acquiring a recalculated subband/broadband CQI value; and selecting modulation and coding according to the recalculated subband/broadband CQI value to schedule data transmission. With the method and base station of the embodiments of the present document, in a CoMP system, in a joint transmission scenario, the accuracy of the CQI value used by the BS for scheduling is improved, and the oscillation during an AMC process is reduced.
US09722737B2

A method and an apparatus for sending Hybrid Automatic Repeat Request acknowledgement (HARQ-ACK) feedback information are provided. The User Equipment (UE) receives a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Shared Channel (PDSCH) sent by a base station, determines a number of downlink subframes corresponding to the HARQ-ACK feedback information sent in the PUSCH of each CC in the current uplink subframe, the Uplink (UL) Downlink Assignment Index (UL DAI) obtained from the UL Grant of the PDCCH, a sum of the number of PDSCH subframes received from a HARQ-ACK bundling window and a number of PDCCHs indicating the downlink SPS releasing, and a size of the HARQ-ACK bundling window, and sends HARQ-ACK feedback information of each CC via the PUSCH in the current uplink subframe. A number of bits of the HARQ-ACK feedback information of each CC is determined according to the number of the downlink subframes.
US09722732B2

In one embodiment, the method includes first determining, at a device, whether a data packet is successfully decoded after a first number of data packet repetitions have been received. Here, the first number is less than a total number of data packet repetitions to be sent to the device. The method further includes first sending, by the device, an acknowledgement if the first determining determines the data packet was successfully decoded, the first sending occurring before the total number of data packet repetitions has been received.
US09722731B2

Certain aspects of the present disclosure relate to techniques for aggregating data from a wireless wide area network (WWAN) and wireless local area network (WLAN). In some aspects, a packet convergence entity (e.g., PDCP layer entity) communicates with first and second radio access technology (RAT) links. The packet convergence entity may determine from which of the first and second RAT links a data packet is received and may monitor a sequence number value of each of the received data packets. The packet convergence entity may perform one or more actions based on a determination that one or more packets are missing based on the monitored sequence number values. The packet convergence entity may send a status report in response to one or more events on one or both of the first RAT link and the second RAT link.
US09722729B2

A powerline communication (PLC) device can be configured to execute functionality for zero cross sampling and detection. When the PLC device is directly coupled to a high-voltage PLC network, the PLC device can comprise printed safety capacitors in series with a high-voltage input AC powerline signal to safely couple the high-voltage AC powerline signal to the low-voltage processing circuit. The PLC device can also comprise an ADC to sample a scaled AC powerline signal and to obtain zero cross information. When the PLC device is part of an embedded PLC application, dynamic loading can affect the integrity of a low voltage zero cross signal that is used to extract zero cross information. After digitizing the zero cross signal, the PLC device can execute functionality to minimize/eliminate voltage drops caused by dynamic loading and obtain the zero cross information.
US09722728B2

Techniques herein support enhanced multi-rate encoding and decoding of signals in multiple formats. In one embodiment, input data is received at a first device at one of a plurality of data rates. Encoder units are activated to produce streams of encoded input data. The encoder units are configured to operate at the same data rate. Differential encoding operations are performed to produce an encoded output stream. The encoded output stream is modulated for transmission to a second device. In another embodiment, a first device receives an encoded data stream that is transmitted from a second device. The modulated data stream includes encoded data at one of a plurality of data rates. Differential decoding is performed on the encoded data by activating one or more of a plurality of decoder units, where each of the plurality of decoder units is configured to operate at the same rate.
US09722723B2

The present invention and its embodiments are made to provide for dynamic hitless resizing in optical transport network without any identification of matching time slots by the Network Management System (NMS) or any control plane signaling including Generalised Multi Protocol Label Switching (GMPLS). An aspect of the invention provides for a method of hitless ODUflex connection resizing in an optical transport network by incrementing or decrementing the ODUflex connection between the nodes, based on an indication command given to a source node for bandwidth increase or decrease, by identifying and matching at least one time slot through Link Connection Resizing (LCR) protocol message exchanges. Another aspect of the invention provides for a method of hitless ODUflex connection resizing in an optical transport network by decrementing the matching time slot used for the incrementing operation, in case of unsuccessful incrementing operation between nodes.
US09722713B2

An apparatus for interference cancellation in wireless communication systems configured for reception, comprises a receive signal path configured to convey an overall receive (Rx) signal comprising an Rx signal and a residual transmit (Tx) signal, from an antenna port to an Rx input port of a transceiver, and at least one cancellation path configured to receive a leakage Tx signal from the antenna port. Further, the apparatus comprises a cancellation unit configured to apply a cancellation signal to the overall Rx signal in the receive signal path and a compensation unit configured to generate the cancellation signal by modifying the leakage Tx signal in the cancellation path, based on a compensation control signal. In addition, the apparatus comprises a feedback receiver unit configured to generate the compensation control signal based on the residual Tx signal in the overall Rx signal and the cancellation signal.
US09722703B2

Digital distributed antenna systems and methods for advanced cellular communication protocols are provided. In one embodiment, a digital distributed antenna system comprises: a host unit; a plurality of communication links; a plurality of remote antenna units each coupled to the host unit by one of the plurality of communication links, wherein the communication links transport a downlink digitized RF signal from the host unit to the plurality of remote antenna units, and wherein the remote antenna units are each configured to generate an over-the-air analog RF signal via an antenna from the downlink digitized RF signal; and a localized signal conditioning and control module that extracts from a first digitized RF signal at least one data stream and converts the at least one data stream to baseband data stored in a memory.
US09722702B2

Disclosed herein are a SATA host bus adapter using a optical signal and a method for connecting SATA storage using the optical signal. The SATA host bus adapter includes: a first conversion unit for converting a PCI-Express signal, transmitted from a host computer, into a data signal, using a protocol defined in a bus; a optical signal conversion unit for converting the data signal into a optical signal and for transmitting the optical signal to a optical signal reception unit; and a second conversion unit for converting the optical signal, received by the optical signal reception unit, into the data signal, for converting the data signal into a SATA signal, using the protocol, and for transmitting the SATA signal to the SATA storage.
US09722695B2

An optical network unit (ONU) includes an optical transceiver module, a switch, a detecting module, and an ONU chip. The switch is electronically coupled between the optical transceiver module and a power supply. The detecting module is electronically coupled between the switch and the power supply. The detecting module includes a sensor, an amplifier, and a comparator. The sensor is electronically coupled between the power supply and the switch to sense a driving current output from the power supply to the optical transceiver module and output a voltage signal to the amplifier, the amplifier amplifies the voltage signal and outputs an amplified voltage signal to the comparator, the comparator compares the amplified voltage signal with a predetermined voltage signal and outputs a comparison result. The ONU chip controls the switch to connect/disconnect the electrical connection between the optical transceiver module and the power supply according to the comparison result.
US09722690B2

An ultrawideband radio transceiver/repeater provides a low cost infrastructure solution that merges wireless and wired network devices while providing connection to the plant, flexible repeater capabilities, network security, traffic monitoring and provisioning, and traffic flow control for wired and wireless connectivity of devices or networks. The ultrawideband radio transceiver/repeater can be implemented in discrete, integrated, distributed or embedded forms.
US09722682B2

The invention is directed to systems, methods and computer program products for determining an operational mode for a device in a network. An exemplary method comprises determining a device has a first antenna and a second antenna; determining a first number of multipath components and associated power levels for the first antenna; determining a second number of multipath components and associated power levels for the second antenna; and determining an operational mode for the device based on the first number of multipath components and its associated power levels for the first antenna and the second number of multipath components and its associated power levels for the second antenna.
US09722680B2

For future wireless systems, it is desired to keep network implementation aspects, such as transmission point selection, precoder selection, etc, transparent to the terminal. This means that terminals are envisaged to be unaware of e.g. from which specific network node a transmission is made. This may be referred to as the transparency principle. The proposed solution comprises enabling a receiver to determine a type of antenna association that may be assumed in regard of two blocks of information, based on the result of the decoding of e.g. the first data block. The determination is done in a way such that the principle of transparency is not broken.
US09722675B2

A multistage combining sub-system for a distributed antenna system (“DAS”) is disclosed. The combining sub-system can receive broadband uplink signals from remote units of the DAS. The sub-system can divide the received broadband uplink signals into sets of narrowband uplink signals. The combining sub-system can select subsets of narrowband uplink signals from the sets of narrowband uplink signals. The subsets can be selected based on the narrowband signals in the subsets having signal powers above a threshold signal power. The combining sub-system can combine the selected subsets of narrowband uplink signals for routing to a base station. Combining the selected subsets of narrowband uplink signals can involve excluding narrowband uplink signals that are not included in the selected subsets of narrowband uplink signals.
US09722671B2

A signal generator generates an electrical signal that is sent to an amplifier, which increases the power of the signal using power from a power source. The amplified signal is fed to a sender transducer to generate ultrasonic waves that can be focused and sent to a receiver. The receiver transducer converts the ultrasonic waves back into electrical energy and stores it in an energy storage device, such as a battery, or uses the electrical energy to power a device. In this way, a device can be remotely charged or powered without having to be tethered to an electrical outlet.
US09722668B2

A home appliance, a home appliance system, and a method of controlling the same are provided. The home appliance includes a display unit that outputs an operation setting and an operation state. The home appliance further includes a tag unit that performs Near Field Communication (NFC) with a terminal. The home appliance further includes a controller that (i) stores product information at the tag unit, (ii) receives data stored at the tag unit, (iii) changes the operation setting, (iv) controls the operation state, and (v) outputs the changed operation setting to the display unit. The controller (i) determines network connection information that is stored at the tag unit by the terminal, (ii) stores the network connection information in a communication unit, and (iii) transmits and receives data wirelessly by connecting, through the communication unit, to a network that is associated with the network connection information.
US09722654B2

A smart ultra box adapting to a protective case is disclosed. The protective case protects a mobile communication device. The ultra box comprises a main body, a conversion unit and an expansion module. The main body has an output interface and an external power interface. The conversion unit disposes at the main body, to electrically connect the output interface and the external power interface. The expansion module electrically connects to the conversion unit. The expansion module is for communication with an external device.
US09722653B2

A memory card adapter includes a body having a set of contact pins. The set of contact pins include input pins and output pins implemented in a pin-to-pin structure. The input pins connect with pins of an inserted memory card and the output pins connect with an external socket. The body includes a bottom lead adapted to support the main body, and a top lead adapted to be combined with the bottom lead. The body includes a fixing substance adapted to combine with the contact pins. The body includes a conduction plate on a top surface or a bottom surface of the fixing substance, where the conduction plate is connected to at least one of the contact pins.
US09722647B2

A cellular radio architecture that includes a transceiver front-end circuit including an antenna and a switch module having a switching network that directs analog transmit signals to be transmitted to the antenna and receives receive signals from the antenna. The architecture further includes a receiver module having a separate signal channel for each of the signal paths in the multiplexer module, where each signal channel in the receiver module includes a receiver delta-sigma modulator that converts analog receive signals to a representative digital signal. The architecture also includes a transmitter module having a transmitter delta-sigma modulator for converting digital data bits to the transmit signals. The transmitter module includes a tunable bandpass filter and a power amplifier for amplifying the transmit signals before transmitting. The architecture also includes a calibration feedback and switch module that receives the amplified signals from the power amplifier.
US09722646B1

A RF communication system includes a radio transmitter comprising an RF power amplifier, the RF power amplifier including an input to receive an RF signal for transmission and being configured to amplify the RF signal for transmission across a communication channel; a RF digital pre- or post-distortion configured to compensate for nonlinearity of the RF communication system by operating on the RF signal entering or exiting the amplifier.
US09722639B2

Front end circuitry for a wireless communication system includes a first antenna node, a second antenna node, a first triplexer, a second triplexer, and front end switching circuitry coupled between the first triplexer, the second triplexer, the first antenna node, and the second antenna node. The front end switching circuitry is configured to selectively couple the first triplexer to one of the first antenna node and the second antenna node and couple the second triplexer to a different one of the first antenna node and the second antenna node. By using a first triplexer and a second triplexer in the mobile front end circuitry, the mobile front end circuitry may operate in one or more carrier aggregation configurations while reducing the maximum load presented to the first antenna node and the second antenna node, thereby improving the performance of the front end circuitry.
US09722638B2

A cellular radio architecture for a vehicle that includes a triplexer coupled to an antenna structure and including three signal paths, where each signal path includes a bandpass filter that passes a different frequency band than the other bandpass filters and a circulator that provides signal isolation between the transmit signals and the receive signals. The architecture also includes a receiver module having a separate signal channel for each of the signal paths in the triplexer, where each signal channel in the receiver module includes a receiver delta-sigma modulator that converts analog receive signals to a representative digital signal. The delta-sigma modulator includes an LC filter having a plurality of LC resonator circuits, a plurality of transconductance amplifiers and a plurality of integrator circuits, where a combination of one resonator circuit, transconductance amplifier and integrator circuit represents a two-order stage of the LC filter.
US09722635B2

A controller for a solid state drive is proposed. The solid state drive comprises memory cells each one for storing a symbol among a plurality of possible symbols that the memory cell is designed to store. The controller comprises a unit for encoding information bits into encoded bits; a unit for mapping the encoded bits into the symbols, wherein the symbols are determined based on a plurality of allowed symbols, among the possible symbols, that the memory cells are allowed to store, whereas the symbols, among the possible symbols, other than the allowed symbols define forbidden symbols not allowed to be stored in the memory cells; a unit for demapping read symbols and for providing an indication of the reliability of the read symbols based on the forbidden symbols; and a unit for soft decoding the read symbols according to the reliability indication thereby obtaining the information bits.
US09722630B1

The method for decoding a serially transmitted signal including: sampling the serially transmitted signal to obtain a plurality of sampled values according to a sampling period; obtaining a period of the serially transmitted signal according to a transition status of the sampled values; calculating a plurality of phase values according to the period and the transition status of the sampled values; obtaining a plurality of boundaries according to the phase values; and outputting a decoded data according to the boundaries and the transition status.
US09722618B1

Systems and methods involving phase-locked-loop (PLL) circuitry are disclosed. In one illustrative implementation, a PLL circuit device may comprise voltage controlled oscillator (VCO) circuitry having a bias signal that sets a frequency range, circuitry that shifts the VCO circuitry to operate in one of the frequency ranges, and other circuitry to compare/calibrate signals and/or set the bias current. According to further implementations, as a function of operation of the circuitry, an operating frequency range of the VCO circuitry may be shifted to a different operating frequency range, and closed-loop, continuous frequency range, auto-calibration or other features may be provided.
US09722614B2

A reconfigurable logic array(RLA) uses pipeline control methods. A do-not-end step signal is communicated to a controller in response to a backpressure condition. In response, a program executing in the RLA is suspended. Source and sink elements are arranged with respective sensors that identify back pressure conditions at interfaces. The source or sink elements communicate a do-not-end step signal to the controller. Local memory interfaces and an interrupt buffer generate similar signals in response to other internal and external conditions. The controller coordinates pipelined control signals with a global counter that issues the control signals with an end-of-step signal broadcast throughout the RLA. When a number of loop iterations is known before execution of the loop instructions, the information is shared with source and sink elements and the controller, which operate accordingly in a limited mode. At appropriate times write-enable inputs of configuration registers are disabled.
US09722611B2

A semiconductor circuit includes a first circuit and a second circuit. The first circuit is configured to generate a voltage level at a first node based on a voltage level of input data, an inverted value of the voltage level at the first node, a voltage level of a clock signal, and a voltage level at a second node; and the second circuit is configured to generate the voltage level at the second node based on the voltage level of input data, an inverted value of the voltage level at the second node, the voltage level of the clock signal, and the inverted value of the voltage level at the first node. When the clock signal is at a first level, the first and second nodes have different logical levels. When the clock signal is at a second level, the first and second nodes have the same logical level.
US09722610B2

Aspects of the invention can include a pulse generating means that outputs a set signal and reset signal for driving the high potential side switching element is such that, while either one of the set signal or reset signal is in an on-state as a main pulse signal for putting the high potential side switching element into a conductive state or non-conductive state, the other signal is turned on a certain time after the rise of the main pulse signal, thereby generating a condition in which the set signal and reset signal are both in an on-state.
US09722605B2

An integrated circuit includes first circuitry and sleep transistor circuitry. The first circuitry receives input signals and processes the input signals. The first circuitry also retains data in a sleep state that has low leakage. The sleep transistor circuitry is coupled to the first circuitry and receives a sleep signal that has a negative voltage. The sleep circuitry reduces power consumption of the first circuitry in the sleep state to have low leakage based on the sleep signal while retaining the data in the first circuitry.
US09722599B1

In accordance with an embodiment, a circuit includes a first and a second switching transistors configured to be coupled in series between a first reference voltage terminal and a transformer. The circuit also includes a first diode coupled between a first drain of the first switching transistor and a first input terminal. The first diode is configured to clamp a voltage of the first drain to a voltage of the first input terminal. The circuit further includes a switching circuit coupled between the second switching transistor and the first input terminal. The switching circuit is configured to connect a second source of the second switching transistor to a second gate of the second switching transistor when a voltage of the second source exceeds the voltage of the first input terminal.
US09722596B2

A high-voltage electronic switch includes first and second transistors defining a current flow path between an input and output of the switch. The transistors have a common point of the current flow path and a common control terminal. A control circuit includes a voltage line receiving a limit operating voltage and first and second branches coupled between the voltage line and the common point and common control terminal, respectively. Further transistors are activated, upon turning-off of the first and second transistors, for coupling the branches to the voltage line. The branches include a parallel connected resistor, diode, and string of diodes with opposite polarities. The diode of the first branch plus string of diodes of the second branch and diode of the second branch plus string of diodes of the first branch provide coupling paths between the voltage line and, respectively, the common point and common control terminal.
US09722595B2

A system includes a SiC semiconductor power device; a power supply board that is configured to provide power to a first gate driver board via a connector; the first gate driver board that is coupled and configured to provide current to the SiC semiconductor power device, wherein the first gate driver board is coupled to the power supply board via the connector, and wherein the first gate driver board is separated from the power supply board; and an interconnect board that is coupled to the first gate driver board, wherein the interconnect board is configured to couple the first gate driver board a second gate driver board.
US09722571B2

A power combiner includes a planar figure-8 shaped primary winding and a planar figure-8 shaped secondary winding; wherein, the planar figure-8 shaped primary winding is substantially overlaid with the planar figure-8 shaped secondary winding. In addition, there is provided a radio frequency (RF) transmitter having a power combiner, where the power combiner includes a planar figure-8 shaped primary winding and a planar figure-8 shaped secondary winding, wherein the planar figure-8 shaped primary winding is substantially overlaid with the planar figure-8 shaped secondary winding.
US09722570B2

PROBLEM: To provide a high-performance complex circuit, circuit device, circuit board, and communication device that support a wider band of frequencies.SOLUTION: A complex circuit includes a first diplexer that passes through the normal-phase signals of balanced signals and a second diplexer that passes through the reverse-phase signals of the balanced signals. A balun includes a low frequency band first balun element and a high frequency band second balun element. The first balun element and the second balun element respectively include a plurality of lines that are connected to the first diplexer and that carry signals occupying two different frequency bands and also respectively include a plurality of lines that are connected to the second diplexer and that carry signals occupying two different frequency bands. The lines form one pair of balanced lines, and the lines form another pair of balanced lines. Furthermore, the first balun element and the second balun element each include an unbalanced line.
US09722569B1

A multi-band, electro-mechanical programmable impedance tuner for the frequency range between 10 and 200 MHz uses cascades of three or more continuously variable mechanical capacitors interconnected with sets of low loss flexible or semi-rigid cables; for each frequency band a different set of cables and capacitors are used. The cables and/or variable capacitors inside each tuning block are switchable manually or remotely. Multi-section variable capacitors are also used. Instantaneous impedance tuning is effectuated by changing the state of the capacitors using electrical stepper motors. The tuner is calibrated using a vector network analyzer and the data are saved in the memory of the control computer, which then allows tuning to any user defined impedance within the tuning range. Reflection factor values between 0 and higher than 0.9 can be obtained using this tuner at all frequency bands.
US09722567B2

A variable-frequency resonance circuit includes first and second input/output terminals and a resonance circuit portion. The resonance circuit portion includes a first inductor and first and second LC series circuits. The resonance circuit portion is connected between a ground and a transmission line that connects the first and second input/output terminals. The first LC series circuit includes a second inductor and a variable capacitor connected in series with each other. The second LC series circuit includes a third inductor and a fixed capacitor connected in series with each other. The first and second LC series circuits are connected in parallel between the first inductor and a ground. The first and second inductors are configured such that positive-coupling mutual inductance is produced therebetween.
US09722564B2

An EMI filter network may be used to provide interference filtering for multiple loads (referred to collectively as a dynamic load). In one aspect, the EMI filter network includes electrical switches that establish different configurations or arrangements of passive circuit elements (e.g., inductors and capacitors) where each configuration generates a different filter value. The EMI filter network may be communicatively coupled to a controller which changes the configuration of the EMI filter network using the switches in response to the dynamic load changing operational states. For example, each configuration of the EMI filter network may correspond to one of the operational states of the dynamic load. Thus, as the operational state of the dynamic load changes—e.g., different motors become operational—the controller alters the configuration of the EMI filter network to provide a filter value that corresponds to the current operational state of the dynamic load.
US09722563B2

In accordance with an embodiment, a method includes determining an amplitude of an input signal provided by a capacitive signal source, compressing the input signal in an analog domain to form a compressed analog signal based on the determined amplitude, converting the compressed analog signal to a compressed digital signal, and decompressing the digital signal in a digital domain to form a decompressed digital signal. In an embodiment, compressing the analog signal includes adjusting a first gain of an amplifier coupled to the capacitive signal source, and decompressing the digital signal comprises adjusting a second gain of a digital processing block.
US09722551B1

A selective low noise amplifier (LNA) comprising an input hybrid coupler receives a first input and a second input and to provide a first output and a second output; and an output hybrid coupler receives a first input and a second input and to provide for at least one output. A first amplifier and a second amplifier, each respective amplifier in first and second parallel paths are couple to and between the first output and the second output, respectively, of the input hybrid coupler and the first input and the second input, respectively, of the output hybrid coupler. A phase controller coupled to at least one of the first input and the second input of the output hybrid coupler delays signals from the first and second inputs of the output hybrid coupler to the at least one output of the output hybrid coupler. A method is also disclosed.
US09722544B2

Embodiments of the disclosure may include a method and apparatus for improving the efficiency and extending the operation time between recharges or replacement batteries of a portable audio delivery system. The audio delivery system may include a processor, an audio processing device, a speaker, and a rechargeable power source. The audio delivery system is generally configured to generate and/or receive an audio input signal and efficiently deliver an amplified, high quality audio output signal to a user. In some embodiments of the disclosure, the audio processing device of the audio delivery system may include a switch mode power supply (SMPS), a signal delay element, an envelope detector, and a switching signal amplifier.
US09722535B2

The present disclosure provides a method and a device for arc fault detection for a photovoltaic inverter, and a photovoltaic inverter using the same. The method includes: acquiring current signals at a DC side of the photovoltaic inverter; obtaining frequency spectral characteristics of the current signal according to the current signal; judging whether the frequency spectral characteristics of the current signal have a frequency spectral characteristic of an arc; and if the frequency spectral characteristics of the current signal have a frequency spectral characteristic of an arc, shutting down the photovoltaic inverter, acquiring respectively a first input voltage when the photovoltaic inverter is shut down and a second input voltage after a predetermined time period after the shutdown, calculating a voltage drop from the first input voltage to the second input voltage, and judging whether an arc fault occurs according to the voltage drop.
US09722533B2

Designs of extremely high efficiency solar cells are described. A novel alternating bias scheme enhances the photovoltaic power extraction capability above the cell band-gap by enabling the extraction of hot carriers. When applied in conventional solar cells, this alternating bias scheme has the potential of more than doubling their yielded net efficiency. When applied in conjunction with solar cells incorporating quantum wells (QWs) or quantum dots (QDs) based solar cells, the described alternating bias scheme has the potential of extending such solar cell power extraction coverage, possibly across the entire solar spectrum, thus enabling unprecedented solar power extraction efficiency. Within such cells, a novel alternating bias scheme extends the cell energy conversion capability above the cell material band-gap while the quantum confinement structures are used to extend the cell energy conversion capability below the cell band-gap. Light confinement cavities are incorporated into the cell structure in order to allow the absorption of the cell internal photo emission, thus further enhancing the cell efficiency.
US09722522B2

A method for limiting the torque of a permanent magnet AC motor includes a torque limit controller. The torque limit controller at least in part bases the torque limit on a selected direct voltage limit. The selected direct voltage limit may be used in combination with other torque limit conditions to generate the torque demand for the AC motor.
US09722519B2

Systems and methods for operating a stepper motor of a pump at a desired low velocity include memory for storing information corresponding to an intake velocity profile. The intake velocity profile represents an optimized acceleration curve for operating the stepper motor over a range of motor velocities during an intake cycle. A processor of a system controller dynamically accesses the memory during the intake cycle to acquire the information representing the intake velocity profile and issues a series of pulses to the stepper motor based on this information. In response to the pulses, the stepper motor accelerates in accordance with the optimized acceleration curve represented by the intake velocity profile. The optimized acceleration curve is based on the available torque of the stepper motor across a range of motor velocities and enables the motor to operate with greater torque utilization and less margin than traditional linear acceleration profiles.
US09722518B2

Systems and methods are disclosed for improving acceleration performance of an electric vehicle that includes an electric motor for propulsion. An exemplary system may include an inverter configured to drive the electric motor. The inverter may include at least one power electronic device. The system may also include a torque capability controller. The torque capability controller may be configured to receive information indicative of a selection between a first mode and a second mode. The second mode may correspond to a higher torque to be output by the electric motor than the first mode. The torque capability controller may also be configured to apply a switching frequency to the at least one power electronic device. The switching frequency may have a lower value when the received information indicates the selection of the second mode than when the received information indicates the selection of the first mode.
US09722516B2

In accordance with an embodiment, a drive circuit is provided for driving for a motor wherein the drive circuit includes a first signal generator coupled to a second signal generator. A bias generator is connected to the second signal generator. In accordance with another embodiment, a method for driving a motor is provided that includes comparing a first signal at a first output of a Hall sensor with a second signal at a second output of the Hall sensor to generate a comparison signal. An indicator signal is generated in response to the comparison signal, wherein the indicator signal has a first edge and a second edge. A bias signal for the Hall sensor is generated in response to the indicator signal in response to the indicator signal.
US09722508B2

Provided is a power conversion device that converts power between DC units and three-phase AC. A first-phase conversion device, a second-phase conversion device, and a third-phase conversion device each include a DC/DC conversion circuit and a single-phase power conversion circuit. For each of the first-phase conversion device, the second-phase conversion device, and the third-phase conversion device, when an absolute value of a voltage target value for the AC exceeds DC voltage of each DC unit, a control unit causes the DC/DC conversion circuit to operate to achieve the absolute value of the voltage target value and causes the single-phase power conversion circuit to only perform necessary polarity inversion, and when the absolute value of the voltage target value is smaller than the DC voltage, the control unit stops operation of the DC/DC conversion circuit and causes the single-phase power conversion circuit to operate to achieve the voltage target value.
US09722503B2

In an embodiment, a power converter includes: a plurality of power amplifier units, each having: a plurality of slice each with a power conversion module including an AC/DC/AC converter; a mains controller to control the plurality of slices; and a feedback conditioning system coupled to the mains controller; a plurality of input contactors and a plurality of output contactors via which each of the plurality of power amplifier units is to couple between a transformer and a load; and a master controller coupled to the plurality of power amplifier units.
US09722502B2

A converter arrangement comprises first and second modular multilevel converters, Each of the modular multilevel converters comprises two converter branches. Each converter branch comprises a plurality of series-connected converter cells. Each converter cell comprises a cell capacitor and semiconductor switches for connecting and disconnecting the cell capacitor to the converter branch. At least two converter branches of the first modular multilevel converter are connected via first branch connection point and at least two converter branches of the second modular multilevel converter are connected via second branch connection point. The multilevel converters are connected in parallel via a phase connection point for connecting the converter arrangement to a load or a power source, wherein the phase connection point is connected via a first inductance with the first branch connection point and/or via a second inductance with the second branch connection point. At least one of the modular multilevel converters comprises a protection system.
US09722501B1

A brushless variable transformer. Variable autotransformers, use brushes, and as such, have moving parts requiring maintenance and periodic cleaning of the brushes. A variable transformer without brushes is advantageous in that it eliminates the cleaning and maintenance of brushes.
US09722496B2

In one embodiment, a method of compensating for transmission voltage loss from a switching power supply, can include: (i) receiving a sampling signal that represents an output current of the switching power supply; (ii) delaying the sampling signal to generate a delayed sampling signal; (iii) converting the delayed sampling signal to generate a compensation signal; and (iv) regulating an output voltage of the switching power supply based on the compensation signal to compensate for the transmission voltage loss from the output voltage transmission to a load such that a voltage at the load is maintained as substantially consistent with an expected voltage at the load.
US09722490B2

In an embodiment, an apparatus, such as a power-supply controller, includes a generator and an adjuster. The generator is configured to provide a switching signal that causes a power supply to generate a regulated output signal, and the adjuster is configured to impart a condition to the power supply while the power supply is operating in a first mode, the condition being approximately equal to a condition that the power supply would have if the power supply were operating in a second mode. For example, such an apparatus may be able to reduce or eliminate a transient on a regulated output signal (e.g., a regulated output voltage) when a power supply transitions from a first operating mode, such as a pulse-frequency-modulation (PFM) mode, to a second operating mode, such as a pulse-width-modulation (PWM) mode.
US09722489B1

Apparatuses and methods for mixed charge pumps with voltage regulator circuits is disclosed. An example apparatus comprises a first charge pump circuit configured to provide a first output, a second charge pump circuit configured to provide a second output, a plurality of coupling circuits configured to voltage couple and current couple the first output and the second output to a common node to provide a regulated voltage, and a feedback circuit configured to regulate the first output and the second output based on the regulated voltage.
US09722488B2

Disclosed herein is a technique for substantially preventing, in a power converter including a boost power factor correction section, the power factor correction section from starting an intermittent operation even if the ripple voltage of its smoothing capacitor has increased. The converter includes: a power factor correction section including a booster circuit boosting an input voltage supplied from a rectifier section and a smoothing capacitor smoothing an output of the booster circuit; and a control section correcting a power factor by controlling the booster circuit. The control section makes correction to the amount of boost of the booster circuit such that an output voltage of the smoothing capacitor does not become lower than the input voltage.
US09722485B2

A switching power supply device includes a switching circuit and a control circuit. The switching circuit includes multiple switching elements, an inductor, and a capacitor. The control circuit compares an input voltage of the switching circuit with a predetermined threshold voltage set for an operation switch, and controls the switching circuit to perform the operation switch between at least two power control operations based on a comparison result. The at least two power control operations includes at least two of a buck operation, a buck-boost operation, or a boost operation. The control circuit further performs an inrush current restriction operation in response to the operation switch in order to restrict a flowing of an inrush current to one of the switching elements, which turns on and outputs the input voltage through the inductor in response to the operation switch.
US09722483B2

A voltage regulator has an input terminal and a ground terminal. The voltage regulator includes a high-side device, a low side device, and a controller. The high-side device is coupled between the input terminal and an intermediate terminal. The high-side device includes first and second transistors each coupled between the input terminal and the intermediate terminal, such that the first transistor controls a drain-source switching voltage of the second transistor. The low-side device is coupled between the intermediate terminal and the ground terminal. The controller drives the high-side and low-side devices to alternately couple the intermediate terminal to the input terminal and the ground terminal.
US09722479B2

The invention concerns a windmill including a rotatable transverse flux electrical machine (TFEM) comprising a stator portion; and a rotor portion rotatably located in respect with the stator portion, the rotor portion including an alternate sequence of magnets and concentrators radially disposed about a rotation axis thereof; the stator portion including at least one phase, the at least one phase including a plurality of cores cooperating with a coil disposed about the rotation axis, each core including a skewed pair of poles to progressively electromagnetically engage an electromagnetic field of respective cooperating concentrators. The invention is also concerned with a plurality of elements located in desired positions in the TFEM.
US09722476B2

Self-centering electromagnetic transducers, such as linear motors and generators, are disclosed. In one embodiment, an electromagnetic transducer includes an outer yoke made of a ferromagnetic material, and a coil assembly including a plurality of loops of electrically conductive wire, wherein the coil assembly is substantially surrounded by the outer yoke. The electromagnetic transducer further includes a magnet, and an inner yoke made of ferromagnetic material. The magnet is disposed within the outer yoke such that the coil assembly surrounds the magnet. The inner yoke is disposed within the magnet, and the magnet is free to translate. The electromagnetic transducer further includes at least one high-reluctance zone positioned within the outer yoke and/or the inner yoke. In some embodiments, the electromagnetic transducer includes one or more actuators that vary a width of one or more high-reluctance zones to change a spring rate of the electromagnetic transducer.
US09722471B2

An electric drive contains an electric motor for generating a driving force and a transmission for transmitting the driving force. The electric motor has a motor housing, a rotor arranged in the motor housing, and a motor shaft which bears the rotor. The transmission has at least two transmission elements which are coupled in terms of the transmission of force. The electric drive furthermore contains a drive housing for accommodating the electric motor and the transmission. Moreover, the motor shaft is mounted by at least a first radial bearing and a second radial bearing and braced transverse to its axis of rotation. The second radial bearing being arranged radially offset to the axis of rotation.
US09722459B2

Systems and methods of controlling an uninterruptible power supply are provided. The uninterruptible power supply includes an input configured to receive input power, an output, a power conversion circuit coupled with the input and the output, and a controller coupled with the power conversion circuit. The power conversion circuit includes an inverter, which includes a low pass filter. The low pass filter includes an inductor, and the controller is configured to provide control signals to the inverter such that a first current, measured at the inductor, generates a second current, measured at the output, where the first current has a first polarity and the second current having a second polarity, and the first polarity is either zero or the same polarity as the second polarity.
US09722456B2

A console assembly for an automotive vehicle and use with a mobile device. The console assembly including a storage compartment having a floor, a pair of sidewalls, and a pair of end walls. An opening permits access into the storage area and a slidable top wall is operable to move between a covered position and a retracted position relative to the opening. An anti-slip surface is provided on the top wall and configured to receive the mobile device thereon. A wireless charging unit is also incorporated into and moveable with the top wall. The wireless charging unit is located immediately below the anti-slip surface. When the mobile device is placed on the anti-slip surface, the device is moveable with the top wall, between the covered position and retracted position, while being charged.
US09722452B2

A system and method for integrating a wireless charging device with a display is provided herein. The system includes an information receiver to receive information from the wireless charging device; an information processor to process the information, and the processed information being about a wireless charging device or an electronic device on the wireless charging device; and an information communicator to communicate the processed information to a display coupled to the system.
US09722435B2

Disclosed is a battery charge balancing device which includes: a charge-measuring unit that measures charge of a plurality of batteries storing power through a plurality of power converters connected with a plurality of input power sources; a mode-conversion parameter calculating unit that calculates mode conversion parameters for determining mode conversion such that the power converters operate in a power conversion mode for converting power or in a balancing mode for balancing charge between the batteries; and a control unit that controls power transmission path of the power converters by switching a plurality of switches connected between the power converters and the batteries in accordance with the calculated mode conversion parameters.
US09722434B2

A wireless power transfer system comprising a wireless power transmitting apparatus and a plurality of wireless power receiving apparatuses, the wireless power transmitting apparatus comprising: a power transmitting unit adapted to transmit power to the wireless power receiving apparatus; a recognition unit adapted to recognize the wireless power receiving apparatus; and a transmitting unit adapted to transmit predetermined charging delay information according to a recognition result of the recognition unit to the wireless power receiving apparatus recognized by the recognition unit, and the wireless power receiving apparatus comprising: a power receiving unit adapted to receive power transmitted from the power transmitting unit; a receiving unit adapted to receive the predetermined charging delay information transmitted from the transmitting unit; and a display unit adapted to make a display based on the predetermined charging delay information received by the receiving unit.
US09722425B2

In operating an inverter including input connectors, (i) to which strings of photovoltaic cells are connected, (ii) each of which is connected via a DC/DC converter to a common DC voltage link, and (iii) which are bridgeable, the partial powers flowing through the individual DC/DC converters are determined, and for some time at least two DC/DC converters are either operated with the aim of balancing the partial currents flowing through them or connected through. During this operation or connecting through, the partial powers flowing through the at least two DC/DC converters are compared with each other, and if a difference between the partial powers exceeds a threshold value, the DC/DC converters are subsequently operated in a way adjusted to the fact that they connect different strings to the DC voltage link.
US09722423B2

We describe a modular adjustable power factor renewable energy inverter system. The system comprises a plurality of inverter modules having a switched capacitor across its ac power output, a power measurement system coupled to a communication interface, and a power factor controller to control switching of the capacitor. A system controller receives power data from each inverter module, sums the net level of ac power from each inverter, determines a number of said capacitors to switch based on the sum, and sends control data to an appropriate number of the inverter modules to switch the determined number of capacitors into/out of said parallel connection across their respective ac power outputs.
US09722422B2

Various embodiments of a DC plant. In one embodiment, the DC plant includes (1) power sources couplable to a common DC bus, (2) rectifiers and DC-DC converters associated with the power sources and (3) a DC plant controller. The DC plant controller includes a source identifier configured to identify the power sources, a source prioritizer coupled to the source identifier and configured to prioritize the power sources based on at least one criterion, and an output characteristic assigner coupled to the source prioritizer.
US09722417B2

A transmission circuit including four transmission component sets for Ethernet is provided. For each of the transmission component sets, a first capacitor and a first inductor are cascaded, the first inductor is coupled to the Ethernet connector via the first transmission line (TL), the first capacitor is coupled to the Ethernet chip via the second TL; a second capacitor and a second inductor are cascaded, the second inductor is coupled to the Ethernet connector via the third TL, the second capacitor is coupled to the Ethernet chip via the fourth TL; a first component set is coupled between a first contact and a second contact, the first contact is located between the first capacitor and the first inductor, and the second contact is located between the second capacitor and the second inductor; and a second component set is coupled between the second TL and the fourth TL.
US09722411B2

The present provides a secondary power system and a power supply device. The secondary power system is used for supplying power for a load equipment, and comprises: a fuse circuit, a filter circuit, a convertor circuit and an over-voltage and under-voltage protection circuit, wherein, the fuse circuit, the filter circuit, the over-voltage and under-voltage protection circuit and the convertor circuit are sequentially connected in series; the over-voltage and under-voltage protection circuit is configured to cut off power supplied to the convertor circuit when power supplied by the primary power source is an under-voltage or over-voltage; the convertor circuit is configured to convert the primary power source into a secondary power source. The secondary power system, by providing an over-voltage and under-voltage protection circuit, can not only lower the cost of the convertor circuit, but also save the space occupied by the convertor circuit.
US09722406B2

Ocean floating installations (1) are disposed on the ocean. The ocean floating installations (1) float on the ocean with the lower part of the ocean floating installations (1) being fixed to the seabed by mooring ropes (11). Each of the ocean floating installations (1) is connected at a connection part (5a) to a cable (3), which is a first cable. Each of the cables (3) is connected at a connection part (5b) to a cable (7), which is a second cable. In other words, the ocean floating installations (1) are connected to each other by the cables (3) and the cable (7). A connection is established with the cables (7) at the connection parts (5b) located on the seabed. In other words, the cables (7) are installed on the seabed.
US09722404B2

The invention relates to a system for sealingly holding cables through an opening. The system comprises a holder substantially in the form of a plate having a central portion with a first thickness between a first side and a second side of the plate and a peripheral portion with a second thickness which is smaller than the first thickness, the holder having in the central portion a plurality of conduits extending in the thickness direction of the plate, each conduit being suitable for having one or more cables extending there through, at least one multi-part sealing plug of an elastic material for sealing an annular space between an inner wall of one of the conduits and a cable extending there through and a gasket of an elastic material and of a shape for placement against the peripheral portion so as to provide a sealing in a circumferential direction of the plate. The plug has at least one circumferentially extending outer rib and at least one circumferentially extending inner rib. In an uninserted state, the following conditions apply: the outer rib has a sawtooth shape for easy insertion, the sawtooth is provided with an angled inward bend for facilitating flexing of the sawtooth in a transverse direction, the inner rib has a top surface extending in circumferential and longitudinal direction for facilitating sliding along the cable, and an imaginary straight line extending in a transverse direction coincides with a pivotal point of the angled bend and intersects the top surface.
US09722402B2

A long travel cable carrier guide has a plurality of guideposts that support an upper portion of a cable carrier. The plurality of guideposts include horizontal rollers that rotate to allow the cable carrier to pass by the guideposts, but automatically return to a resting position wherein the horizontal rollers protrude into the path of the cable carrier.
US09722396B2

A surface emitting laser element capable of emitting a main beam and a sub-beam, and a monitoring light detection element capable of detecting a light intensity of the sub-beam are included, the surface emitting laser element is a PCSEL, the main beam and the sub-beam are emitted in an upward direction of the surface emitting laser element and are inclined to each other at a predetermined angle, and respective changes in a peak light intensity of the main beam and a peak light intensity of the sub-beam with respect to a value of a driving current of the surface emitting laser element are correlated with each other. Therefore, if an output of the monitoring light detection element indicating the peak light intensity of the sub-beam is used, the peak light intensity of the main beam can be estimated.
US09722392B2

A MOPA laser system that includes a seed laser configured to output pulsed laser light, an amplifier configured to receive and amplify the pulsed laser light emitted by the seed laser; and a pump laser configured to deliver a pump laser beam to both the seed laser and the amplifier.
US09722390B2

Ultrashort pulse fiber amplifier having a pulse width from 200 ps to 200 fs comprising a rare earth oxide doped multicomponent glass fibers for laser amplification, including a core and a cladding, the core comprising at least 2 weight percent glass network modifier selected from BaO, CaO, MgO, ZnO, PbO, K2O, Na2O, Li2O, Y2O3, or combinations; wherein the mode of the core is guided with step index difference between the core and the cladding, a numerical aperture of the fiber is between 0.01 and 0.04; core diameter is from 25 to 120 micron, and a length of the gain fiber is shorter than 60 cm.
US09722385B2

A laser chamber for a discharge excited gas laser apparatus may include: a first discharge electrode disposed in the laser chamber; a second discharge electrode disposed to face the first discharge electrode in the laser chamber; a fan configured to flow laser gas between the first discharge electrode and the second discharge electrode; a first insulating member disposed upstream and downstream of a laser gas flow from the first discharge electrode; a metallic damper member disposed upstream of the laser gas flow from the second discharge electrode; and a second insulating member disposed downstream of the laser gas flow from the second discharge electrode.
US09722374B2

A stacked receptacle connector includes an insulative housing forming a first receiving cavity extending along a front-to-back direction, a second receiving cavity stacked on the first receiving cavity along a vertical direction perpendicular to the front-to-back direction, and a mounting cavity located behind and communicating with the first and second receiving cavities. A printed circuit board (PCB) is mounted to the mounting cavity. A first connector having a front portion received in the first receiving cavity and a rear portion connected to the PCB. The first connector is fitted to be inserted by a first plug connector along two opposite direction. A plurality of contacts each has a mating portion received in the second receiving cavity and a mounting portion connected with the PCB. A plurality of footer pins connected the PCB to electrically connect the first connector and the contacts to an exterior substrate.
US09722370B2

An apparatus and method for crosstalk compensation in a jack of a modular communications connector includes a flexible printed circuit board connected to jack contacts and to connections to a network cable. The flexible printed circuit board includes conductive traces arranged as one or more couplings to provide crosstalk compensation.
US09722369B1

An electrical connector includes an insulating housing, a dielectric body, a plurality of terminals integrally molded to the dielectric body, a shielding plate and a plurality of metal elements. The shielding plate is integrally molded to the dielectric body. The dielectric body together with the terminals and the shielding plate is assembled to a rear end of the insulating housing. The metal elements are mounted to a top surface and a bottom surface of the dielectric body. Each of the metal elements has a base plate, and a touch portion extended from the base plate. The base plates of the metal elements are mounted to the top surface and the bottom surface of the dielectric body, respectively. A tail end of the touch portion contacts the shielding plate. One side of the touch portion contacts one of the grounding terminals.
US09722367B2

One embodiment is directed to a method of reading RFID tags in an interconnection system comprising at least one port. The method comprises initiating a localized read transaction to read any RFID tag attached to a first connector and any RFID tag attached to a second connector inserted into the port. The method further comprises, as a part of the localized read transaction, reading any RFID tag configured to respond to a first type of RFID interrogation signal, wherein the first connector comprises an attached RFID tag that is configured to respond to the first type of RFID interrogation signal; and, as a part of the localized read transaction, reading any RFID tag configured to respond to a second type of RFID interrogation signal, wherein the second connector comprises an attached RFID tag that is configured to respond to the second type of RFID interrogation signal. Other embodiments are disclosed.
US09722366B2

An electrical connector electrically connects a first printed circuit board and a second printed circuit board, where the electrical connector includes: (a) an insulative housing; (b) a plurality of signal conductors, with at least a portion of each of the plurality of signal conductors disposed within the insulative housing; (c) each of the plurality of signal conductors having a first contact end, a second contact end and an intermediate portion therebetween; and (d) a passive circuit element electrically connected to the intermediate portion of each of the plurality of signal conductors, where the passive circuit element is housed in an insulative package and includes at least a capacitor or an inductor.
US09722364B1

An outdoor external lightning arrestor includes a transmission line, a signal suppression circuit, insulation housing, a ground member, and a metal housing. The signal suppression circuit includes a circuit board thereon. A first connector, a second connector, and at least one protector are electrically connected to the circuit board. The first connector is electrically connected to the transmission line. The insulation housing is assembled to the circuit board and ground member, and the first resilient plate at one side of the ground member is in electrical contact with the second connector. The insulation housing is installed inside the metal housing, so that the second resilient plate at the other side of the ground member is in electrical contact with the metal housing.
US09722363B2

A coaxial cable connector for coupling an end of a coaxial cable to a terminal is disclosed. The connector has a coupler adapted to couple the connector to a terminal, a body assembled with the coupler and a post assembled with the coupler and the body. The post is adapted to receive an end of a coaxial cable. The post has an integral contacting portion that is monolithic with at least a portion of the post. When assembled the coupler and post provide at least one circuitous path resulting in RF shielding such that RF signals external to the coaxial cable connector are attenuated, such that the integrity of an electrical signal transmitted through coaxial cable connector is maintained regardless of the tightness of the coupling of the connector to the terminal.
US09722354B2

An electronic card connector, cooperated with a plug-in component and defining an insertion direction and a transverse direction perpendicular to the insertion direction, includes an insulative housing, a number of contacts retained in the insulative housing, a metal shell attached to the insulative housing and forming a cavity therebetween, and an ejector movable in the insulative housing. The metal shell has a number of lateral walls located at two sides and a front end thereof. One of the lateral walls has a resisting portion protruding to the cavity and resists the resisting portion to confine a movement thereof in a horizontal plane.
US09722340B2

A connector structure includes a plurality of terminals to be connected to an electric wire, an electronic component configured to control an external component to be connected to the terminals, and a housing holding the terminals and the electronic component to accommodate the terminals and the electronic component. Each terminal includes a connection portion to be connected to the electric wire, and an extension portion having a cross section of an arc shape and extending from the connection portion. The housing is configured to hold the plurality of terminals and the electronic component such that the cross sections of the extension portions are arranged to form a substantially circular shape that surrounds the electronic component.
US09722339B2

A connector including a body, an adjacent pair of first terminals, a second terminal next to one of the first terminals, a third terminal next to the other first terminal, and a fourth terminal. The body holds the terminals at least partially and includes a first recess, a second recess, and a first separating portion therebetween. The first and third terminals each have a portion exposed through the first recess. The fourth terminal has a portion exposed through the second recess. The second terminal includes an exposed portion and an unexposed portion. The unexposed portion includes an area on one side in the first direction of a part in the second direction of the second terminal and is covered with the body. The exposed portion includes an area on the other side in the first direction of the part of the second terminal and is exposed through the first recess.
US09722337B2

An assembly for a computer system includes an insert housing with a housing floor; a power supply unit arranged on the housing floor and having a plug contact; a main circuit board arranged within the insert housing substantially parallel to the housing floor; and an angle plug having a mating plug contact and a connection region for connection of the power supply unit to the main circuit board, wherein the angle plug, when connected to the main circuit board via the connection region, connects to a top face of the main circuit board at a first installation height of the main circuit board and connects to a bottom face of the main circuit board at a second installation height of the main circuit board so that height compensation with respect to the plug contact of the power supply unit is established in each case.
US09722331B2

A power inlet socket coupled to a power delivering member of an electronic device to supply power from an external power plug to the electronic device includes a socket body comprising a power plug connector connected to the external power plug and a power delivering member connector connected to the power delivering member; three terminal pins, each terminal pin comprises a projecting pin extending from the power plug connector in parallel with one another to correspond to a terminal of the external power plug and a connection terminal exposed to the power delivering member connector; and an insulating barrier provided between at least a pair of connection terminals of the three terminal pins to cut off an electric current flowing among the connection terminals. Thus, the insulating distance of power inlet socket is improved.
US09722322B2

An antenna device including: a first antenna assembly configured to receive first radiofrequency signals polarized according to a first polarization; a second antenna assembly configured to receive second radiofrequency signals polarized according to a second polarization orthogonal to the first polarization; and a radiofrequency signal handling assembly coupled with the first and second antenna assemblies, and configured to handle the received first radiofrequency signals separately from the received second radiofrequency signals.
US09722320B2

A electromagnetic induction wireless communication system including: a magnetic antenna; an electric antenna; a tuning capacitor coupled to the antenna combination configured to tune the antenna combination; a controller configured to control the operation of the communication system; a signal source coupled to the controller configured to produce a communication signal used to drive the magnetic antenna and the electric antenna; a voltage control unit coupled to the signal source configured to produce one of an amplitude difference, phase difference, and an amplitude and a phase difference between the communication signal used to drive the magnetic antenna and electric antenna.
US09722318B2

Aspects of the subject disclosure may include, for example, an antenna structure that includes a dielectric antenna comprising a dielectric feedline having a feed point, and a collar that facilitates aligning a port of a waveguide system to the feed point of the dielectric feedline for facilitating transmission or reception of electromagnetic waves exchanged between the port and the feed point of the dielectric feedline, the electromagnetic waves guided by the dielectric feedline without an electrical return path. Other embodiments are disclosed.
US09722317B2

An antenna is described including a slot formed in a cavity, a substrate configured to cover a portion of the cavity and the slot, and a first port and a second port configured to supply power to the antenna using a first feeding line and a second feeding line. Each of the feeding line and the second feeding line is connected to the slot in a vertical direction and disposed to be separate from one another. A first input impedance of the antenna from the first port differs from a second input impedance of the antenna from the second port.
US09722314B2

A patch antenna includes: a substrate configured with a dielectric material; a ground electrode formed on one side surface of the substrate; and a radiation electrode having a rectangular shape formed on another side surface of the substrate, wherein a slit is formed in the radiation electrode in parallel to a first side of the radiation electrode to be shorter than the first side, and each of a gap between the slit and the first side and a gap between the slit and a second side facing the first side is shorter than the first side.
US09722308B2

Low passive intermodulation (PIM) antenna assemblies and methods for utilizing the same. In one embodiment, the low PIM antenna assemblies described herein offer the lowest PIM level for the DAS antenna as compared with current PIM solutions currently available in the market place as well as the improvement of isolation between the radiating elements using inserted isolation rings as well as a more omni-directional radiation pattern using the insertion of slots into the radiating elements themselves. Methods of manufacturing and using the aforementioned low PIM antenna assembly are also disclosed.
US09722297B2

An integrated wire elliptical helical antenna with novel cuboids dielectric resonator loading for circularly polarized wave transmission and reception is presented. The antenna is designed to operate in the center frequency of 915 MHz and it is utilized in RFID systems as a base station antenna. The elliptical structure is formed by steel wire and supporting acrylic plastic. The cuboids dielectric resonator is loaded at the inner surface of the proposed antenna.
US09722290B2

A storage cell has an air electrode, connected to an air supply device, and a storage device. Channels for receiving a storage medium rest on the storage electrode. In addition, partition walls for partitioning off the channels with respect to one another are provided. The partition walls have a recess in the region of the storage electrode. This recess serves the purpose of spacing apart the storage medium from the storage electrode.
US09722285B2

A method includes providing battery cells for secondary batteries. The battery cells are charged to a fixed voltage (Vc). The battery cells are laid aside in an open circuit for a preset self-discharge time period (t). A voltage (Vt) is measured after the period t for each battery cell. A voltage difference (ΔV) is determined for each battery cell, wherein ΔV=Vc−Vt. A self-discharge rate (ρ) is measured for each ΔV. A self-discharge current (Ic) is calculated during the period t, wherein Ic is a function of ρ. The Ic is curve-fitted to the ΔV for each battery cell to obtain an Ic−ΔV equation. The Ic is divided into h number of grades. The Ic−ΔV equation is utilized to determine h number of grades of ΔV associated with each grade of Ic. Battery cells are selected having a same grade of Ic and ΔV for matching.
US09722283B2

The disclosed embodiments provide a system that manages use of a battery in a portable electronic device. During operation, the system obtains a voltage of the battery and a state-of-charge of the battery and calculates an effective C-rate of the battery using the voltage and the state-of-charge. Next, the system uses the effective C-rate to estimate an inaccessible capacity of the battery. Finally, the system manages use of the battery with the portable electronic device based on the inaccessible capacity.
US09722271B2

A polymer electrolyte membrane includes a fluorinated polymer membrane and a coating layer including a hydrocarbon-based ionomer on at least one surface of the fluorinated polymer membrane. The polymer electrolyte membrane maintains high hydrogen ion conductivity and has improved performance under high temperature and low humidity conditions. A membrane electrode assembly and a fuel cell including the polymer electrolyte membrane are also disclosed.
US09722256B1

In the present disclosure, imidazole-derived materials including M-N—C catalysts, imidazole-derived MOFs and MOF-based M-N—C catalysts as well as methods for preparing the same utilizing mechanochemical synthesis and/or a sacrificial support-based methods are described.
US09722244B2

A compound of formula Li4+xMnM1aM2bOc wherein: M1 is selected from the group consisting in Ni, Mn, Co, Fe and a mixture thereof; M2 is selected from the group consisting in Si, Ti, Mo, B, Al and a mixture thereof; with: −1.2≦x≦3; 0
US09722242B2

A hollow silicon-based particle including silicon (Si) or silicon oxide (SiOx, 0
US09722241B2

A positive active material for a rechargeable lithium battery includes a core including an overlithiated oxide represented by Chemical Formula 1, a first coating layer on the core and including a compound having a spinel structure, and a second coating layer on the first coating layer and including a compound represented by Chemical Formula 2. The compound having a spinel structure shows a peak between about 2.6 V and about 2.7 V in a graph of differential capacity dQ/dV vs. voltage, where the voltage is between about 4.7 V and about 2.5 V. In Chemical Formula 1, 0
US09722240B2

The present invention is concerned with novel compounds derived from polyquinonic ionic compounds and their use in electrochemical generators.
US09722231B2

A battery system having a bladed fuse connector and a method of operation of the bladed fuse connector are provided. The system may, in certain embodiments, include a printed circuit board (PCB) and a high current interconnect. The high current interconnect may be mounted to and extending upward from the PCB. The battery system may also include a fuse. The fuse may limit an amount of current flowing through the battery system. Additionally, the battery system may include a bladed fuse connector coupled between the high current interconnect and the fuse. The bladed fuse connector may carry a current between the high current interconnect and the fuse. To that end, the bladed fuse connector may include an S-shaped bend between the high current interconnect and the fuse.
US09722227B2

A cross-linked microporous polysulfone or polysulfone copolymer battery electrode separator membrane are described. Such membranes, which would otherwise be soluble above a particular, generally high temperature in selected battery electrolyte systems, once at least in part cross-linked, swell in the electrolyte at the particular higher temperature instead of dissolving. When the membrane separators are restrained between solid electrodes in a battery, the separator cannot increase in bulk volume, and the swelling occurs within the pores with the pore volume decreasing from its original bulk volume. The drop in pore volume causes the battery current density to drop, thereby reducing the heat generation within the hot area of the battery. This process provides a measure of safety against overheating and fires, and the battery is capable of continued usage if the overheating is localized.
US09722226B2

The present invention provides a polyolefin microporous membrane made of a polyolefin resin and an inorganic particle, and the puncture strength of the microporous membrane is 3 N/20 μm or more and the membrane thickness retention ratio in penetration creep is 16% or more, thereby being excellent in safety and long-term reliability, and a separator for a nonaqueous electrolyte battery, and the like can be provided.
US09722224B2

A separator for a battery and an electronic device, the separator including a separator substrate; and a separator coating layer coated on at least one surface of the separator substrate, the separator coating layer including a binder and at least one quaternary ammonium salt.
US09722214B2

The present invention provides an OLED panel and a method for fabricating the same, a screen printing plate, and a display device. The method comprises: forming an OLED mother board, wherein supporting adhesive is formed between an upper base plate and a lower base plate of the OLED mother board, and said supporting adhesive is located below a cutting line; and cutting said OLED mother board along said cutting line to obtain OLED panels. In the fabricating method of the present invention, when the OLED mother board is cut by a cutter wheel, the upper and lower base plate of the OLED mother board is subject to small deformation due to support of the supporting adhesive. As a result, travelling accuracy of the cutter wheel is improved, the distance between the cutting line and packaging adhesive is greatly reduced, and the frame width of the fabricated OLED panel is far less than that of an OLED panel fabricated by a conventional method.
US09722200B2

The present disclosure relates to an emissive construct, which can be used in various OLED applications, for example, top-emission white organic light-emitting diodes. The emissive construct includes a fluorescent emissive layer, a partial hole-blocking layer, and a phosphorescent emissive. A recombination zone is shared between the fluorescent emissive layer and the phosphorescent emissive layer, such that the thickness of the partial hole-blocking layer is less than about one-third of the thickness of the recombination zone.
US09722197B2

Disclosed is a method for manufacturing an inverted organic electronic device. The method includes preparing a substrate having a first electrode; depositing a mixture of a cathode interface material and a photo active material onto the first electrode to form a bilayer or composite layer of a cathode interface layer and a photo active layer, followed by forming an anode interface layer on the bilayer or composite layer; and forming a second electrode on the anode interface layer. According to the present invention, it is possible to achieve simplification of a manufacturing process of an inverted organic electronic device and to provide an inverted organic electronic device having excellent performance by forming a cathode interface layer in the form of a uniform and pinhole-free thin film.
US09722185B2

A heterocyclic compound and an organic light-emitting device including the heterocyclic compound, the heterocyclic compound being represented by Formula 1 below:
US09722176B2

Methods for manufacturing magnetoresistive devices are presented in which isolation of magnetic layers in the magnetoresistive stack is achieved by oxidizing exposed sidewalls of the magnetic layers prior to subsequent etching steps. Etching the magnetic layers using a non-reactive gas further prevents degradation of the sidewalls.
US09722171B2

The present invention provides a lead-free piezoelectric material having a high piezoelectric constant and a high mechanical quality factor in a wide operating temperature range. The piezoelectric material includes a perovskite-type metal oxide represented by Formula (1): (Ba1-xCax)a(Ti1-yZry)O3 (1.00≦a≦1.01, 0.125≦x<0.155, and 0.041≦y≦0.074) as a main component. The metal oxide contains Mn in a content of 0.12 parts by weight or more and 0.40 parts by weight or less based on 100 parts by weight of the metal oxide on a metal basis.
US09722162B2

A semiconductor light emitting device includes first and second light emitting bodies, a first electrode, a second electrode and a first interconnection. The first and second light emitting bodies are disposed on a conductive substrate, and each includes first and second semiconductor layers and a light emitting layer therebetween. The first electrode is provided between the first light emitting body and the conductive substrate, and electrically connected to a first semiconductor layer and the conductive substrate. The second electrode is provided between the second light emitting body and the conductive substrate, and electrically connected to a first semiconductor layer. The first interconnection electrically connects the second semiconductor layer of the first light emitting body and the second electrode. The first interconnection includes a first portion extending over the first and second light emitting bodies and a second portion extending into the second light emitting body.
US09722160B2

A light emitting device includes a substrate, a plurality of first wiring members, a plurality of second wiring members and a plurality of light emitting elements. The first wiring members extend in a first direction. The second wiring members extend in a second direction. Each of the second wiring members is segmented into a plurality of second wiring portions. The light emitting elements are disposed along the second direction. A first electrode of the light emitting element is connected to a corresponding one of the first wiring members. A second electrode of the light emitting element has a first connection part and a second connection part that is linked to the first connection part. The first connection part and the second connection part are connected to a corresponding one of the second wiring members and bridge at least two of the segmented second wiring portions in the second direction.
US09722158B2

A multiple element emitter package is disclosed for increasing color fidelity and heat dissipation, improving current control, and increasing rigidity of the package assembly. In one embodiment, the package comprises a casing with a cavity extending into the interior of the casing from a first main surface. A lead frame is at least partially encased by the casing, the lead frame comprising a plurality of electrically conductive parts carrying a linear array of LEDs. Electrically conductive parts, separate from the parts carrying the LEDs, have a connection pad, wherein the LEDs are electrically coupled to the connection pad, such as by a wire bond. This arrangement allows for a respective electrical signal to be applied to each of the LEDs. The emitter package may be substantially waterproof, and an array of the emitter packages may be used in an LED display such as an indoor and/or outdoor LED screen.
US09722155B2

Provided is a LED light source package comprising a circuit board, a light source seated on an upper portion of the circuit board, and a lens structure arranged on the upper portion of the circuit board via the light source. A surface that faces the light source in the lens structure includes a first inclined surface that projects toward the light source as going to a center portion of the lens structure.
US09722151B2

A QD glass cell includes a glass cell and QD fluorescent powder material. The glass cell includes a receiving chamber, and the QD fluorescent powder being encapsulated within the receiving chamber. A manufacturing method of the QD glass cell includes: S101: manufacturing a glass cell comprising a receiving chamber, and the glass cell comprising an injection port transmitting fluid into the receiving chamber; S102: manufacturing fluid QD fluorescent powder material; S103: filling the fluid QD fluorescent powder material into the receiving chamber via the injection port; S104: applying a curing process to the fluid QD fluorescent powder material within the receiving chamber; and S105: sealing the injection port by hot melting to obtain the QD glass cell. In addition, the above QD glass cell may be applied to LED light source.
US09722139B2

A light emitting heterostructure including one or more fine structure regions is provided. The light emitting heterostructure can include a plurality of barriers alternating with a plurality of quantum wells. One or more of the barriers and/or quantum wells includes a fine structure region. The fine structure region includes a plurality of subscale features arranged in at least one of: a growth or a lateral direction.
US09722135B2

A LED structure includes a support and a plurality of nanowires located on the support, where each nanowire includes a tip and a sidewall. A method of making the LED structure includes reducing or eliminating the conductivity of the tips of the nanowires compared to the conductivity of the sidewalls during or after creation of the nanowires.
US09722134B1

A method for transferring a semiconductor structure is provided. The method includes: coating an adhesive layer onto a carrier substrate; disposing the semiconductor structure onto the adhesive layer, such that the adhesive layer temporarily adheres the semiconductor structure, in which the adhesive layer includes an adhesive component and a surfactant component therein after the disposing; irradiating the electromagnetic wave to the adhesive layer through the carrier substrate to reduce adhesion pressure of the adhesive layer to the semiconductor structure while remaining the semiconductor structure within a predictable position, in which the semiconductor structure has a rejection band or is completely opaque, the carrier substrate has a pass band, and the pass band of the carrier substrate and the rejection band of the semiconductor structure overlaps; and transferring the semiconductor structure from the adhesive layer to a receiving substrate structure after the adhesion pressure of the adhesive layer is reduced.
US09722130B2

A method is disclosed for making semiconductor films from a eutectic alloy comprising a metal and a semiconductor. Through heterogeneous nucleation said film is deposited at a deposition temperature on relatively inexpensive buffered substrates, such as glass. Specifically said film is vapor deposited at a fixed temperature in said deposition temperature where said deposition temperature is above a eutectic temperature of said eutectic alloy and below a temperature at which the substrate softens. Such films could have widespread application in photovoltaic and display technologies.
US09722126B2

A photoconductive device that generates or detects terahertz radiation includes a semiconductor layer; a structure portion; and an electrode. The semiconductor layer has a thickness no less than a first propagation distance and no greater than a second propagation distance, the first propagation distance being a distance that the surface plasmon wave propagates through the semiconductor layer in a perpendicular direction of an interface between the semiconductor layer and the structure portion until an electric field intensity of the surface plasmon wave becomes 1/e times the electric field intensity of the surface plasmon wave at the interface, the second propagation distance being a distance that a terahertz wave having an optical phonon absorption frequency of the semiconductor layer propagates through the semiconductor layer in the perpendicular direction until an electric field intensity of the terahertz wave becomes 1/e2 times the electric field intensity of the terahertz wave at the interface.
US09722120B2

A method for fabricating a photovoltaic device includes forming a polycrystalline absorber layer including Cu—Zn—Sn—S(Se) (CZTSSe) over a substrate. The absorber layer is rapid thermal annealed in a sealed chamber having elemental sulfur within the chamber. A sulfur content profile is graded in the absorber layer in accordance with a size of the elemental sulfur and an anneal temperature to provide a graduated bandgap profile for the absorber layer. Additional layers are formed on the absorber layer to complete the photovoltaic device.
US09722119B2

A plurality of solar cell assembly series of a solar cell panel are so arranged that any two adjacent solar cells in the plurality of solar cell assembly series have a potential difference which does not exceed V volts which is a maximum output voltage of the plurality of solar cell assembly series.
US09722117B1

The disclosure relates to solar cell, and especially to a method for manufacturing a crystalline silicon solar cell module. The method includes: a) providing a solar cell module to be laminated, including a back plate, a first bonding layer, a crystalline silicon solar cell component, a second bonding layer and a top plate in contact in sequence, where the crystalline silicon solar cell component is a crystalline silicon solar cell or a cell string formed by connecting multiple crystalline silicon solar cells; b) laminating the solar cell module to be laminated under current injection, to obtain a laminated solar cell module; and c) installing a frame and a junction box on the laminated solar cell module, to obtain a crystalline silicon solar cell module. The crystalline silicon solar cell module is under the current injection during the laminating process, improving the performance against light-induced degradation.
US09722110B2

Plasmonic graphene is fabricated using thermally assisted self-assembly of plasmonic nanostructure on graphene. Silver nanostructures were deposited on graphene as an example.
US09722105B2

Approaches for forming solar cells with a converted seed layer as a buffer material and the resulting solar cells are described. In an example, a method of fabricating a solar cell includes converting regions of a seed layer disposed on a plurality of p-n junctions of the solar cell to form a pattern of interdigitated converted regions. The converted regions are configured to electrically insulate non-converted regions of the seed layer from each other and provide a barrier to a laser that is, in fabricating the solar cell, directed towards the seed layer such that the barrier substantially avoids degradation of at least the plurality of p-n junctions from the laser.
US09722101B2

A solar cell includes a photoelectric conversion section having first and second principal surfaces, and a collecting electrode formed on the first principal surface. The collecting electrode includes first and second electroconductive layers in this order from the photoelectric conversion section side, and includes an insulating layer between the first and second electroconductive layers. The insulating layer is provided with an opening, and the first and second electroconductive layers are in conduction with each other via the opening provided in the insulating layer. The solar cell has, on the first principal surface, the second principal surface or a side surface of the photoelectric conversion section, an insulating region freed of a short circuit of front and back sides of the photoelectric conversion section, and the surface of the insulating region is at least partially covered with the insulating layer.
US09722099B2

A light sensing device includes a substrate, a light sensing area on the substrate, and a light shielding layer over the substrate. The light shielding layer does not cover the light sensing area. At least one outgassing hole is formed through the light shielding layer.
US09722092B2

To provide a transistor with favorable electrical characteristics. A semiconductor device includes a first insulator over a substrate; a first metal oxide over the first insulator; a second metal oxide over the first metal oxide; a first conductor and a second conductor over the second metal oxide; a third metal oxide over the second metal oxide, the first conductor, and the second conductor; a second insulator over the third metal oxide; and a third conductor over the second insulator. The second metal oxide includes a region in contact with a top surface of the first metal oxide and regions in contact with side surfaces of the first metal oxide. The second metal oxide includes channel formation regions.
US09722084B2

There is disclosed a method for chemically treating a display glass substrate by treating at least one surface of the glass substrate with a heated solution containing HCl to form a depletion layer at the surface and under the surface of the glass substrate. The disclosure also relates to display glass substrates containing the depletion layer made by the disclosed process. In addition, the disclosure relates to methods of making thin-film transistors (“TFTs”) on these display glass substrates by depositing a Si layer directly on the chemically treated surface of the glass substrate, and annealing the Si layer to form polycrystalline silicon.
US09722083B2

An embodiment method of forming a source/drain region for a transistor includes forming a recess in a substrate, epitaxially growing a semiconductor material in the recess, amorphizing the semiconductor material, and doping the semiconductor material to form a source/drain region. In an embodiment, the doping utilizes either phosphorus or boron as the dopant. Also, the amorphizing and the doping may be performed simultaneously. The amorphizing may be performed at least in part by doping with helium.
US09722080B2

The present invention provides a semiconductor device, including a substrate, two gate structures disposed on a channel region of the substrate, an epitaxial layer disposed in the substrate between two gate structures, a first dislocation disposed in the epitaxial layer, wherein the profile of the first dislocation has at least two non-parallel slanting lines, and a second dislocation disposed adjacent to a top surface of the epitaxial layer, and the profile of the second dislocation has at least two non-parallel slanting lines.
US09722067B2

A semiconductor device includes a first nitride semiconductor layer, a source electrode on the first nitride semiconductor layer, a drain electrode on the first nitride semiconductor layer, a gate electrode on the first nitride semiconductor layer and between the source electrode and the drain electrode, a gate field plate electrode that is separated from the first nitride semiconductor layer, and includes one end in direct contact with the gate electrode, and the other end positioned between the gate electrode and the drain electrode, a first interlayer insulating film that is separated from the gate electrode and is between the gate field plate electrode and the first nitride semiconductor layer, and a second interlayer insulating film that is between the gate electrode and the first interlayer insulating film and has a dielectric constant higher than a dielectric constant of the first interlayer insulating film.
US09722052B2

A method of forming semiconductor fins is provided. Sacrificial fins are provided on a surface of substrate. A hard mask layer, formed around the sacrificial fins and the gaps therebetween, is made coplanar with a topmost surface of the sacrificial fins. A fin cut mask then covers a portion of the sacrificial fins and partly covers a sacrificial fin. Trenches are formed in the hard mask layer by removing sacrificial fins not covered by the fin cut mask and that portion of the sacrificial fin not partly covered by the fin cut mask. Spacers are formed on the sidewalls of the trenches and a plug is formed in the trench formed by removing that portion of the sacrificial fin not partly covered by the fin cut mask. Semiconductor fins are grown epitaxially in the trenches having the spacers from the exposed surface of the substrate upward.
US09722049B2

Embodiments described herein provide method for forming crystalline indium-gallium-zinc oxide (IGZO). A substrate is provided. A seed layer is formed above the substrate. The seed layer has a crystalline structure that is substantially dominant along the c-axis. An IGZO layer is formed above the seed layer. The seed layer may include zinc oxide. A stack of alternating seed layers and IGZO layers may be formed.
US09722047B2

The high-voltage transistor device comprises a semiconductor substrate (1) with a source region (2) of a first type of electrical conductivity, a body region (3) including a channel region (4) of a second type of electrical conductivity opposite to the first type of conductivity, a drift region (5) of the first type of conductivity, and a drain region (6) of the first type of conductivity extending longitudinally in striplike fashion from the channel region (4) to the drain region (6) and laterally confined by isolation regions (9). The drift region (5) comprises a doping of the first type of conductivity and includes an additional region (8) with a net doping of the second type of conductivity to adjust the electrical properties of the drift region (5). The drift region depth and the additional region depth do not exceed the maximal depth (17) of the isolation regions (9).
US09722037B2

An embodiment of a compound semiconductor device includes: a substrate; a nitride compound semiconductor stacked structure formed on or above the substrate; and a gate electrode, a source electrode and a drain electrode formed on or above the compound semiconductor stacked structure. A recess positioning between the gate electrode and the drain electrode in a plan view is formed at a surface of the compound semiconductor stacked structure.
US09722032B2

Methods and structures for improving the performance of integrated semiconductor transistors operating at high frequency and/or high power are described. Two capacitors may be connected to an input of a semiconductor transistor and tuned to suppress second-harmonic generation and to transform and match the input impedance of the device. A two-stage tuning procedure is described. The transistor may comprise gallium nitride and may be configured as a power transistor capable of handling up to 1000 W of power. A tuned transistor may operate at frequencies up to 6 GHz with a peak drain efficiency greater than 60%.
US09722021B2

An integrated circuit and method has an isolated well with an improved isolated well contact. The well contact diffusion is isolated from a device diffusion of opposite conductivity type within the isolated well by an isolation transistor gate.
US09722000B2

An organic light emitting device utilizing the micro-cavity effect in the RGB subpixel regions while suppressing the micro-cavity effect in the white subpixel region is provided. The organic light emitting device includes a lower substrate, an anode formed on the lower substrate, an organic emission layer formed on the anode, a cathode formed on the organic emission layer, and a reflection decreasing layer formed on at least a portion of the cathode for reducing reflection of the light emitted from the organic emission layer by the cathode to reduce the micro-cavity effect. Such a selective use of the micro-cavity effect in the organic light emitting device improves the color accuracy, the luminance efficiency and the lifespan of the top emission type organic light emitting device.
US09721992B2

An organic optoelectronic component and a method for operating an organic optoelectronic component are disclosed. In an embodiment an organic optoelectronic component includes an organic light emitting element including an organic functional layer stack having an organic light emitting layer between two electrodes and an organic light detecting element including a first organic light detecting element including a first organic light detecting layer, and a second organic light detecting element including a second organic light detecting layer, wherein the organic light emitting element and the organic light detecting element are arranged laterally adjacent on a common substrate, wherein the first organic light detecting element is configured to detect ambient light, wherein the second organic light detecting layer of the second organic light detecting element is arranged between two non-transparent layers, the non-transparent layers shade the second organic light detecting layer of the second organic light detecting element from ambient light.
US09721987B2

The semiconductor device includes a semiconductor substrate, an isolation feature, a photodiode and a transistor gate. The isolation feature is disposed in the semiconductor substrate. The photodiode is disposed in the semiconductor substrate and adjacent to the isolation feature. The photodiode includes a first pinned photodiode (PPD) with a first dopant type and a second PPD with a second dopant type. The second PPD is embedded in the first PPD, and is different from the first dopant type. The transistor gate is disposed over the photodiode and includes a first portion and a second portion. The first portion with the first dopant type is used for controlling the operation of the semiconductor device. The second portion with the second dopant type is adjacent to the first portion. The second portion covers the photodiode and extends toward the isolation feature.
US09721985B2

A solid state imaging device including a semiconductor layer comprising a plurality of photodiodes, a first antireflection film located over a first surface of the semiconductor layer, a second antireflection film located over the first antireflection film, a light shielding layer having side surfaces which are adjacent to at least one of first and the second antireflection film.
US09721984B2

Semiconductor devices and back side illumination (BSI) sensor manufacturing methods are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes providing a workpiece and forming an integrated circuit on a front side of the workpiece. A grid of a conductive material is formed on a back side of the workpiece using a damascene process.
US09721982B2

A tunneling field effect transistor for light detection, including a p-type region connected to a source terminal, a n-type region connected to a drain terminal, an intrinsic region located between the p-type region and the n-type region to form a P-I junction or an N-I junction with the n-type region or the p-type region, respectively, a first insulating layer and a first gate electrode, the first gate electrode covering a portion of the intrinsic region on one side, and a second insulating layer and a second gate electrode, the second insulating layer and the second gate electrode covering an entire other side of the intrinsic region opposite to the one side, wherein an area of the intrinsic region that is not covered by the first gate electrode forms a non-gated intrinsic area configured for light absorption.
US09721978B2

Various embodiments provide a thin film transistor (TFT) device, a manufacturing method of the TFT device, and a display apparatus including the TFT device. An etch stop layer (ESL) material is formed on an active layer on a substrate. An electrical conductive layer material is formed on the ESL material for forming a source electrode and a drain electrode. The electrical conductive layer material is patterned to form a first portion of the source electrode containing a first via-hole through the source electrode, and to form a first portion of the drain electrode containing a second via-hole through the drain electrode. The ESL material is patterned to form an etch stop layer (ESL) pattern including a first ESL via-hole connecting to the first via-hole through the source electrode and including a second ESL via-hole connecting to the second via-hole through the drain electrode.
US09721969B2

Devices and methods for forming a device are presented. The method for forming the device includes providing a support substrate having first crystal orientation. A trap rich layer is formed on the support substrate. An insulator layer is formed over a top surface of the trap rich layer. The method further includes forming a top surface layer having second crystal orientation on the insulator layer. The support substrate, the trap rich layer, the insulator layer and the top surface layer correspond to a substrate and the substrate is defined with at least first and second device regions. A transistor is formed in the top surface layer in the first device region and a wide band gap device is formed in the second device region.
US09721964B2

A memory device includes a plurality of stacks of conductive strips alternating with insulating strips. At least one of the insulating strips includes an insulating material with a dielectric constant equal to or lower than 3.6. A plurality of structures of a conductive material is arranged orthogonally over the stacks. Memory elements are disposed in interface regions at cross-points between side surfaces of the stacks and structures. The insulating strips can have equivalent oxide thicknesses EOT substantially greater than their respective physical thicknesses. The EOT can be at least 10% greater than the respective physical thicknesses. The at least one of the insulating strips can consist essentially of the insulating material with a dielectric constant equal to or lower than 3.6.
US09721954B2

To reinforce power supply wirings without sacrificing the interconnectivity of semiconductor devices. When three wirings are formed in parallel in the same wiring layer and the center wiring among them is shorter than the outer wirings, a projecting portion integrated into the outer wiring is formed utilizing a free space remaining on the extension of the center wiring. For example, when the outer wirings are used as power supply wirings, the power supply wirings can be reinforced by adding the projecting portion. At this time, because the projecting portion is arranged in the free space, the interconnectivity is not sacrificed.
US09721947B2

A semiconductor device includes a semiconductor substrate, and first and second transistors over the semiconductor substrate. Both the first and second transistors are p-type transistors or both the first and second transistors are n-type transistors. The first and second transistors have the same nominal operating voltage. The first transistor has a higher threshold voltage than the second transistor. The second transistor has at least one of a source region or a drain region with higher charge carrier mobility than at least one of a source region or a drain region of the first transistor.
US09721945B2

A semiconductor device includes: an IGBT section including a vertical IGBT; and a diode section arranged along the IGBT section and including a diode. The diode section includes a hole injection reduction layer having a first conductivity type and arranged in an upper layer portion of a drift layer, extending to a depth deeper than an anode region constituted by a second conductivity type region in the diode section, having an impurity concentration lower than an impurity concentration of the anode region and higher than an impurity concentration of the drift layer.
US09721936B2

Field-effect transistor (FET) stack voltage compensation. In some embodiments, a switching device can include a first terminal and a second terminal, and a plurality of switching elements connected in series between the first and terminal and the second terminal. Each switching element has a parameter that is configured to yield a desired voltage drop profile among the connected switching elements. Such a desired voltage drop profile can be achieved by some or all FETs in a stack having variable dimensions such as variable gate width or variable numbers of fingers associated with the gates.
US09721935B2

A semiconductor device includes a first chip, a second chip stacked on the first chip, and a third chip stacked on the second chip. The second chip includes a second semiconductor layer having a second circuit surface facing the first wiring layer and a second rear surface opposite to the second circuit surface, a second wiring layer provided on the second circuit surface and connected to a first wiring layer of the first chip, and a second electrode extending through the second semiconductor layer and connected to the second wiring layer. The third chip includes a third semiconductor layer having a third circuit surface and a third rear surface facing the second chip, a third wiring layer provided on the third circuit surface, and a third electrode extending through the third semiconductor layer, connected to the third wiring layer and connected to the second electrode through bumps.
US09721925B2

A semiconductor device is made by forming first and second interconnect structures over a first semiconductor die. A third interconnect structure is formed in proximity to the first die. A second semiconductor die is mounted over the second and third interconnect structures. An encapsulant is deposited over the first and second die and first, second, and third interconnect structures. A backside of the second die is substantially coplanar with the first interconnect structure and a backside of the first semiconductor die is substantially coplanar with the third interconnect structure. The first interconnect structure has a height which is substantially the same as a combination of a height of the second interconnect structure and a thickness of the second die. The third interconnect structure has a height which is substantially the same as a combination of a height of the second interconnect structure and a thickness of the first die.
US09721924B2

The stack package includes a substrate body layer having a top surface and a bottom surface, first circuit patterns disposed on the bottom surface of the substrate body layer, second circuit patterns disposed on the top surface of the substrate body layer, a first semiconductor chip including first bumps, and a second semiconductor chip including second bumps. The first bumps extend through the substrate body layer to be electrically coupled to the first circuit patterns, and the second bumps extend past sidewalls of the first semiconductor chip to be electrically coupled to the second circuit patterns. The second semiconductor chip is stacked on the first semiconductor chip.
US09721918B2

A package component includes a dielectric layer and a metal pad over the dielectric layer. A plurality of openings is disposed in the metal pad. The first plurality of openings is separated from each other by portions of the metal pad, with the portions of the metal pad interconnected to form a continuous metal region.
US09721917B2

A semiconductor device is provided with a semiconductor chip. The semiconductor chip has a semiconductor substrate, an interconnect layer, an inductor and conductive pads (first pads). The interconnect layer is provided on the semiconductor substrate. The interconnect layer includes the inductor. The pads are provided on the interconnect layer. The pads are provided in a region within a circuit forming region of the semiconductor chip, which does not overlap the inductor.
US09721914B2

An array substrate for a display device can include a substrate, a pad positioned on the substrate, an insulating layer positioned on the pad and including a plurality of open portions exposing the pad, a first metal layer positioned on the insulating layer and disposed to be in contact with the pad, a second metal layer positioned on the first metal layer, and a bump electrode positioned on the second metal layer and including a plurality of dimples.
US09721906B2

An electronic package that includes a substrate and a die attached to the substrate. A plurality of supports attached to the substrate adjacent to the die. At least one support in the plurality of supports is positioned adjacent to at least one corner of the die such that the at least one corner of the die is positioned adjacent to the at least one support. Other example forms relate to a method of fabricating an electronic package. The method includes securing a die to a substrate and securing a plurality of supports to the substrate such that at least one support is adjacent to at least one corner of the die.
US09721903B2

A system in package (SiP) is disclosed that uses an EMI shield to inhibit EMI or other electrical interference on the components within the SiP. A metal shield may be formed on an upper surface of an encapsulant encapsulating the SiP. The metal shield may be electrically coupled to a ground layer in a printed circuit board (PCB) to form the EMI shield around the SiP. The metal shield may be electrically coupled to the ground layer using one or more conductive structures located in the encapsulant. The conductive structures may be located on a perimeter of the components in the SiP. The conductive structures may provide a substantially vertical connection between the substrate and the shield on the upper surface of the encapsulant.
US09721902B2

The present disclosure relates to a radio frequency (RF) unit of a base station, and more particularly, to a method of manufacturing an RF power amplifier module, an RF power amplifier module, an RF module, and a base station. The RF power amplifier module includes at least a power device, a power circuit board, a heat-dissipation substrate, and input/output ports. A power device die of the power device and the power circuit board are mounted on the heat-dissipation substrate. The power device die is connected to the power circuit board through packaging lead wires. In one exemplary embodiment, a heat-dissipation effect and manufacturing efficiency of the RF power amplifier module are improved and a cost of the RF power amplifier module is reduced.
US09721901B2

Disclosed is a thin-film transistor substrate including: a substrate; a thin-film transistor formed on the substrate and including an active layer, a gate electrode, a source electrode, and a drain electrode; an identification (ID) mark formed on the substrate; and a metal layer contacting an upper surface of the ID mark.
US09721892B2

A semiconductor device and method for manufacturing the same are provided. The method includes providing a semiconductor substrate, forming a porous low-k dielectric layer on the semiconductor substrate, forming a through-hole and a trench of a copper interconnect structure, performing a helium plasma treatment on an exposed surface of the porous low-k dielectric layer, performing a nitrogen plasma treatment on the exposed surface of the porous low-k dielectric layer to form a silicon nitride layer, performing an argon plasma treatment on the silicon nitride layer, and forming a diffusion barrier layer on bottoms and sidewalls of the through-hole and the trench of the copper interconnect structure. Through the successive helium, nitrogen and argon plasma treatments, the low-k dielectric layer has a smooth and dense surface that increases the adhesion strength between the low-k dielectric layer and the diffusion barrier layer to improve reliability and yield of the semiconductor device.
US09721891B2

An integrated circuit device includes a first metal layer including aluminum. The integrated circuit device includes a second metal layer including an interconnect structure. The interconnect structure includes a layer of first material including aluminum. The integrated circuit device includes an inter-diffusion layer that includes aluminum. The inter-diffusion layer is proximate to the first metal layer and proximate to the layer of first material including aluminum. The integrated circuit device includes an aluminum oxide barrier layer. The aluminum oxide barrier layer is proximate to a dielectric layer and proximate to the layer of first material including aluminum.
US09721889B1

Integrated circuit (IC) structure embodiments and methods of forming them with middle of the line (MOL) contacts that incorporate a protective cap, which provides protection from damage during back end of the line (BEOL) processing. Each MOL contact has a main body in a lower portion of a contact opening. The main body has a liner (e.g., a titanium nitride layer) that lines the lower portion and a metal layer on the liner. The MOL contact also has a protective cap in an upper portion of the contact opening above the first metal layer and extending laterally over the liner to the sidewalls of the contact opening. The protective cap has an optional liner, which is different from the liner in the lower portion, and a metal layer, which is either the same or different than the metal in the main body.
US09721881B1

A method of forming a semiconductor device assembly includes forming an interposer having an opening extending from a first major surface to a second major surface of the interposer and a plurality of external connectors on the second major surface. The method further includes attaching the first major surface of the interposer to a packaged semiconductor device, wherein the opening of the interposer exposes the packaged semiconductor device.
US09721874B2

Pre-encapsulated lead frames suitable for use in microelectronic device packages are disclosed. Individual lead frames can include a set of multiple lead fingers arranged side by side with neighboring lead fingers spaced apart from each other by a corresponding gap. An encapsulating compound at least partially encapsulates the set of lead fingers without encapsulating a microelectronic device. The encapsulating compound can generally fill the plurality of gaps between two adjacent lead fingers.
US09721870B2

A cooling structure for large electronic boards with closely-spaced heterogeneous die and packages is disclosed. The assembly includes a frame having a plurality of openings. The assembly further includes a cold plate mounted to the frame. The cold plate includes at least one inlet and at least one outlet and fluid channels in communication with the at least one inlet and the at least one outlet. The assembly further includes a heat sink mounted within each of the plurality of openings which in combination with sidewalls of the openings of the frame and the cold plate form individual compartments each of which are in fluid communication with the fluid channels.
US09721869B2

The heat sink structure includes a vapor chamber, a heat pipe, and capillary elements. The vapor chamber includes a housing, a first capillary structure covering inside the housing, and a first working fluid filled inside the housing. The housing includes through holes and an inner top wall. Both ends of the heat pipe are inserted through the two through holes respectively and are exposed from the housing. The heat pipe includes a pipe body, a second capillary structure covering inside the pipe body, and a second working fluid filled inside the pipe body. Each of the capillary elements is connected to the inner top wall. One end of each of the capillary elements is in contact with the first capillary structure, and the other end of each of the capillary elements is in thermal contact with the heat pipe.
US09721864B2

A hermetically sealed electronic device and method of fabrication are provided. A base layer of a wafer is created using a substrate formed from ultra-thin glass or ceramic using panel or roll to roll processing. One or more layers are bonded to the base layer. The wafer is singulated into a plurality of electronic devices having a top surface and a plurality of sides. A hermetic sealant is applied to each electronic device to completely encase the top surface and the sides while bonding to the base layer. At least one of the layers is a metallization layer formed by metal deposition. Full metallization may be applied over the entire wafer and a pattern subsequently transferred to the full metallization by one of laser and chemical etching. The electronic device may further include at least one electronic component attached to one of the layers and encased by the hermetic sealant.
US09721860B2

A packaged transistor device (100) comprises a semiconductor chip (101) including a transistor with terminals distributed on the first and the opposite second chip side; and a slab (110) of low-grade silicon (l-g-Si) configured as a ridge (111) framing a depression including a recessed central area suitable to accommodate the chip, the ridge having a first surface in a first plane and the recessed central area having a second surface in a second plane spaced from the first plane by a depth (112) at least equal to the chip thickness, the ridge covered by device terminals (120; 121) connected to attachment pads in the central area having the terminals of the first chip side attached so that the terminals (103) of the opposite second chip side are co-planar with the device terminals on the slab ridge.
US09721850B2

A method for making a three-dimensional integrated electronic circuit is provided, including making a first electrically conductive portion on a first dielectric layer covering a first semiconductor layer; then making a second dielectric layer covering the first electrically conductive portion such that it is disposed between the first and second dielectric layers, and a second semiconductor layer disposed on the second dielectric layer; then making a first electronic component in the second semiconductor layer, and a second electronic component in the first semiconductor layer; then making an electrical interconnection electrically linking the first and second electronic components together, of which a first part passes through the first dielectric layer and electrically connects the second electronic component to the first electrically conductive portion and of which a second part passes through a part of the second dielectric layer and electrically connects the first electronic component to the first electrically conductive portion.
US09721849B2

A CMOS integrated circuit containing an isolated n-channel DEMOS transistor and an isolated vertical PNP transistor has deep n-type wells and surrounding shallow n-type wells providing isolation from the p-type substrate. The isolated n-channel DEMOS transistor has an upper n-type layer providing an extended drain, and a lower p-type layer isolating the extended drain from the underlying deep n-type well. The isolated vertical PNP transistor has an upper n-type layer providing a base and a lower p-type layer providing a collector. A CMOS integrated circuit having opposite polarities of the transistors may be formed by appropriate reversals in dopant types.
US09721848B1

A semiconductor device includes a first fin and a second fin arranged on a substrate, a gate stack arranged over a channel region of the first fin, and spacers arranged along sidewalls of the gate stack. A cavity is arranged adjacent to a distal end of the gate stack. The cavity is defined by the substrate, a distal end of the second fin, and the spacers. A dielectric fill material is arranged in the cavity such that the dielectric fill material contacts the substrate, the distal end of the second fin, and the spacers.
US09721841B1

An electronic circuit includes a plurality of fin lines on a substrate and a plurality of gate lines with a first line width, crossing over the fin lines. The gate lines are parallel and have a plurality of discontinuous regions forming as a plurality of slots. A region of any one of the gate lines adjacent to an unbalance of the slots has a second line width smaller than the first line width.
US09721839B2

Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer including a plurality of integrated circuits includes forming a water soluble mask above the semiconductor wafer, the water soluble mask covering and protecting the integrated circuits. The method also includes baking the water soluble mask to increase the etch resistance of the water soluble mask. The method also includes, subsequent to baking the water soluble mask, patterning the water soluble mask with a laser scribing process to provide a water soluble patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The method also includes plasma etching the semiconductor wafer through the gaps in the water soluble patterned mask to singulate the integrated circuits.
US09721834B2

A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
US09721825B2

Some embodiments include a method. The method can include providing a carrier substrate having an edge. Further, the method can include providing a cross-linking adhesive, and providing a flexible substrate having an edge. Further still, the method can include coupling the flexible substrate to the carrier substrate using the cross-linking adhesive such that at least a portion of the edge of the flexible substrate is recessed from the edge of the carrier substrate and such that the cross-linking adhesive has an exposed portion of the cross-linking adhesive at an offset portion of the first surface of the carrier substrate between the at least the portion of the edge of the flexible substrate and the edge of the carrier substrate. Meanwhile, the method can include etching the exposed portion of the cross-linking adhesive. Other embodiments of related methods and devices are also disclosed.
US09721816B2

A decapsulation apparatus has an etch plate, an off-center etch head having an opening, a cover sealing to the etch plate forming an etching chamber, a gasket surrounding the opening, a ram sealed through the cover, a pressure-controlled source of Nitrogen or inert gas continuously purging the etching chamber at a low gas pressure, a f toggle mechanism mounted to a metal plate t, an etchant supply subsystem comprising sources of etchant solutions, an etchant solution pump, supply passages and controls to select etchants and etchant ratios, and a heat exchanger heating or cooling the etchant solution, etchant waste passages f conducting used etchant away. Etchants are mixed in the passages to the reaction region, and turbulence in the reaction region is promoted by impinging etchant solution on the encapsulated device.
US09721812B2

A method for fabricating an optical multi-chip module (MCM) includes temporarily curing an underfill material on a chip including an optical device to prevent flow of the underfill material. The chip is flip-chip mounted on a waveguide module having a mirror for directing light to or from the chip, wherein the underfill material is disposed between the chip and the waveguide module. The underfill material is cured to adhere the chip to the waveguide module.
US09721808B2

Methods of fabricating a semiconductor device are provided. The methods may include forming a stopper layer on a target layer including a cell area and an edge area, forming a hard mask including first upper openings and dam trench on the stopper layer, forming opening spacers on inner walls of the first upper openings and a dam pattern in the dam trench, removing the stopper layer exposed in the first upper openings to form first lower openings, forming pillar patterns in the first lower openings and the first upper openings and an eaves pattern on the dam pattern, removing the hard mask in the cell area, forming a first polymer block between the pillar patterns including second upper openings, etching the stopper layer exposed in the second upper openings to form second lower openings, and removing the first polymer block, the pillar patterns, the dam pattern and the eaves pattern.
US09721807B2

Embodiments described herein relate to methods for patterning a substrate. Patterning processes, such as double patterning and quadruple patterning processes, may benefit from the embodiments described herein which include performing an inert plasma treatment on a spacer material, performing an etching process on a treated region of the spacer material, and repeating the inert plasma treatment and the etching process to form a desired spacer profile. The inert plasma treatment process may be a biased process and the etching process may be an unbiased process. Various processing parameters, such as process gas ratios and pressures, may be controlled to influence a desired spacer profile.
US09721806B2

The disclosed subject matter provides an LDMOS device and fabrication method thereof. In an LDMOS device, a drift region and a body region are formed in a substrate. A first trench is formed in the drift region and in the substrate between the drift region and the body region. The first trench is separated from the drift region by a first shallow trench isolation structure. A gate dielectric layer is formed on a side surface and a bottom surface of the first trench. A gate electrode filling up the first trench is formed on the gate dielectric layer with a top surface above a top surface of the semiconductor substrate. A source region is formed in the body region on one side of the gate electrode and a drain region is formed in the drift region on another side of the gate electrode.
US09721793B2

Techniques herein provide precise cuts for fins and nanowires without needing dummy gate pairs to compensate for overlay misalignment. Techniques herein include using an etch mask to remove designated portions of gate structures to define a trench or open space having fin structures, nanowires, etc. The uncovered fin structures are etched away or otherwise removed from the trench segments. The etch mask and material defining the trench provide a combined etch mask for removing uncovered fin portions. Subsequently the trench segments are filled with dielectric material. Without needed dummy gate pairs a given substrate can fit significantly more electrical devices per unit area.
US09721791B2

According to an embodiment of a method of fabricating III-Nitride semiconductor dies, the method includes: growing a III-Nitride body over a group IV substrate in a semiconductor wafer; forming at least one device layer over the III-Nitride body; etching grid array trenches in the III-Nitride body and in the group IV substrate; forming an edge trench around a perimeter of the semiconductor wafer, the grid array trenches terminating inside the group IV substrate; and forming separate dies by cutting the semiconductor wafer approximately along the grid array trenches.
US09721780B2

A method of mass spectrometry is disclosed comprising separating ions according to one or more physico-chemical properties. Ions which are onwardly transmitted to a Time of Flight mass analyzer are controlled by attenuating ions which would otherwise be transmitted to the Time of Flight mass analyzer and cause saturation of an ion detector and which have been determined or which are predicted to have a relatively high intensity.
US09721778B2

A mass spectrometer (1) is provided with: an ionization chamber (10) for ionizing a sample (S) on its surface at an analysis point through irradiation by a laser beam; an analysis chamber (23) having a mass spectroscope (24) for detecting ions; a middle vacuum chamber (21, 22) arranged between the ionization chamber (10) and the analysis chamber (23); and an introduction pipe (12) or an introduction hole for allowing the inside of the housing (11) of the ionization chamber (10) to communicate with the inside of the middle vacuum chamber (21), wherein ions and fine particles, which have not been drawn into the introduction pipe (12) or introduction hole, can be prevented from spreading inside of the chamber. The structure of the mass spectrometer (1) further includes: an exhaust pipe (13); and a fan (15) for drawing air into the exhaust pipe (13) so that air that contains ions and/or fine particles, which have not been introduced into the introduction pipe (12) or introduction hole, can be suctioned up into the exhaust pipe (13) when the fan (15) is in operation.
US09721776B2

After a sample such as a biomedical tissue section is attached to an electrically-conductive slide glass (S1), the film layer of a matrix substance is appropriately formed by vapor deposition so as to cover the sample (S2). The crystal of the matrix substance in the film layer is very fine and uniform. Subsequently, the slide glass on which the matrix film layer is formed is placed in a vaporized solvent atmosphere, and the solvent infiltrates into the matrix film layer (S3). When the solvent sufficiently infiltrated is vaporized, a substance to be measured in the sample takes in the matrix and re-crystallized. Furthermore, the matrix film layer is formed again on the surface by the vapor deposition (S4). The added matrix film layer absorbs excessive energy of a laser beam during MALDI, which suppresses the denaturation of the substance to be measured and the like, so that high detection sensitivity can be achieved while high spatial resolution is maintained.
US09721768B2

Disclosed is an apparatus for optical emission spectroscopy which includes a light measuring unit measuring light in a process chamber performing a plasma process on a substrate, a light analyzing unit receiving light collected from the light measuring unit to analyze a plasma state, a control unit receiving an output signal of the light analyzing unit to process the output signal, and a light collecting controller disposed between the process chamber and the light measuring unit so as to be combined with the light measuring unit. The light collecting controller controls the light collected to the light measuring unit.
US09721766B2

A method for processing a target object includes a formation step of forming a silicon oxide film in a processing chamber by repeatedly executing a sequence including a first step of supplying a first gas containing aminosilane-based gas, a second step of purging a space in the processing chamber after the first step, a third step of generating a plasma of a second gas containing oxygen gas after the second step, and a fourth step of purging the space after the third step. The method further includes a preparation step executed before the target object is accommodated in the processing chamber and a processing step of performing an etching process on the target object. The preparation step is performed before the processing step. The formation step is performed in the preparation step and the processing step. In the first step, a plasma of the first gas is not generated.
US09721763B2

A gas supply system for providing a plurality of process gases to a process chamber includes a plurality of mass flow controllers each arranged to receive a respective subset of the plurality of process gases. Each of the respective subsets includes more than one of the process gases, and at least one of the process gases is provided to more than one of the plurality of mass flow controllers. Respective valves are arranged upstream of each of the plurality of mass flow controllers to selectively provide the respective subsets to the mass flow controllers. A first quantity of the plurality of mass flow controllers is less than a total number of the plurality of process gases to be supplied to the process chamber. The first quantity is equal to a maximum number of the plurality of process gases to be used in the process chamber at any one time.
US09721759B1

Described herein are techniques for supplying radio frequency (RF) power to a large area plasma source so as to produce a plasma that is substantially uniform in two spatial dimensions. The RF power may be supplied by a power supply system, which may comprise a RF source and a distribution network. The distribution network may comprise a matching network, and a branching circuit that divides the RF power into several branches. Each of the branches of the distribution network may include a phase shifter that shifts the RF signal (which carries the RF power) by an odd multiple of 90°, and a blocking filter which blocks any harmonics and other unwanted frequencies which are reflected from a plasma source. The output of the branches may be coupled to feed points that are spatially distributed over the one or more electrodes of the plasma source.
US09721756B2

A charged particle beam writing apparatus includes a storage unit to store writing data of a region to be written in a target object, a first dividing unit to read the writing data and divide the region to be written into at least one first data processing region that overlaps with at least a first region where a pattern has been arranged, and at least one second data processing region that overlaps with a second region where no pattern is arranged without overlapping with the first region, a data processing unit to perform data processing of predetermined data processing contents for at least one first data processing region without performing the data processing for at least one second data processing region, and a writing unit to write a pattern on the target object, based on processed data.
US09721755B2

A device for detecting X-rays radiated out of a substrate surface, said device comprising at least one X-ray detector, a resolver grating and a modulator grating, said resolver grating with at least one opening facing towards said X-ray detector is arranged in front of said X-ray detector. Said modulator grating is provided between said resolver grating and said substrate at a predetermined distance from said resolver grating and said substrate, where said modulator grating having a plurality of openings in at least a first direction, wherein said x-rays from said surface is spatially modulated with said modulator grating and resolver grating.
US09721754B2

The invention relates to a method for processing a substrate with a focussed particle beam which incidents on the substrate, the method comprising the steps of: (a) generating at least one reference mark on the substrate using the focused particle beam and at least one processing gas, (b) determining a reference position of the at least one reference mark, (c) processing the substrate using the reference position of the reference mark, and (d) removing the at least one reference mark from the substrate.
US09721752B2

The objective of the present invention is to maintain the surrounding of a sample at atmospheric pressure and efficiently detect secondary electrons. In a sample chamber of a charged particle device, a sample holder (4) has: a gas introduction pipe and a gas evacuation pipe for controlling the vicinity of a sample (20) to be an atmospheric pressure environment; a charged particle passage hole (18) and a micro-orifice (18) enabling detection of secondary electrons (15) emitted from the sample (20), co-located above the sample (20); and a charged particle passage hole (19) with a hole diameter larger than the micro-orifice (18) above the sample (20) so as to be capable of actively evacuating gas during gas introduction.
US09721749B2

The present invention provides an X-ray generator including an X-ray tube 2 radiating primary X-rays X1 to a specimen S, a housing 3 accommodating the X-ray tube 2, an X-ray radiation area controller 4 limiting the radiation area of the primary X-rays X1 from the X-ray tube 2 to the specimen S, and a device holder 5 holding the X-ray radiation area controller 4 with respect to the housing 3. The X-ray tube includes a case 6, an electron ray source 7 generating electron rays, and a target unit 8 having a base fixed to the case and receiving electron rays through a protruding free end. The device holder has a fixed-base 5a fixed to the housing, directly under the base of the target unit, and a supporting extension 5b extending from the fixed-base in the protrusion direction of the target unit and supporting the X-ray radiation area controller.
US09721747B2

A grid of the present invention is a plate-shaped grid provided with a hole. The grid is formed of a carbon-carbon composite including carbon fibers arranged in random directions along a planar direction of the grid, and the hole is formed in the grid so as to cut off the carbon fibers.
US09721742B1

A power loss protection integrated circuit includes a current switch circuit portion (eFuse) and an autonomous limit checking circuit. The limit checking circuit includes an input analog multiplexer, an ADC, a plurality of capture registers, a state machine, and a flag output terminal. For each capture register, the limit checking circuit further includes an associated lower limit register and an associated upper limit register. The state machine controls the multiplexer and the capture registers so the ADC digitizes voltages on various nodes to the monitored, and stores the results into corresponding capture registers. In integrated circuit has circuitry that allows both a high voltage as well as a high current to be monitored. The value in a capture register is compared to upper and lower limit values. If any capture value is determined to be outside the limits, then a digital flag signal is asserted onto the flag output terminal.
US09721739B2

A DC voltage switch for high-voltage on-board electrical systems having a housing, at least two stationary contacts, and a moving contact, wherein, in each case, a first contact region of the stationary contacts is routed out of the housing and, in each case, a second contact region of the stationary contacts is arranged in a switching chamber of the housing with the moving contact, wherein the housing is hermetically encapsulated, wherein a cooling chamber which is separated from the switching chamber by a partition wall is arranged above the switching chamber, wherein the partition wall has at least one outlet opening and at least one inlet opening.
US09721732B2

A production method efficiently produces a box sealed type solid electrolytic capacitor in which a capacitor element is accommodated in a box-shaped case. The method includes a step of preparing a bottom wall substrate having bottom walls. A step forms cathode anode circuit patterns on the bottom wall substrate. A step prepares a peripheral side wall substrate having peripheral side walls. A step prepares a peripheral side wall substrate in which a plurality of through-holes are provided that correspond to plurality of bottom wall structural portions. A step fixes a capacitor element to each bottom wall structural portion of the bottom wall substrate. A step obtains a capacitor continuous member in which a plurality of capacitor structural portions structuring a solid electrolytic capacitor by attaching an upper lid substrate on the peripheral side wall substrate. A step obtains a plurality of solid electrolytic capacitors by cutting the capacitor continuous member.
US09721711B2

A switch structure includes a power element, a keypad, a first magnetic component, and a second magnetic component. The second magnetic component is positioned adjacent to the first magnetic component. When the keypad is deactivated, a magnetic attractive force is generated between the first magnetic component and the second magnetic component. When the keypad is activated, the power element controls the first magnetic component to generate a magnetic repulsive force with the second magnetic component.
US09721710B2

The present invention generally relates to an apparatus and method for axially supporting a shaft. In one aspect, a magnetic suspension system for supporting a shaft in a housing is provided. The magnetic suspension system includes an array of magnet members disposed between the shaft and the housing. The array of magnet members comprising a first magnet member, a second magnet member, and a third magnet member, wherein the first magnet member and the second magnet member generate a first force that is substantially parallel to a longitudinal axis of the shaft and the second magnet member and the third magnet member generate a second force that is substantially parallel with the longitudinal axis of the shaft The first force and the second force are configured to position the shaft axially within the housing. In another aspect, a method of supporting a shaft along a longitudinal axis of a housing is provided. In a further aspect, a suspension system for supporting a shaft in a housing is provided.
US09721708B2

There is provided a high-temperature superconducting (HTS) coil and a method of manufacturing the same, allowing simple and excellent affixation between side panels for cooling the superconducting coil and the HTS coil while inhibiting delamination of an HTS wire. The method of manufacturing the HTS coil including the rare-earth-based HTS wire of the superconducting coil and side panels for cooling the superconducting coil which are affixed thereto, windings of the rare-earth-based HTS wire of the superconducting coil being separated between turns, includes: utilizing a tape-like polytetrafluoroethylene (PTFE) film 3 as an insulator between the windings of the rare-earth-based HTS wire 2 to form a PTFE-film co-wound superconducting coil; impregnating the PTFE-film co-wound superconducting coil 4 with epoxy resin 6; and affixing the side panels 5 to the PTFE film co-wound superconducting coil 4.
US09721703B2

A wildlife guard apparatus for an electrical insulator body includes at least one guard assembly. Each guard assembly includes a guard member and a base wall member secured to the guard member. The at least one guard assembly is configured or configurable to form an enclosure defining a chamber. In the enclosure configuration, the at least one guard member defines an end opening communicating with the chamber and the at least one base wall member extends across the end opening to close at least a portion thereof. The enclosure is configured to receive the insulator body such that the insulator body includes a first portion and a second portion, the first portion extending through the end opening and adjacent the at least one base wall member, and the second portion being disposed in the chamber. The at least one guard member is formed of a first material and the at least one base wall member is formed of a second material that is softer than the first material.
US09721702B1

Virtually-integrated wire harness design and automated production systems and methods that achieve completely integrated data management by automatically producing scripts to dynamically propagate production commands and data to various subsystems for handling assembling necessary circuits and wire harness layout boards to produce corresponding batches of wire harnesses while script-based methods control configuring, testing, and using wire harness layout boards, and assembling, testing, reworking, and delivering wire harnesses. As derived from CAD-created specifications, the production system uses a programmable, automated wire C&C center prepares individual wire circuits. While automatic wire indexing, sorting, and delivery systems transfer circuits into, and retrieve circuits from, a transportable programmable, automated, indexed storage system equipped with an array of individual circuit tubes, and a script-controlled assembly system sends visual, aural, and other cues to help an assembler populate and configure a wire harness layout board with connector blocks and turn posts, and guides the assembler in building, testing, reworking, and delivering the corresponding batch of wire harnesses.
US09721699B2

A water-stop structure including a water-stop tube is provided in which the water-stop tube can be brought into intimate contact with a water-stop region in a wire harness having a steep thickness gradient and thus water-stop performance is improved. The wire harness includes a first portion and a second portion that is thinner than the first portion. An inner water-stop tube covers the water-stop region ranging from the first portion to the second portion in a state where the inner water-stop tube is heated and shrunk. An outer water-stop tube covers the inner water-stop tube at a position between a portion on the first portion side and a portion on the second portion side in the water-stop region in a state where the outer water-stop tube is heated and shrunk.
US09721684B2

Methods and systems for detecting an individual leaking fuel channel included in a reactor. One system includes a plurality of inlet lines and a plurality of outlet lines. Each of the plurality of inlet lines feeding annulus fluid in parallel to an annulus space of each of a first plurality of fuel channels included in the reactor, and each of the plurality of outlet lines collecting in parallel annulus fluid exiting an annulus space of each of a second plurality of fuel channels included in the reactor. In some embodiments, the system also includes a detector positioned at an outlet of each of the plurality of outlet lines configured to detect moisture in annulus fluid and identify a first position of an individual leaking fuel channel, and an isolation valve positioned at an inlet of each of the plurality of inlet lines operable to stop annulus fluid from circulating through one of the plurality of inlet lines and to identify a second position of the individual leaking fuel channel.
US09721680B2

A method of operating a nuclear reactor is provided. The method includes defining a layer increment of a deposit layer modeling a deposit on a heat transfer surface of the nuclear reactor; periodically updating a thickness of the deposit layer by adding the layer increment to the deposit layer; recalculating properties of the deposit layer after each layer increment is added to the deposit layer; determining a temperature related variable of the heat transfer surface as a function of the recalculated properties of the deposit layer; and altering operation of the nuclear reactor when the temperature related variable of the heat transfer surface reaches a predetermined value. A method of modeling a deposit on a heat transfer surface of a nuclear reactor is also provided.
US09721672B1

Systems and methods for improving the reliability of data stored in memory cells are described. To mitigate the effects of trapped electrons after one or more programming pulses have been applied to memory cells, a delay between the one or more programming pulses and subsequent program verify pulses may be set based on a chip temperature, the number of the one or more programming pulses that were applied to the memory cells, and/or the programming voltage that was applied to the memory cells during the one or more programming pulses. To mitigate the effects of residual electrons after one or more program verify pulses have been applied to memory cells, a delay between the one or more program verify pulses and subsequent programming pulses may be set based on a chip temperature and/or the programming voltage to be applied to the memory cells during the subsequent programming pulses.
US09721666B2

A memory system includes a semiconductor memory device having memory cells arranged in rows and columns, and a controller configured to issue a write command with or without a partial page program command to the semiconductor memory device. The semiconductor memory device, in response to the write command issued without the partial page command, executes a first program operation on a page of memory cells and then a first verify operation on the memory cells of the page using a first verify voltage for all of the memory cells of the page, and in response to the write command issued with the partial page command, executes a second program operation on a subset of the memory cells of the page and then a second verify operation on the memory cells of the subset using one of several different second verify voltages corresponding to the subset.
US09721662B1

A non-volatile memory system includes a plurality of NAND strings (or other arrangements) that form a monolithic three dimensional memory structure, bit lines, word lines, and one or more control circuits. Multiple NAND strings of the plurality of NAND strings have different select gates connected to different select lines. The multiple NAND strings are connected to a common bit line. The multiple NAND strings are connected to a common word line via their respective different select gates. The one or more control circuits concurrently program multiple memory cells on the multiple NAND strings.
US09721660B2

A volatile memory data save subsystem may include a coupling to a shared power source such as a chassis or rack battery, or generator. A data save trigger controller sends a data save command toward coupled volatile memory device(s) such as NVDIMMs and PCIe devices under specified conditions: a programmable amount of time passes without AC power, a voltage level drops below normal but is still sufficient to power the volatile memory device during a data save operation, the trigger controller is notified of an operating system shutdown command, or the trigger controller is notified of an explicit data save command without a system shutdown command. NVDIMMs can avoid reliance on dedicated supercapacitors and dedicated batteries. An NVDIMM may perform an asynchronous DRAM reset in response to the data save command. Voltage step downs may be coordinated among power supplies. After data is saved, power cycles and the system reboots.
US09721653B2

A three-dimensional array especially adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.
US09721646B1

Embodiments are directed to a static random access memory (SRAM) device that prevents burn-in of potentially sensitive information. After an SRAM device is fabricated in a semiconductor material, a heating wire is placed in the layers above portions of the SRAM device. By applying current to the heating wire, a certain temperature is reached for a certain amount of time, and the burn-in of the SRAM is prevented. Other embodiments are also presented.
US09721643B2

Detection logic of a memory subsystem obtains a threshold for a memory device that indicates a number of accesses within a time window that causes risk of data corruption on a physically adjacent row. The detection logic obtains the threshold from a register that stores configuration information for the memory device, and can be a register on the memory device itself and/or can be an entry of a configuration storage device of a memory module to which the memory device belongs. The detection logic determines whether a number of accesses to a row of the memory device exceeds the threshold. In response to detecting the number of accesses exceeds the threshold, the detection logic can generate a trigger to cause the memory device to perform a refresh targeted to a physically adjacent victim row.
US09721632B2

Memory cells in a spin-torque magnetic random access memory (MRAM) include at least two magnetic tunnel junctions within each memory cell, where each memory cell only stores a single data bit of information. Access circuitry coupled to the memory cells are able to read from and write to a memory cell even when one of the magnetic tunnel junctions within the memory cell is defective and is no longer functional. Self-referenced and referenced reads can be used in conjunction with the multiple magnetic tunnel junction memory cells. In some embodiments, writing to the memory cell forces all magnetic tunnel junctions into a known state, whereas in other embodiments, a subset of the magnetic tunnel junctions are forced to a known state.
US09721630B2

A memory controller includes an interface to receive a data strobe signal and corresponding read data. The data strobe signal and the read data correspond to a read command issued by the memory controller, and the read data is received in accordance with the data strobe signal and an enable signal. A circuit in the memory controller is to dynamically adjust a timing offset between the enable signal and the data strobe signal, and control logic is to issue a supplemental read command in accordance with a determination that a time interval since a last read command issued by the memory controller exceeds a predetermined value.
US09721626B2

A semiconductor apparatus includes a clock buffer and a reference voltage generation unit. The clock buffer generates an internal clock signal, based on first and second clock signals, in a first operation mode, and generates the internal clock signal, based on the first clock signal and a reference voltage, when a normal operation test is performed in a second operation mode. The reference voltage generation unit generates the reference voltage when the normal operation test is performed in the second operation mode.
US09721625B2

Time-constrained data copying between storage media is disclosed. When an electronic device is engaged in real-time operations, multiple data blocks may need to be copied from one storage medium to another storage medium within certain time constraints. In this regard, a data port is operatively controlled by a plurality of registers of a first register bank. The plurality of registers is copied from the first register bank to a second register bank within a temporal limit and while the data port remains under control of the plurality of registers being copied. By copying the plurality of registers within the temporal limit, it is possible to prevent operational interruption in the data port and reduce bandwidth overhead associated with the register copying operation.
US09721623B2

A memory apparatus may include first to third pads to provide first to third voltages, respectively, to internal circuits. The first pad may receive a first external voltage, and provide the first voltage. The second and third pads may receive a second external voltage. The second pad may provide the second voltage, and the third pad may provide the third voltage.
US09721622B2

Memory devices, memory arrays, and methods of operation of memory arrays with segmentation. Segmentation elements can scale with the memory cells, and may be uni-directional or bi-directional diodes. Biasing lines in the array allow biasing of selected and unselected select devices and segmentation elements with any desired bias, and may use biasing devices of the same construction as the segmentation elements.
US09721606B2

The magnetic tape has a magnetic layer containing ferromagnetic powder and binder on one surface of a nonmagnetic support, and has a backcoat layer containing nonmagnetic powder and binder on the other surface thereof, wherein the magnetic layer contains one or more components selected from the group consisting of a fatty acid and a fatty acid amide; the backcoat layer has a thickness of less than or equal to 0.30 μm and contains one or more components selected from the group consisting of a fatty acid and a fatty acid amide; a magnetic layer side C—H derived C concentration is greater than or equal to 45 atom %; and a backcoat layer side C—H derived C concentration is greater than or equal to 35 atom %.
US09721595B1

A method for providing a storage device that includes a plurality of read sensor stacks for each reader of the storage device. The plurality of read sensor stacks are distributed along a down track direction and offset in a cross-track direction. A plurality of electronic lapping guides (ELGs) are provided for the read sensor stacks. The read sensor stacks are lapped. Lapping is terminated based on signal(s) from the ELG(s).
US09721592B1

This perpendicular magnetic recording head includes: a magnetic pole; a pair of side shields disposed to face each other with the magnetic pole interposed therebetween in a cross track direction; a pair of side gaps each provided between the magnetic pole and the pair of side shields; a trailing gap provided to cover the magnetic pole and the pair of side gaps, and having a first width in the cross track direction; and a first magnetic layer covering the trailing gap and having a second width larger than the first width in the cross track direction.
US09721588B2

A storage system includes a magnetic storage medium, a magnetic write head, a channel circuit and a preamplifier. The channel circuit includes a write data input, a differentiated edge emphasis signal generator, a write data output and a differentiated edge emphasis signal output. The preamplifier includes a write data input configured to receive write data from the channel circuit write data output, an edge emphasis signal input configured to receive a differentiated edge emphasis signal from the channel circuit differentiated edge emphasis signal output, and a write current edge emphasis controller configured to generate a write current to the magnetic write head based at least in part on the write data and on the differentiated edge emphasis signal.
US09721584B2

Wind noise reduction is described for audio signals received in a device. In one embodiment, an audio signal is decomposed into a plurality of sub-bands, the audio signal including wind noise, a first sub-band of the plurality of sub-bands low-pass filtered, wind noise is removed from the first sub band and the first sub-band is combined with the other sub-bands after removing wind noise.
US09721578B2

On the basis of a bitstream (P), an n-channel audio signal (X) is reconstructed by deriving an m-channel core signal (Y) and multichannel coding parameters (a) from the bitstream, where 1≦m
US09721576B2

Apparatus, methods, and articles of manufacture for encoding a compressed media stream are disclosed. Example method of watermarking a digital media signal disclosed herein include copying compressed audio packets associated with an audio stream included in a transport stream of the digital media signal into respective frames of compressed audio data to be watermarked to include media identification information. Such example methods can also include determining whether a composition of the transport stream has changed during copying of the compressed audio packets into the respective frames of the compressed audio data. Such example methods can further include, if the composition of the transport stream has changed, writing the frames of the compressed audio data to an output stream corresponding to the digital media signal without applying a watermark to the frames of the compressed audio data.
US09721570B1

A speech recognition platform configured to receive an audio signal that includes speech from a user and perform automatic speech recognition (ASR) on the audio signal to identify ASR results. The platform may identify: (i) a domain of a voice command within the speech based on the ASR results and based on context information associated with the speech or the user, and (ii) an intent of the voice command. In response to identifying the intent, the platform may perform multiple actions corresponding to this intent. The platform may select a target action to perform, and may engage in a back-and-forth dialog to obtain information for completing the target action. The action may include streaming audio to the device, setting a reminder for the user, purchasing an item on behalf of the user, making a reservation for the user or launching an application for the user.
US09721566B2

At a first electronic device with a display and a microphone: sampling audio input using the first microphone; in accordance with the sampling of audio input using the first microphone, sending stop instructions to a second electronic device with a second microphone, the second electronic device external to the first electronic device, wherein the second electronic device is configured to respond to audio input received using the second microphone, and wherein the stop instructions instruct the second electronic device to forgo responding to audio input received using the second microphone, wherein responding to audio input received using the second microphone comprises providing perceptible output.
US09721560B2

A low power sound recognition sensor is configured to receive an analog signal that may contain a signature sound. Sound parameter information is extracted from the analog signal and compared to a sound parameter reference stored locally with the sound recognition sensor to detect when the signature sound is received in the analog signal. A trigger signal is generated when a signature sound is detected. A portion of the extracted sound parameter information is sent to a remote training location for adaptive training when a signature sound detection error occurs. An updated sound parameter reference from the remote training location is received in response to the adaptive training.
US09721549B2

Drum stands and drum stand baskets, including those for use with a snare drum, are described. Drum stands and drum stand baskets according to the present disclosure can include an adjustment feature which enables the basket to fit differently sized drums. Additionally, drum stands and drum stand baskets according to the present disclosure can include elements which result in less interference with the sound of a snare drum compared to a snare drum in a prior art drum stand. Finally, embodiments of the present disclosure can be compacted for easy storage or transport.
US09721547B2

A pedal device for an electronic percussion instrument is provided, wherein first and second detection means for detecting a rotation of a pedal by different methods are alternatively disposed in a base. The pedal has a pressing part on a lower surface side. The base includes a first portion located under the pressing part for supporting the first detection means, and a second portion located around the first portion for supporting the second detection means. The first portion supports the first detection means such that a first pressed part of the first detection means is disposed on a displacement trajectory of the pressing part that displaces with the rotation of the pedal, and the second portion disposes the second detection means such that a second pressed part of the second detection means is disposed on the displacement trajectory of the pressing part.
US09721543B1

A 3-point neck attachment system is disclosed where the neck of a guitar is mounted on a guitar body with the neck and body making contact at three points, each contact point consisting of a screw-adjustable member and a contact surface. Two screw-adjustment members are located in the neck pocket of the guitar body and allow fine adjustment of neck yaw angle and overall scale length. A third screw-adjustable member is mounted vertically in the heel of the neck and allows fine adjustment of the neck angle. The geometry of the contact surfaces can be configured to allow the neck to be easily and securely mounted to the guitar body without fasteners, employing only the strings' tension. When combined with a quick string de-tensioning mechanism, the fastener-free neck joint allows the guitar to be quickly disassembled, either for transport or rapid substitution of interchangeable guitar components, and then to be easily and rapidly re-assembled to pitch and precisely adjusted for optimum playing. The neck attachment further allows the guitar to be sold as a kit of parts that can be easily, quickly and precisely assembled by the user.
US09721539B2

Upon receiving a communication switching instruction from a first wireless access point used for communication with an image processing apparatus, an image display apparatus disconnects communication with the first wireless access point. Simultaneously, the image display apparatus transmits, to a second wireless access point, a link request to establish communication with the second wireless access point of a new communication destination included in the switching instruction. The image display apparatus displays, on a display unit, a captured image continuously acquired from am image capturing unit until switching from the first wireless access point to the second wireless access point finishes as communication destination switching.
US09721537B2

A motor vehicle display device is provided with information on vehicle operating states which can be displayed in an analog and/or digital manner by display elements, wherein in the direction of viewing of the motor vehicle display device, the display elements are disposed at least in two superimposed planes or plane regions. At least one first plane or one first plane region is provided, in which at least one active display element is disposed, and at least one further plane or one further plane region is provided, which is positioned before the first plane or the first plane region in a viewing direction, wherein only passive display elements are disposed therein, with at least one passive display element being disposed there. In this way the motor vehicle display device is given an appearance with a special 3D effect.
US09721524B2

A semiconductor integrated circuit includes a power line and a power supply circuitry. The power supply circuitry includes: a first power supply circuit operating on a first power supply voltage and having an output connected with the power line; and a second power supply circuit operating on a second power supply voltage higher than the first power supply voltage and having an output connected with the power line. The first power supply circuit is configured to drive the power line to a first preset, voltage. The second power supply circuit is configured to drive the power line to a second preset voltage lower than the first preset voltage. The second power supply circuit is configured not to decrease a third power supply voltage generated on the power line when the third power supply voltage is higher than the second preset voltage.
US09721522B2

An array substrate, a driving method thereof, and a display device are disclosed. The array substrate comprises a plurality of pixel units (11) defined by gate lines (110) and data lines (111) intersecting each other and a charge sharing unit (12). The charge sharing unit (12) is connected with at least two of the data lines (111). During a time period when a gate line (110) is not input with any scan signal for turning on pixel units (11), the charge sharing unit (12) electrically connects at least two data lines (111), to which it is connected, with each other. With this array substrate, the circuits for realizing charge sharing function is disposed in the driving unit for driving the display to display, thereby reducing costs of the driving unit and facilitating panellization of the driving unit.
US09721520B2

The application disclosure a GOA circuit and a liquid crystal display. The GOA circuit including a plurality of GOA unit connected in series, wherein a Nth level GOA unit including a fifth transistor, a eighth transistor and a leakage control module. wherein the leakage control module is connected in series between the Nth level gate terminal signal and the drain terminal of the eighth transistor and/or between the Nth level pull-down signal and the drain terminal of the fifth transistor; in the valid period of the Nth level scanning signal can block the Nth level gate terminal signal through the leakage pathway of the eighth transistor and/or to block the Nth level pull-down signal through the leakage pathway of the fifth transistor to achieve the stability of the GOA circuit.
US09721517B2

A display device according to the present disclosure includes a plurality of gate lines extending in a row direction, a plurality of data lines intersecting with the gate lines, the data lines extending in a column direction, a plurality of pixels connected to the gate lines and the data lines, and a data driving unit configured to output a plurality of data voltages to the pixels, wherein the data driving unit outputs the data voltages based on a first column inversion scheme and a second column inversion scheme to respective data lines along the column direction.
US09721514B2

A method for driving a reflective LCD panel is provided. The driving method includes following steps: the reflective LCD panel is driven by a driving signal with alternate positive and negative polarities, wherein the driving signal has positive polarity for a first driving duration and the driving signal has negative polarity for a second driving duration; a color beam is provided to irradiate the reflective LCD panel during a partial time period of the first driving duration; and the color beam is provided to irradiate the reflective LCD panel during a partial time period of the second driving duration.
US09721509B2

An active matrix organic light emitting diode (OLED) display device includes an array of pixels, each pixel including an OLED, a driving transistor (DT) coupled to drive current through the OLED, a storage capacitor, and a scanning transistor (ST) coupled to control charge on the storage capacitor corresponding to a data voltage for said pixel. The display device also includes a timing controller configured to control the ST of each pixel to update the charge stored on the storage capacitor of each pixel at a frame rate including at least one frequency within a range of 1-10 Hertz (Hz).
US09721506B2

An electro-optical device includes one or more control lines that include a scanning line, a data line and a pixel circuit. The pixel circuit has a drive transistor, a write-in transistor with a gate which is electrically connected to the scanning line, a light-emitting element that emits light at a brightness that depends on the size of a current that is supplied through the drive transistor, and a control line which overlaps the gate of the drive transistor when viewed from a direction that is perpendicular to a surface of a substrate on which the pixel circuit is formed is included in the one or more control lines.
US09721496B2

A display panel and a display device, where, the display panel includes a trigger signal controller, and the trigger signal controller is configured to convert N primary trigger signals generated by a first driving unit into 2N secondary trigger signals according to a display control signal generated by a second driving unit, and sequentially outputting the 2N secondary trigger signals to 2N gate controlling circuits, each of the 2N gate controlling circuits is configured to drive a group of pixels in a display region, where, rows of pixels respectively from different groups of pixels are alternately arranged, the secondary trigger signals are configured to control gate controlling circuits to simultaneously drive two paired groups of pixels under a first display mode, and alternately drive two paired groups of pixels under a second display mode.
US09721491B2

A display includes first pixels, second pixels, a first de-multiplexer and a second de-multiplexer. The first de-multiplexer transmits a first data signal to the first pixels sequentially in response to first control signals. The second de-multiplexer transmits a second data signal to the second pixels sequentially in response to second control signals. The polarity of the first data signal is different from that of the second data signal. Levels of the first control signals are switched between a first voltage level and a zero voltage level, corresponding to the polarity of the first data signal. Levels of the second control signals are switched between a second voltage level and the zero voltage level, corresponding to the polarity of the second data signal. The first voltage level is different from the second voltage level. A method of transmitting signals in a display is also disclosed herein.
US09721481B2

A sign language message may be derived from user movements detected proximate to an electronic device by comparing the movements to a database that includes data regarding one or more sign languages. A control function may then be identified which the electronic device may be caused to perform. Output related to the user's detected movements may be provided to the user. In some implementations, output specifying identified control functions may be transmitted to a presentation device. Further, in some implementations, if a sign language message and/or a control function cannot be unambiguously derived and/or identified, output promoting the user to provide additional information may be transmitted to a presentation device. Detected movements may be compared to data regarding multiple different sign languages and/or a subset of available multiple different sign languages.
US09721480B2

An augmented tutoring system is provided that includes a simulation device, at least one sensor and a controller. The simulation device is adapted to provide a simulation that has an objective to accomplish by a student, wherein to achieve the objective a plurality of tasks must be correctly completed. The at least one sensor is adapted to monitor a cognitive state of the student while engaged with the simulation. The controller is adapted to process cognitive state information from the at least one sensor and to process student progress information relating to the completion of each of the tasks. The controller is further adapted to provide feedback to the student based at least in part on the processed cognitive state information and the processed task completion information.
US09721474B2

A method (400), control device (240) and measuring unit (230) for adapting a control algorithm having at least one driver-dependent parameter, which control algorithm governs the control of a vehicle convoy (200) in which at least a first vehicle 220A with a first driver (210A) and a second vehicle 220B with a second driver (210B) are included. The method includes measurement (401) of at least one physical characteristic of the first driver (210A), determination (402) of the stress level of the driver based on the performed measurement (401), and adaptation (403) of the control algorithm to the determined (402) stress level of the driver.
US09721468B2

A method for operating a navigation system for a motor vehicle with autopilot is disclosed, wherein the autopilot is designed to automatically carry out longitudinal and lateral guidance of the motor vehicle in the activated state during a piloted journey without assistance from a driver. The navigation system determines, for a destination prescribed by the user, a route to the destination on the basis of navigation data. The roads on which the activation of the autopilot is likely to be possible is determined using traffic data and on the basis of a predetermined activation condition for the autopilot.
US09721457B2

The present invention relates to detectors of hazardous environmental conditions (e.g., smoke, gas, motion). Specifically, the invention relates to a hazard detector configured to transmit and/or receive information related to hazardous environmental conditions based at least in part on the location of the hazard detector as identified through one or more location based service means (e.g., global positioning systems (GPS), cellular triangulation, Internet IP geolocation).
US09721455B1

Embodiments include methods, systems and computer program products for creating event reminders on a computational system. Aspects include receiving an alarm system input, the alarm system input including an event identifier, an event time, and an event influencer. Aspects also include calculating an alarm time based upon the alarm system input. Aspects also include creating an alarm signal at the alarm time. Aspects also include outputting the alarm signal.
US09721445B2

Methods and systems are described for tracking location using a home automation system. One method includes receiving sensor data indicating presence of a wearable tracking device in a predetermined area of a property monitored by the home automation system, confirming an identity of the tracking device, and generating a notice indicating a location of the tracking device.
US09721444B2

A theft alarm system includes a personal article that may be carried. The personal article has a closure that is positionable in an open position. An alarm unit is coupled to the personal article. The alarm unit is in communication with the closure such that the alarm detects when the closure is manipulated into the open position. A base unit is configured to be carried and the base unit is in communication with the alarm unit. The base unit selectively emits an audible alarm when the personal article has been opened. The base unit selectively actuates the alarm unit to emit an audible alarm thereby facilitating the personal article to be located. An electronic device is provided and the electronic device may be carried. The electronic device is in wireless communication with the alarm unit. The electronic device emits an audible alarm when the personal article is opened.
US09721443B2

Methods and systems for processing messages received from a security device are presented. In some embodiments, a server may receive one or more messages from a security console and subsequently may determine the location of the security console. The server then may identify one or more other devices that are grouped, e.g., located within a predetermined distance, with the security console. Thereafter, the server may send one or more alert messages to the identified devices.
US09721442B2

An emergency manager for a lighting device (1), which lighting device is configured to transmit information by coding its output light. The emergency manager has a light coding unit (5), configured to code light emitted by a light emitter (3), thereby enabling the light emitter to emit a coded light signal including an individual identifier identifying the lighting device; an emergency indicator (7); and a control unit (9). The control unit is configured to control the light coding unit to adjust the coded light signal to increase a robustness of a transmission of the coded light signal upon receiving an emergency indication from the emergency indicator.
US09721435B2

A gaming terminal is utilized for playing a wagering game. The gaming terminal includes a wager-input device and a display for displaying the wagering game. The wagering game includes a randomly-selected outcome selected from a plurality of outcomes in response to a wager input received via the wager-input device. The plurality of outcomes include at least one outcome that awards standard credits and bonus tokens. A credit output device outputs a value of the standard credits and the bonus tokens in response to achieving the at least one outcome. The bonus tokens are exchangeable for a special event on a second gaming terminal.
US09721433B2

A method of generating a lottery ticket comprises the steps of: providing a succession of selection stages; providing for each stage two or more selection options; said selection options comprising a selection area which in response to a lottery player's interaction reveals either a winning or a losing indicator; wherein for each stage at least one of the selection options is a winning selection and at least one of the options is a losing selection.
US09721426B2

A wagering game system and its operations are described herein. In some embodiments, the operations can include initiating a wagering game title for presentation on a display device of a gaming machine, and receiving, from the gaming machine, player input indicating autoplay settings selected by a player for the wagering game title. The operations can also include initiating an autoplay mode for the wagering game title in response to receiving an autoplay trigger from the gaming machine, managing the autoplay mode for the player according to the autoplay setting selected by the player, and generating results for each wagering game of the wagering game title played during the autoplay mode. The operations can further include monitoring game events associated with the wagering games played during the autoplay mode to determine when to stop the autoplay mode, and stopping the autoplay mode for the player based on the autoplay settings selected by the player.
US09721419B1

A vending machine that dispense feminine hygiene products. Specifically, this invention is a coin-operated vending machine that dispenses sanitary napkins and tampons. This invention allows a user to purchase a feminine hygiene product by placing a coin or multiple coins in a slot within the vending machine and pressing a product release button. The product is then dispensed to the consumer. The apparatus also provides a mechanism for retrieving a coin in the event that the vending machine is out of a specific feminine hygiene. Further, in the free condition, this product dispenser has a time delay to prevent users from rapidly removing all of the products.
US09721415B2

A magnetic currency verification head may include a magnetoresistive sensor chip, and a magnetic bias unit disposed on the side of the magnetoresistive sensor chip away from the detection surface of the magnetic currency verification head, and separated from the magnetoresistive sensor chip; the magnetoresistive sensor chip comprises a gradiometric bridge circuit that includes magnetic sensor elements; the sensitive direction of the magnetic sensor elements is parallel to the detection surface of the magnetic currency verification head; and the magnetic bias unit has a recessed magnetic structure configured such that the magnetic field generated by the magnetic bias unit only has a small magnetic field component in the direction parallel to the detection surface, thereby enabling the magnetic sensor elements to operate in their linear range. As a result, the magnetic currency verification head has high sensitivity and signal-to-noise ratio.
US09721410B2

An authentication system includes a plurality of authentication apparatuses, each of which includes first biological information of a same set of users; a crosschecking unit for crosschecking input biological information with a part of the first biological information; a transmitter for assigning second biological information included in the first biological information other than the part of the first biological information to the other authentication apparatuses without assigning same information in the second biological information to other authentication apparatuses, and to request the other authentication apparatuses to crosscheck the input biological information with the assigned second biological information; and a receiver for receiving, from the one or more other authentication apparatuses, one or more results of crosschecking the input biological information with the assigned second biological information by the one or more other authentication apparatuses in response to the requesting.
US09721403B2

The invention relates to a safety system for a door in a motor vehicle, comprising an electronic unit that includes at least one first and a second sensor. Each sensor has its own monitoring zone on the motor vehicle door. The safety system further comprises a lock which is arranged on the motor vehicle door and can be switched between a locked position and an unlocked position, as well as a user-held identifier which can be brought into data communication with a transceiver unit in the motor vehicle for authentication purposes. The electronic unit is designed in such a way as to be able to generate a trigger signal by having the user execute at least one defined movement pattern within the monitoring zones, thus allowing the position of the lock to be switched.
US09721386B1

Augmented reality environments allow users in their physical environment to interact with virtual objects and information. Augmented reality applications are developed and configured to utilize local as well as cloud resources. Application management allows control over distribution of applications to select groups or all users. An application programming interface allows simplified control and distribution of tasks between local and cloud resources during development and post-development operation. This integration between local and cloud resources along with the control afforded by application management allows rapid development, testing, deployment, and updating of augmented reality applications.
US09721385B2

A method for generating stereoscopic images includes obtaining image data comprising a plurality of sample points. A direction, a color value, and a depth value are associated with each sample point. The directions and depth values are relative to a common origin. A mesh is generated by displacing the sample points from the origin. The sample points are displaced in the associated directions by distances representative of the corresponding depth values. The image data is mapped to the mesh such that the color values associated with the sample points are mapped to the mesh at the corresponding directions. A first image of the mesh is generated from a first perspective, and a second image of the mesh is generated from a second perspective. The first and second images of the mesh may be caused to be displayed to provide an illusion of depth.
US09721375B1

A system, method, and computer program product for displaying representative images within one or more subpanels of a user interface is disclosed. The method comprises configuring, by a processor unit, an adjacent relationship between a visible subpanel of the one or more subpanels and at least one not-visible subpanel of the one or more subpanels. Next, a second relationship is configured between each of two or more representative images and an associated subpanel of the one or more subpanels, wherein the second relationship defines a location on the associated subpanel where each of the two or more representative images is displayed. Additionally, a notification is received indicating a new orientation for at least one of the one or more subpanels. In response to the new orientation, an in-place rotation animation is generated for the two or more representative images based on the adjacent relationship and the second relationship. Additional systems, methods, and computer program products are also presented.
US09721360B2

An apparatus and method for performing automatic 3D image segmentation and reconstruction of organ structures, which is particularly well-suited for use on cortical surfaces is presented. A brain extraction process removes non-brain image elements, then classifies brain tissue as to type in preparation for a cerebrum segmentation process that determines which portions of the image information belong to specific physiological structures. Ventricle filling is performed on the image data based on information from a ventricle extraction process. A reconstruction process follows in which specific surfaces, such as white matter (WM) and grey matter (GM), are reconstructed.
US09721358B2

A method and a system for localizing at least one circular object in a video frame captured by an image capture unit are disclosed. The method includes the steps of: A. performing edge detection to obtain a plurality of image edge points in the video frame; B. extracting a contour set of image contours by linking neighboring edge points; C. generating a plurality of circle samples from the extracted contour set by a structural sampling process; and D. localizing the at least one circular object from the generated circle samples by calculating a respective fitness score for each of the circle samples to measure the supporting evidence of the image edge points on a neighborhood of each of the circle samples, and by choosing the circle sample(s) whose fitness score(s) is/are greater than a threshold value as the circular object(s) found in the video frame.
US09721351B2

A method of blink detection in a laser eye surgical system includes providing a topography measurement structure having a geometric marker. The method includes bringing the topography measurement structure into a position proximal to an eye such that light traveling from the geometric marker is capable of reflecting off a refractive structure of the eye of the patient, and also detecting the light reflected from the structure of the eye for a predetermined time period while the topography measurement structure is at the proximal position. The method further includes converting the light reflected from the surface of the eye into image data and analyzing the image data to determine whether light reflected from the geometric marker is present is in the reflected light, wherein if the geometric marker is determined not to be present, the patient is identified as having blinked during the predetermined time.
US09721348B2

Disclosed is an apparatus and method for calculating a raw-cost necessary for combining images into one image by matching of stereo images. The raw-cost calculation apparatus includes an image acquirer, a window generator, a window mask generator, a window masker, and a raw-cost calculator. In the raw-cost calculation apparatus and method, a raw cost may be calculated by using an adaptive window mask so that accurate 3D information may be obtained on the boundary of thin structures even when stereo images are matched and combined.
US09721343B2

A method and system provide light to project to an operation space so that a received image from the operation space will include, if an object is in the operation space, a bright region due to the reflection of light by the object, and identify a gesture according to the variation of a barycenter position, an average brightness, or an area of the bright region in successive images, for generating a corresponding command. Only simple operation and calculation is required to detect the motion of an object moving in the X, Y, or Z axis of an image, for identifying a gesture represented by the motion of the object.
US09721333B2

Aspects of the present invention are related to systems and methods for estimation of additive noise in an image or in a video sequence. An additive-noise estimate may be computed based on a first significant peak in a histogram of standard-deviation values of patches of an image-channel image associated with an input image.
US09721331B2

In the present invention, subband signals are obtained by performing multiresolution decomposition on image data by using a broad-sense pinwheel framelet that is a set of an approximate filter with no orientation and a plurality of detail filters with respective orientations, and that has a degree. When an image is reconstructed by summing the obtained subband signals, the reconstructed image data is generated by attenuating or amplifying a subband signal corresponding to at least one of filters that have predetermined frequency characteristics and/or a predetermined orientation among the filters.
US09721329B2

A multi-scale detail representation of an image is computed as a weighted sum of translation difference images. A denoising operator is applied to the translation difference images so that translation differences are modified as a function of an estimated local signal-to-noise ratio and at least one denoised center difference image at a specific scale is computed by combining denoised translation difference images at scale s or a finer scale. A denoised image is computed by applying a reconstruction algorithm to the denoised center difference images.
US09721324B2

File exploration is facilitated by enabling zoom with respect to a thumbnail as a function of an identified point of interest. More particularly, a scaled thumbnail of the same size as a thumbnail can be presented as a function of an identified point of interest. Furthermore, navigation, among other things, is enabled to allow panning with respect to a scaled thumbnail, for instance.
Patent Agency Ranking