A component mounting system includes at least one component mounter that is provided with a first board transport mechanism, a second board transport mechanism, a first mounting mechanism and a second mounting mechanism that mount components on a board, and a plurality of carriages that is respectively installed on the side of the first board transport mechanism and on the side of the second board transport mechanism and holds a plurality of tape feeders (component supply devices). When changing a production board type of a first board transported by the first board transport mechanism, the components are supplied from the component supply device held by a first carriage, a second carriage, and a third carriage, and the components are mounted on a second board that does not change the production board type by the first mounting mechanism and the second mounting mechanism.
An EMP-protective composite structure that includes at least one enclosure having walls, a ceiling, at least one ingress/egress portal and a base, each of the walls, the ceiling, the ingress/egress portal and the base including at least one blast-resistant structural panel and at least one layer of an EMP barrier that provides magnetic conduction, field absorption and field reflection fully-enclosing the structural panel. An encapsulation barrier is provided having a blast-deflecting surface overlying the at least one enclosure. A HEMP door or circuitous path is provided from an exterior of the EMP-protective structure, through the encapsulation barrier and to the at least one ingress/egress portal of the enclosure. The circuitous path is configured to absorb and deflect EMP as the EMP passes along the circuitous path. Embodiments of the blast-resistant structural panel are also disclosed.
An electric power conversion device is provided with a case (60) which includes: a first member (61) having a first region (73) defining therein a first passage (78, 79) in which a cooling medium flows, and a second region (74) disposed on a side of the first region; and a second member (88) disposed so as to at least partly overlap with the second region as seen from a direction orthogonal to the second region in a spaced apart relationship to the second region, and internally defining a second passage (91) connected to the first passage. A reactor (31) is positioned in the first region, and a switching device (33) is positioned on the surface of the second member facing away from the first member while a capacitor (35) is positioned between the second member and the second region of the first member.
A system may include a component cage to house a heat-generating component, a cold plate assembly, and a mounting mechanism. The cold plate assembly may include a cold plate having a mating surface and a non-mating surface, the mating surface to contact a thermal transfer device of a heat-generating component installed in the component cage. The mounting mechanism movably mounts the cold plate to the component cage with the non-mating surface facing a surface of the component cage located in a first plane. The mounting mechanism allows the cold plate to move from a first orientation to a second orientation as the heat-generating component is being installed in the component cage. In the first orientation, the mating surface is inclined relative to the first plane. In the second orientation, the mating surface is parallel to the first plane when the heat-generating component is installed in the component cage.
Immersion cooling enclosures with insulating liners and associated computing facilities are disclosed herein. In one embodiment, an immersion cooling enclosure includes a well formed in a substrate material, a lid in contact with and fastened to the well to enclose an internal space configured to contain a dielectric coolant submerging one or more computing devices in the internal space, and an insulating liner on the internal surfaces of the well. The insulating liner has a first side in contact with the dielectric coolant and a second side in contact with the substrate material of the well. The insulating liner is non-permeable to the dielectric coolant, thereby preventing the dielectric coolant from passing through the insulating liner to the substrate material.
An electronic device is disclosed. The electronic device includes a housing, a roller positioned inside the housing, a display panel rollable on the roller, and a guide roller positioned at an edge inside the housing. A state of the display panel with respect to the roller includes a first state in which the display panel is rolled on the roller and a second state in which the display panel is unrolled from the roller. The roller includes an outer frame which rotates when the display panel is rolled on or unrolled from the roller, and an inner frame positioned inside the outer frame and fixed to an inside of the housing regardless of rolling and unrolling the display panel.
Embodiments are directed to a portable electronic device having a substantially concealed barometric vent. The vent may be used to equalize air pressure within the enclosure while forming a barrier between external contaminants, moisture, and so on and various internal component and assemblies of the device. In one embodiment, the vent may include a screen configured to impede ingress of particulates and an air-permeable membrane configured to impede ingress of moisture.
The present invention relates to a substrate unit and a substrate assembly, and a camera module using the same. The present invention may comprise: a first substrate part having rigidity; a second substrate part stacked on one surface of the first substrate part and having flexibility; a third substrate part extending outwardly from the second substrate part and having flexibility; and a reinforcing part which is disposed at a portion where the edge portions of the first substrate part and the third substrate part meet, the reinforcing part having a recessed portion which is formed by recessing the first substrate part inwardly so as to inhibit interference between the first substrate part and the third substrate part. The present invention is capable of resolving the interference between a rigid PCB and a flexible PCB and the tearing thereof by providing a reinforcing part in a connection portion of the rigid PCB and the flexible PCB.
The present invention has advantages in that as a USB port unit and a hard disk port unit are formed on the edge of the substrate unit thereby allowing external USB and external disks to be directly connected to the main board, so that it prevents electrical malfunction caused by cable connection, and as the transmission speed of high-speed communication increases through direct connection, it is to provide a main board for POS terminal which may maintain stable system by reducing communication errors.
An electronic circuit board includes electronic components to be mounted; a plurality of hard rigid board portions each of which has an insulating insulator and a conductive circuit pattern and electrically connects the mounted electronic component to the circuit pattern; and at least one soft flexible board portion which has an insulating insulator, has a conductive circuit pattern electrically connected to each of the circuit patterns of at least two rigid board portions among the plurality of rigid board portions, and is integrated with the rigid board portions which are electrically connected to the circuit pattern thereof. A plurality of contact relays as the electronic components is dispersedly arranged on the respective rigid board portions.
[Object] Provided are an electrode substrate film in which a circuit pattern formed of a metal thin line is less visible even under highly bright illumination, and a laminate film applied to the same.[Solving Means] An electrode substrate film with a transparent substrate 52 and a metal laminate thin line includes a metal absorption layer 51 with a film thickness of 20 nm to 30 nm inclusive as a first layer, and a metal layer 50 as a second layer, counted from the transparent substrate side, the laminate thin line having a line width of 20 μm or less. Optical constants of the metal absorption layer in a visible wavelength range (400 to 780 nm) satisfy conditions that a refractive index is 2.0 to 2.2 and an extinction coefficient is 1.8 to 2.1 at a wavelength of 400 nm, the refractive index is 2.4 to 2.7 and the extinction coefficient is 1.9 to 2.3 at a wavelength of 500 nm, the refractive index is 2.8 to 3.2 and the extinction coefficient is 1.9 to 2.5 at a wavelength of 600 nm, the refractive index is 3.2 to 3.6 and the extinction coefficient is 1.7 to 2.5 at a wavelength of 700 nm, and the refractive index is 3.5 to 3.8 and the extinction coefficient is 1.5 to 2.4 at a wavelength of 780 nm. An average reflectance in the visible wavelength range attributed to reflection at an interface between the transparent substrate and the metal absorption layer is 20% or less, and a difference between a highest reflectance and a lowest reflectance in the visible wavelength range is 10% or less.
The present application electromagnetic signal filtering. More specifically, the application teaches a system and method for affixing a frequency selective surface to an existing antenna radome, such that unwanted signals are attenuated before reaching an antenna structure within the antenna radome.
An integrated circuit package having excellent heat dissipation is described. An integrated circuit die is attached to a substrate and the substrate is mounted on a printed circuit board (PCB) wherein there is a gap between a surface of the die facing the PCB and the PCB. A thermal enhanced layer is formed within the gap wherein heat travels from the die through the thermal enhanced layer to the PCB.
An apparatus for generating extreme ultraviolet light used with a laser apparatus and connected to an external device so as to supply the extreme ultraviolet light thereto includes a chamber provided with at least one inlet through which a laser beam is introduced into the chamber; a target supply unit provided on the chamber configured to supply a target material to a predetermined region inside the chamber; a discharge pump connected to the chamber; at least one optical element provided inside the chamber; an etching gas introduction, unit provided on the chamber through which an etching gas passes; and at least one temperature control mechanism for controlling a temperature of the at least one optical element.
An oven includes a cooking chamber configured to receive a food product and an RF heating system configured to provide RF energy into the cooking chamber using solid state electronic components. The cooking chamber is defined at least in part by a top wall, a first sidewall and a second sidewall. The solid state electronic components include power amplifier electronics configured to provide the RF energy into the cooking chamber via a launcher assembly operably coupled to the cooking chamber via a waveguide assembly. The waveguide assembly includes a waveguide extending along at least one of the first sidewall or the second sidewall to provide the RF energy into the cooking chamber through a radiation opening provided at the at least one of the first sidewall or the second sidewall. The launcher assembly includes a launcher disposed proximate to a first end of the waveguide and the radiation opening is disposed proximate to a second end of the waveguide.
A radio frequency heating apparatus (100) having a cooking cavity (112) dividable into at least two sub-cavities (116, 118), a removable partition (114) for thermally insulating the at least two sub-cavities (116, 118), a rail (128) provided along a boundary of the cavity (112) for supporting the removable partition (114), and at least one radio frequency generator configured to transmit radio frequency radiation into at least one of the at least two sub-cavities (116, 118). The rail (128) is corrugated with a set of grooves or ridges (138), and a perimeter of the partition (114) is corrugated with a set of grooves or ridges (136) complementary to the grooves or ridges (138) of the rail (128).
A substrate support for a substrate processing system includes a plurality of heating zones, a baseplate, at least one of a heating layer and a ceramic layer arranged on the baseplate, and a plurality of heating elements provided within the at least one of the heating layer and the ceramic layer. The plurality of heating elements includes a first material having a first electrical resistance. Wiring is provided through the baseplate in a first zone of the plurality of heating zones. An electrical connection is routed from the wiring in the first zone to a first heating element of the plurality of heating elements. The first heating element is arranged in a second zone of the plurality of heating zones and the electrical connection includes a second material having a second electrical resistance that is less than the first electrical resistance.
Embodiments of a User Equipment (UE) and methods of communication are generally described herein. The UE may, if a regular buffer status report (BSR) is triggered and a logical channel scheduling request (SR) delay timer is not running, and if available uplink shared channel (UL-SCH) data resources do not meet one or more logical channel prioritization (LCP) mapping restrictions configured for a logical channel of uplink data: trigger a scheduling request to request UL-SCH data resources for a new transmission of uplink data. Currently pending SRs and BSRs may not be cancelled after assembly of a medium access control (MAC) protocol data unit (PDU), but may be cancelled at a later time when a MAC PDU including a BSR is transmitted.
Two algorithms for different functional-split network models are provided, which are the CU-based (central unit based) beam allocation and admission control algorithm (CU-BAACA) and the DU-based (distributed unit based) beam allocation and admission control algorithm (DU-BAACA). Difference between the CU-BAACA and DU-BAACA includes whether the algorithm is implemented at the CU site or at the DU site. Proposed algorithms aim to optimize DUs' quality of experience (QoE) by admission control to determine the amount of data from application layer entering into traffic queue and allocating beam in physical layer at the fronthaul network between CU and DUs. On the other hand, queueing delay and queue stability are taken into consideration to maintain the system steadiness. Simulation results compare performance of two functional split models to find the appropriate scenario for each function split option, which provide technical requirement and applicability of the proposed algorithms for practical system.
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments herein provide a method and UE for optimizing resources of wireless communication network while providing 5G services.
The present disclosure relates to methods and arrangements for controlling point-to-point microwave transmission on a microwave link between a first and a second microwave network node, wherein the microwave link is configured for payload data transmission at a payload data rate. The method comprises obtaining information indicative of a current data rate capability of the microwave link and comparing the current data rate capability to the configured payload data rate. When the current data rate capability is below the configured payload data rate, transmission on the microwave link is adapted to comprise transmission of dummy data on the microwave link between the first and second microwave network node.
In an aspect of the present invention, a method for a user equipment to update a policy in a wireless communication system may include transmitting a first registration request message to an access and mobility management function (AMF), wherein the first registration request message includes requested network slice selection assistance information (NSSAI) including single (S)-NSSAI corresponding to a network slice with which the user equipment wants to register; receiving a first registration accept message as a response to the first registration request message from the AMF, wherein the first registration accept message includes an allowed NSSAI including at least one S-NSSAI allowed by the AMF; and requesting the update of a network slice selection policy (NSSP) associated with new S-NSSAI from the AMF when the new S-NSSAI not included in the requested NSSAI is included in the allowed NSSAI and the NSSP associated with the new S-NSSAI is not present.
Techniques are described of forming a mesh network for wireless communication. One method includes broadcasting, from a first node connected to a core network, a beacon signal, receiving a connection establishment request from a second node in response to the broadcasted beacon signal; determining a radio resource availability associated with a plurality of radios of the first node based on the connection establishment request, and establishing a connection with the second node using a radio of the plurality of radios based on the radio resource availability. In some cases, the radio resource availability may include a number of active connections associated with one or more radios of the plurality of radios of the first node.
A network device receives an attach request indicating that a user device is attempting a connection associated with a non-access stratum (NAS) and a particular interface, and generates a create session request that includes an indication that the connection for the user device is associated with the NAS and the particular interface. The network device provides, to a serving gateway (SGW) of the network, the create session request that includes the indication, and receives, from the SGW, a create session response that includes rules for handling the connection for the user device that is associated with the NAS and the particular interface, wherein the rules have been generated by a policy and charging rules function (PCRF) of the network. The network device provides, to the user device, an attach accept, that includes the rules, to permit the user device is to connect with the network and to utilize the rules.
A method for transmitting non-access stratum (NAS) messages is provided, the method comprising: receiving, from a user equipment, a request message for establishing a radio resource control (RRC) connection; and sending to the user equipment a response message RRC connection setup on a first signaling radio bearer (SRB). The response message RRC connection setup comprises configuration information for a second SRB, the second SRB is used for transmitting a first NAS message, and the configuration information is used to configure the second SRB to support a radio link control unacknowledged mode (RLC UM). The present invention further provides a corresponding base station and user equipment.
Methods, systems, and devices for wireless communications are described. One method may include receiving a beam switch message prior to initiating a physical random access channel (PRACH) procedure, monitoring for a response from a base station using a candidate beam during a random access response window, identifying a beam switch event occurring within the random access response window based on beam switch timing information indicated in the beam switch message, and performing a beam switch procedure based on an absence of a response from the base station during a portion of the random access response window and prior to the beam switch event.
[Object] To provide a mechanism in which Listen-Before-Talk (LBT) can be efficiently executed using a millimeter-wave band.[Solution] An apparatus including: a processing unit configured to infer, on a basis of a result of LBT related to at least one first unit frequency band included in a group that includes a plurality of unit frequency bands, a result of LBT related to a second unit frequency band other than the first unit frequency band included in the group.
A terminal device configured to communicate with a base station device receives random access common information including information on a random access response reception and information on a contention resolution message reception for each repetition level from the base station device, selects a random access preamble corresponding to a repetition level using the random access common information, and selects a contention resolution timer value corresponding to the repetition level selected from the random access common information.
In a base station (100), a division number calculating unit (103) calculates the division number of a PRB pair on the basis of a first number of REs capable of mapping an allocation control signal, a second number of REs capable of mapping signals other than the allocation control signal, and a reference value, which is the number of REs satisfying the reception quality request in a terminal (200) for the allocation control signal, in each PRB pair. Then, a control signal mapping control unit (104) determines a search space by determining a control channel element group constituting a plurality of mapping unit resource region candidates within a CCE group obtained by separating each PRB pair contained in a first group into the same number as the division number.
Various aspects described herein relate to communicating a scheduling request (SR) in a wireless network. A frame structure that allows dynamic switching of transmission time intervals (TTI) between uplink and downlink communications may be used to communicate with a network entity. At least one SR mode can be selected for SR transmission to the network entity in one or more of the TTIs configured for uplink communications based at least in part on the frame structure. The SR can be transmitted to the network entity in at least one uplink TTI of the one or more TTIs configured for uplink communications based at least in part on the at least one SR mode.
A wireless device is configured with a plurality of channel-sensing resources, each channel-sensing resource being associated with at least one corresponding transmission resource. The wireless device evaluates (810), in response to a determination that first data is ready to be transmitted by the wireless device, whether one or more of the plurality of channel-sensing resources are occupied, and transmits (820) at least a part of the first data on at least one transmission resource associated with at least one channel-sensing resource, in response to detecting that the at least one of the plurality of channel-sensing resources is not occupied. The wireless device further receives (830) a grant for a scheduled transmission at least partly overlapping with at least one of said plurality of channel-sensing resources; and transmits (840) second data in accordance with the received grant.
A method in a node is disclosed. The method comprises generating a tag for an associated data packet at a first layer, the generated tag indicating one or more parameters related to transmission of the associated data packet. The method comprises signaling the tag from the first layer to another layer. The method comprises mapping, at the another layer, the associated data packet to a logical channel based on the one or more parameters indicated by the tag, and selecting one or more resources for transmission of the associated data packet based on the mapping of the associated data packet to the logical channel.
A communication system capable of a stable communication operation between a base station device and a communication terminal device. A UE is configured to communicate with an MeNB directly or through a SeNB. The UE is set to transmit, to the MeNB and the SeNB, transmission data addressed to the MeNB when an amount of the transmission data exceeds a predetermined threshold. The UE is set to transmit the transmission data not to the SeNB but to the MeNB when the amount is smaller than or equal to the threshold. The threshold is changed so that the transmission data is transmitted to the MeNB and the SeNB, when the SeNB is set to communicate with the UE with radio resources periodically allocated and the amount of the transmission data is smaller than or equal to the threshold.
A communication method, a base station, a radio communication node, and a user equipment are provided. A base station determines first resource configuration information, where the first resource configuration information is used for indicating N radio resource sets that are used when N radio communication nodes separately perform communication with a user equipment UE, and the radio resource includes a time domain resource and/or a frequency domain resource. The base station sends the first resource configuration information to the UE, where the UE communicates with a corresponding transmission point by using respective radio resource sets of transmission points, and the respective radio resource sets of the transmission points do not intersect. Therefore, a base station does not need to schedule a radio resource, thereby lowering a delay requirement on a backhaul link and eliminating interference.
Embodiments of the present disclosure provide a resource management method and a related device. The resource management method includes: receiving, by UE, signaling for releasing resource sent by a base station, where the signaling for releasing resource indicates information of resource location; and determining, based on the information of resource location, a time-frequency resource corresponding to the information of resource location in allocated resources already allocated by a network side to the UE, and then releasing the time-frequency resource. The UE may release some of the allocated resources based on an indication of the base station.
A method for transmitting resource allocation information to a wireless node in a communications system includes selecting a search space from one of a first search space and a second search space, the first search space associated with a first set of control channel parameters and the second search space associated with a second set of control channel parameters. The method also includes modulating the first control information, and mapping the modulated first control information onto the selected search space in a first subframe, where at least one of modulating the first control information and mapping the modulated first control information is according to a selected set of control channel parameters associated with the selected search space. The method further includes transmitting the first subframe to the wireless node, and transmitting a first parameter indicator identifying the selected set of control channel parameters to the wireless node.
The present disclosure discloses a method and device for channel selection. The method comprises: indicating a time-domain resource position and a frequency-domain resource position of an extended physical uplink control channel region based on a common physical downlink control channel; and instructing a group of user terminals to transmit an extended physical uplink control channel in the extended physical uplink control channel region which has been indicated, wherein different user terminals each transmit the extended physical uplink control channel in different extended physical uplink control channel regions which have been indicated. The present disclosure solves a technical problem of a larger downlink signaling cost resulted from the uplink scheduling authorization when a larger number of users transmit data in the extended physical uplink control.
An embodiment of the present invention provides a method for a first UE to transmit a physical sidelink shared channel (PSSCH) in a wireless communication system, the PSSCH transmission method comprising: a step of excluding subframes, used by a second UE, from candidate subframes for PSSCH transmission; and a step of selecting a subframe for transmitting a PSSCH and transmitting the PSSCH, after excluding the subframes, used by the second UE, from the candidate subframes, wherein the subframes used by the second UE include subframes assumed to be repeatedly used by the second UE according to a reservation period of the second UE, wherein, if the reservation period of the second UE is smaller in value than a predetermined value, the shorter the reservation period of the second UE becomes, the greater the number of the subframes assumed to be repeatedly used becomes.
A user apparatus in a mobile communication system includes an allocation means that divides a message that includes control information and data into a plurality of partial messages, and allocates resources included in one or more resource pools to the plurality of partial messages; and a transmission means that transmits the plurality of partial messages using the resources allocated by the allocation means.
Methods and apparatus for processing and using signals transmitted by a device, e.g., a low cost beacon transmitter device, to facilitate making location determinations with regard to the transmitting device and/or making a decision of when or how to use location information generated based on received signals are described. In accordance with some features the processing performed on the received signal strength measurements is based on whether or not the device from which the signals are received is in motion. The size of a sample period used as a processing window when determining device location is based, in some embodiments, on the rate of motion. When and/or how to use location determinations are performed is also based on motion in some embodiments. Machine learning updates of location determination parameters, based on received signals, are disabled when the signals are from devices determined to be in motion.
The invention proposes a method, of configuring a timing advance group for a secondary cell, in a base station, a method, of configuring a value of a time alignment timer for a secondary cell, in a base station, a method of configuring a value of a time alignment timer in a user equipment, and a method of configuring a timing advance group in a user equipment.
Methods, systems, and devices are described for wireless communication. In one method, a method of wireless communication at a user equipment (UE) includes receiving a synchronization signal. The synchronization signal may be common to a plurality of cells within a network. The method further includes acquiring a timing of the network based on the synchronization signal, and transmitting a pilot signal in response to acquiring the timing of the network. The pilot signal may identify the UE and be concurrently receivable by the plurality of cells within the network. Other aspects, features, and embodiments are also claimed and described.
An inter-base-station synchronization method and a device are provided. The method includes: sending, by a source base station, a request for time synchronization to a target base station, request for time synchronization; receiving, by the source base station, an acknowledgment message from the target base station; sending, by the source base station, a particular sequence to a target user terminal located in a particular area, so that the target user terminal sends the particular sequence; and detecting, by the source base station, the particular sequence, and performing time synchronization between the source base station and the target base station. According to the present disclosure, the user terminal located in the particular area forwards the particular sequence, so that to-be-synchronized base stations detect the particular sequence to implement inter-base-station time synchronization.
A method and apparatus for using enhanced PSS (ePSS) transmitted from a base station, for example an eNB, for use by UEs for resynchronization of the UE with the base station is disclosed. According to some embodiments, when resynchronization using the ePSS fails on the first attempt, the UE non-coherently or coherently combines the ePSS with the legacy PSS/SSS in order to resynchronize the UE with the base station. According to some embodiments, when resynchronization using the ePSS fails on the first attempt, the UE non-coherently or coherently combines the ePSS reception results with the legacy PSS/SSS reception results in order to resynchronize the UE with the base station.
A method for a terminal receiving a beam reference signal (BRS) and a physical broadcast channel (PBCH) in a wireless communication system can comprise the steps of: determining a power ratio of BRS to PBCH per resource element (RE) on the basis of the number of BRS ports; detecting the BRS and a demodulation reference signal (DMRS) on the basis of the number of the BRS ports; and determining whether or not the determined power ratio of BRS to PBCH is to be compensated to an estimated channel on the basis of the DMRS.
Techniques for uplink power control (e.g., for New Radio (NR)) are disclosed. A wireless transmit/receive unit (WTRU) may determine that the WTRU is to perform a first and a second transmissions using a first and a second transmission beams. The WTRU may determine an uplink transmission power for one or more of the first or second transmissions. For example, if the angular separation of the first and the second transmission beams is greater than a first separation threshold, the WTRU may determine the uplink transmission power having a first maximum power level parameter and a second maximum power level parameter. If the angular separation of the first and the second transmission beams is less than a second separation threshold, the WTRU determine the uplink transmission power having a shared maximum power level parameter. The WTRU may transmit the first and second transmissions using the first and second transmission beams, respectively.
The present disclosure relates to a method, a device and a system for reducing power consumption of a mobile terminal. The method includes sending a parameter adjustment request to an access network device connected to the mobile terminal in response to an instruction for reducing power consumption; receiving a parameter adjustment instruction sent by the access network device, wherein the parameter adjustment instruction includes a communication parameter to be adjusted, and the communication parameter to be adjusted is a baseband-chip related communication parameter; and adjusting the baseband-chip related communication parameter in the mobile terminal based on the parameter adjustment instruction to reduce the power consumption of the mobile terminal.
A communication device determines a physical layer (PHY) transmission mode for transmitting a wakeup radio (WUR) packet. The communication device generates a first portion of the WUR packet, the first portion corresponding to a WLAN legacy PHY preamble and spanning a first frequency bandwidth. The communication device generates a second portion of the WUR packet, the second portion of the WUR packet spanning a second frequency bandwidth that is less than the first frequency bandwidth. The second portion of the WUR packet includes a PHY sync signal that corresponds to the selected PHY transmission mode, wherein the PHY sync signal is selected from a plurality of different PHY sync signals that respectively correspond to a plurality of different PHY transmission modes. The communication device generates a PHY data portion, within the second portion of the WUR packet, according to the selected transmission mode.
A first communication device transmits a first packet that includes a wakeup request packet configured to prompt a wakeup radio at a second communication device to prompt a network interface device of the second communication device to transition from a low power state to an active state. The first communication device measures a delay period after an end of transmission of the first packet. The delay period corresponds to a time required for the network interface device of the second communication device to transition from the low power state to the active state. After at least the delay period, the first communication device transmits the second packet.
This document describes improvements in mobility management for user equipment (110) between a cellular network (202) and a WLAN network (206). A Cellular-WLAN Mobility Function (210) is introduced to manage routing of packet data over the cellular network (202) and the WLAN network (206) to the user equipment (110). The CWMF (210) enables the transfer of packet data context between the cellular network (202) and the WLAN network (206), improved handovers between the cellular network (202) and the WLAN network (206), Quality of Service (QoS) management of the WLAN network (206), and aggregation of cellular and WLAN bandwidths to improve data throughput for user equipment 110.
A method for handover to a relay node, a related device, and a system, where the method includes sending, by a base station of a target cell in an initial random access procedure initiated by a terminal device for the target cell, indication information to the terminal device using a random access message to instruct the terminal device to report information about a candidate relay device corresponding to the terminal device, receiving the information about the candidate relay device from the terminal device determining, in the candidate relay device according to the information about the candidate relay device, a target relay node used for relay communication between the terminal device and the base station, and handing over the terminal device to the target relay node.
A system includes a wireless communication device that joins a wireless communication network. Specifically, the wireless communication device measures a quality metric of the wireless communication network in response to a trigger to join the wireless communication network. The wireless communication device determines whether the quality metric indicates a high quality environment or a low quality environment for communicating signals. In response to the quality metric indicating the high quality environment, the wireless communication device selects a first pathway with an optimum transmission time between the wireless communication device and a central controller of the wireless communication network. In response to the quality metric indicating a low quality environment, the wireless communication device selects a second pathway comprising an optimum quality link between the wireless communication device and another wireless communication device in the wireless communication network.
The present disclosure describes methods, devices, and systems for signal strength measurement. An example method includes: broadcasting, by a first relay device, a first message, wherein the first message is used by a first remote device to discover the first relay device; establishing, by the first relay device, a connection to the first remote device; and sending, by the first relay device, a second message, wherein the second message is used by the first remote device to measure signal strength of a link between the first remote device and the first relay device.
To solve the problem wherein a terminal cannot perform data communication from a network from the time point of a terminal receiving a handover command (HO command) message from a base station controlling a source cell to the time point of a terminal receiving a handover complete (HO complete) message from a base station controlling a target cell, after the terminal transmits the handover command message to the base station controlling the source cell, the base station controlling the source cell transmits to the base station controlling the target cell whether or not the terminal supports a function of reducing the interruption time of data transfer, the terminal continues to perform data transmission/reception with the base station controlling the source cell, and after the terminal completes a random access procedure with the base station controlling the target cell, the base station controlling the source cell transmits an additional sequence number status transfer message to the base station controlling the target cell.
A network node, a wireless device and methods for use in a Random Access, RA, procedure with wireless devices in a cell of the network node. The method of the network node comprises receiving, from at least two wireless devices, a RA message having an RA preamble; transmitting an RA Response, RAR, to the wireless devices, the RAR having a TC-RNTI and an RA preamble identifier identifying the received RA preamble; and receiving, from each of wireless the devices, a connection request message having a respective S-TMSI. For a wireless device previously connected to the network node in the same cell, a connection setup message addressed to a C-RNTI previously assigned to the wireless device is transmitted. For a wireless device not previously connected to the network node in the same cell, a connection setup message addressed to the TC-RNTI is transmitted.
Applicants disclose an inter-system mobility anchor control point that is adapted to initiate handover of an existing communication connection in an integrated small cell and WiFi (ISW) network. The inter-system mobility anchor control point is communicatively coupled to both an HeNB/LTE network and trusted WLAN access network (TWAN) and adapted to operate as a common control plane entity for both HeNB/LTE and TWAN access. The mobility anchor control point may be a mobility management entity (MME) or an integrated small cell and WLAN gateway (ISW GW). The mobility anchor control point is adapted to request and receive measurement data relating to the operations of the HeNB network and WLAN. Based upon the measurement data, the mobility anchor control point determines whether an existing communication path via one of the HeNB/LTE network and WLAN should be handed over to the other of the networks.
Provided is a communication method of a coordinator in a wireless networks system that uses a reservation-based media access control (MAC). The communication method includes receiving, from a source device, a frame that requests a reservation resource for a relay device, to enable a frame that the source device transmits to a destination device to be relayed via the relay device, and allocating the reservation resource for the relay device, in response to the request.
A User Equipment (UE) including a wireless transceiver and a controller is provided. The wireless transceiver performs wireless transmission and reception to and from a first service network utilizing a first Radio Access Technology (RAT) and a second service network utilizing a second RAT. The controller starts a Mobility Management (MM) back-off timer in response to a first MM procedure with the first service network being rejected, determines whether both the UE and the first service network support a dual registration mode in response to starting the MM back-off timer, and initiates a second MM procedure with the second service network via the wireless transceiver when the MM back-off timer is running, in response to determining that both the UE and the first service network support the dual registration mode.
A tool listening device comprising a transceiver is configured to listen on a radio channel selected from a discovery channel hopping sequence. The tool listening device is configured to identify a preamble, indicating a start of a packet. The tool listening device continues to listen until a packet header is received. The tool listener extracts, from the packet header, a source address, a destination address and a frame type. The tool listening device adds the source address, the destination address, and the frame type to a data structure, and transmits the data structure to an external device, where the data may be visualized. The tool listening device is further configured to select another radio channel from the discovery channel hopping sequence.
A mechanism is provided for direct interaction between an individual and a communication network. Captured data is received of the individual in an environment to be analyzed by a network management computer. The data is captured by network sensors. The network management computer determines that the individual is a subscriber to services of the communication network by identifying the subscriber from the data that has been captured. The subscriber is registered with a network carrier that operates and provides the services on the communication network. The data is obtained without assistance from a subscriber owned device providing the data. The data is analyzed to interpret commands when presented by the subscriber via the network sensors. The commands include gesture commands from the subscriber. An action is performed for the subscriber based on the commands.
A distributed antenna system includes a plurality of antenna groups which includes first antennas and second antennas. The first antennas form beams in a first direction along a mobile station track and transmit identical signals at identical frequencies. The second antennas form beams in a second direction opposite to the first direction and transmit identical signals at identical frequencies. The antenna groups are installed on one side of the mobile station track. A frequency of signals transmitted by the first antennas belonging to the same antenna group is different from a frequency of signals transmitted by the first antennas belonging to another antenna group adjacent thereto, a frequency of signals transmitted by the second antennas belonging to the same antenna group is different from a frequency of signals transmitted by the second antennas belonging to another antenna group adjacent thereto, and the signals from the first antennas and the signals from the second antennas are transmitted using two frequencies in total.
Systems, devices, and techniques described herein are directed to a tactical wireless base station, and applications thereof. A tactical wireless base station may include a plurality of hardware or software radios configured to facilitate communication over any wireless protocol. The tactical wireless base station may be deployed on an unmanned aerial vehicle (UAV) to search for a wireless signal of a target user equipment (UE) corresponding to a lost hiker, for example, in an area out of range of traditional base stations, and/or to locate the target UE to convey the location to rescuers. In some instances, a tactical wireless base station can be deployed in a handheld device and may coordinate with other tactical wireless base stations in order to triangulate a location of user equipment. Further, the tactical wireless base stations may be deployed during network outages to provide indications of events, such as during emergencies.
A method in a wireless dock includes querying a first wireless networking database to identify a first set of available channels, querying a second wireless networking database to identify a second set of available channels, and sending location and device attributes. The method also includes receiving a list of permissible frequencies and power levels, sending to a client device at least a portion of the list of the permissible frequencies and the power levels for use of selected channels selected from the first set of the available channels and the second set of the available channels, and communicating with the client device using selected frequencies and power levels selected from the at least the portion of the list of the permissible frequencies and the power levels.
A method for wireless magnetic communication consisting in the processing of information encrypted by the transmitter using the magnetic field and decrypted by the receiver comprising proximity magnetic sensors is characterized according to the invention in that the transmitter is equipped with a magnetic system with a planarly shaped configuration of magnetic elements, and then the transmitter is placed against the receiver which is coupled to the first microprocessor controller, and then using the magnetic sensors of the receiver the configuration of the magnetic field generated by the magnetic elements of the transmitter by is recreated, and next, using the first microprocessor controller, one compares such configuration with the pattern implemented therein, and then, in accordance with the software implemented in the first microprocessor controller further actions corresponding with that pattern are launched. Permanent magnets or time varying magnetic field generators are used as magnetic elements with a favorable effect. The object of the invention is also the system for implementation of this method.
A method comprises: determining if a personal computing system in a vehicle is authentic using a radio system in the vehicle, where the radio system is configured (a) to communicate with at least one ground system and (b) to be coupled to a vehicle system; if the personal computing system is authenticated, creating a link between the personal computing system and the radio system; and at least one of: restricting data routing to and from at least one of: (a) vehicle system type(s), and (b) application program(s) of at least one of the vehicle system and the personal computing system; restricting data type(s) transmitted between the personal computing system and the vehicle system; and routing data between the personal computing system, and at least one of (a) at least one ground system not through a communications management system and (b) the vehicle system.
Systems and method are provided to reduce redundant data transfers for service profiles within a wireless core network. A network device in the core network receives, from a mobility management entity (MME), a user profile request. The user profile request includes a user identifier for an end device. The network device determines that a user profile corresponding to the user identifier includes a shared service profile and determines, when the user profile includes a shared service profile, whether the MME has stored the shared service profile. When the MME has not stored the shared service profile, the network device sends, to the MME, the shared service profile and a shared profile identifier for the shared service profile. The network device sends, to the MME, a response to the user profile request, the response including the user identifier and the shared profile identifier for the shared service profile.
Methods and systems for providing a service are provided. A request is received to provide the service to a device. A location of the device, or a network interface through which the device is coupled, is determined. Finally, the delivery of the service is authorized based on the determined location of the device, or the determined network interface.
Embodiments include apparatus and method for collecting observation data for updating a geographic database. An initial observation is collected by a first mobile device, a first vehicle, or a first sensor. Along with the geographic position, data indicative of the first observation is send to a server. The central server may analyze of the initial observation data to determine if additional observations should be made and define a bounding box from the geographic position of the first mobile device and the analysis of the initial observation data. A request for additional observations is generated and sent to at least one second mobile device, second vehicle, or second sensor based on the bounding box.
A content distribution server is provided with: a storage unit, which stores a plurality of pieces of content related to a facility; an acquisition unit, which acquires, from an in-vehicle navigation device of the vehicle, any one or both of starting information on a vehicle and location information on the vehicle, as information for determination; and a content distribution unit, which distributes content stored in the storage unit to a mobile terminal. The content distribution unit determines, on the basis of the information for determination acquired by the acquisition unit, whether a user can visit the facility by the vehicle, and determines, on the basis of the determination result, which content in the plurality of pieces of content stored in the storage unit is distributed to the mobile terminal.
Techniques and systems for determining locations of devices using location data sources are provided. For example, a network device, method, and computer-program product may be provided. In one example, a method may include receiving, on a computing device, a request to locate a device, wherein the request includes an identifier of the device. The method may further include receiving a communication from the device, wherein the communication includes the identifier of the device, and obtaining a location of the device. The method may further include transmitting the location of the device and the identifier of the device to a server, wherein the server is configured to use the location of the device and the identifier of the device to send a response to the requestor of the request.
A system may include at least one audio transducer and a controller. The controller may generate at least one actuation signal. The at least one actuation signal may drive the at least one audio transducer such that the at least one audio transducer generates evanescent wave audio signals in proximity to a wearer's ear. The evanescent wave audio signals may decay in strength with distance from the at least one audio transducer. Various other apparatuses, systems, and methods are also disclosed.
The present disclosure generally relates to user interfaces and techniques for monitoring noise exposure levels using an electronic device. In accordance with some embodiments, the electronic device displays a graphical indication of a noise exposure level over a first period of time with an area of the graphical indication that is colored to represent the noise exposure level, the color of the area transitioning from a first color to a second color when the noise exposure level exceeds a first threshold. In accordance with some embodiments, the electronic device displays noise exposure levels attributable to a first output device type and a second output device type and, in response to selecting a filtering affordance, visually distinguishes a set of noise exposure levels attributable to the second output device type.
A piezoelectric device and a display apparatus including the same are provided. A piezoelectric device includes: a first piezoelectric unit including a vibration-generating layer configured to vibrate at an input frequency based on a sound signal corresponding to the input frequency, and a second piezoelectric unit including: an air gap in the first piezoelectric unit, the air gap having a certain volume, and an air path connecting the air gap to an outer portion of the vibration-generating layer, the air path being configured to output a vibration.
The present disclosure provides a speaker, including a holder, a magnetic circuit unit, a vibration unit, and an electrical connection member. The vibration unit includes a diaphragm and a voice coil. The electrical connection member is electrically connected to the voice coil. The magnetic circuit unit includes a yoke. A pad fixed to the holder is formed at an end of the electrical connection member facing away from the voice coil. The yoke includes a bottom plate exposed out of the holder, and a recess is formed at a side of the bottom plate facing away from the diaphragm. The speaker further includes a printed circuit board connected to the pad. The printed circuit board electrically connects the electrical connection member with an external circuit, and the printed circuit board is received in the recess and extends to the pad.
Provided is a speaker, including a holder, a vibration unit and a magnetic circuit unit fixedly held at the holder, and a bayonet portion penetrating through the holder. The vibration unit includes a diaphragm, a voice coil located at a side of the diaphragm and driving the diaphragm to vibrate and emit sound, and a flexible printed circuit board located at a side of the voice coil facing away from the diaphragm and connected to the voice coil. The flexible printed circuit board includes a body portion supporting the voice coil, an extension portion extending from body portion towards bayonet portion and passing through the bayonet portion, and a connecting portion bent and extending from a distal end of the extension portion along an outer side of the holder. The connecting portion is fitted to outer side of holder and used for electrical connection with an external circuit.
The two-way communication system comprises a non-invasive and non-implanted system which allows for clear two-way communications. This system is generally comprised of a mouthpiece component, relay component, infrastructure communication device, an optional earpiece component, and an optional system control which may interface with the relay component.
An electronic device that includes a metal element arranged to at least partially cover a high impedance region associated with an antenna of the electronic device. The metal element presents a capacitive load to the antenna to mimic or replicate a capacitance placed on the antenna by a conductive element, such as a user's finger, coming in contact or close proximity to the antenna area. The capacitive load applied by the metal element tunes the antenna system for a large capacitance to resist antenna de-tuning and radio link interruption caused by the unintended user contact or near contact with the high impedance region of the antenna.
A method for routing data by a node from a plurality of nodes connected by links to form a network includes feeding, to a global bus, local traffic information regarding the node, the global bus being provided separately from the links and spread within the network. The method also includes obtaining, from the global bus, global traffic information regarding other nodes from the plurality of nodes. The method further includes switching a routing path of the data based on at least the local traffic information regarding the other nodes.
Methods, systems, and machine-readable mediums for discovering a service group are provided. In an embodiment, a subscriber device receives a configuration file that stores a listing of mappings, each association of the listing of mappings maps network characteristics to a service group identification (SGID), a list of transport stream IDs (TSIDs), and a list of radio frequencies (RFs). The subscriber device selects one or more associations, from the listing of mappings, that are related to a network characteristic. Then, the subscriber device tunes to an RF, selected from the list of frequencies associated with a selected association, to identify a TSID of the tuned RF. Upon verifying whether the identified TSID matches a TSID from the list of TSIDs within the selected association, the subscriber device determines that the SGID in the selected association identifies the service group for the subscriber device.
Disclosed are techniques for allowing a fallback from downloading and presenting a three-dimensional (3D) media content item to a 2D version of the same content item. During the download, a triggering condition is noted, such as network congestion or resource starvation on the receiving device. The receiving device requests a fallback and then begins to receive the 2D version of the media content item. (Generally, the 2D content item is downloaded beginning at a point specified by the recipient device rather than from the beginning.) The 2D version is presented to the user of the recipient device in place of the 3D version. If the triggering condition is resolved, then the download and presentation can resume in 3D, either on the request of the recipient device or by the download server noting the resolution of the triggering condition.
Media content recommendation systems and methods are operable to recommend one or more media content events to a user based on identified changes in the user's emotional state during a life event that is experienced by the user.
A system and method for real-time alteration of media content based on stress monitoring is disclosed. A computer system present a single media content item in two distinct content streams to a first and second user. Using sensor generated data the computer system measures at least one user response indicator for the first and second user and estimates a stress level for the first and second users. The computer system determines whether the estimated stress level for the first user exceeds a first predetermined stress threshold. In accordance with a determination that the estimated stress level for the first user exceeds a first predetermined stress threshold the computer system alters the first stream of the presented media content item to modify the particular portion of the media content item associated with the estimated stress level for the first user.
A mobile device includes a processor and a memory. The memory stores instructions executable by the processor such that the processor is programmed to identify, based on user data a reference time. The processor is further programmed to send, via a human-machine interface included in the mobile device, a message to a user to input a user request to download a media content item prior to the reference time. The processor is further programmed to receive the user request to download the media content item and download the media content item from a media device.
A network digital video recording (nDVR) system may take into account the capabilities of a requesting user's local DVR when managing network recordings. The user's local DVR may include a temporary buffer that is normally used to record what the DVR is tuned to, and may be used for local trickplay functionality such as pausing live television. The nDVR features described herein may track the usage of the user's temporary DVR buffer, and use that in determining what to stream in response to a user's playback request. The nDVR system can also determine if the user's local DVR has an unused tuner at a time of a program recording, and can instruct the user's local DVR to also tune to the program.
A cable set-top box and cable distribution system architecture for deployment of value-added services over digital video broadcasting-cable is disclosed. A consumer can request for an on-demand service or a data at the cable set-top box system 122, where the request may be executed by extracting data from storage means provided in the cable set-top box, and/or the request may be forwarded via a wireless data modem to a telecommunication network where the source of the request is identified and routed to a corresponding cable headend 106 for execution through the DVB-C and/or the modem, and/or the request may be forwarded by the modem via the telecommunication network to a computing cloud 130 where the source of the request is identified and routed to the corresponding cable headend 106 for execution through the DVB-C and/or the modem.
A method for controlling a menu displayed on a screen from a number of menu elements arranged in a grid with an input interface containing a pushbutton with a number of haptically detectable segments arranged in the grid, wherein the number of menu elements corresponds to the number of haptically detectable segments so that a haptically detectable segment on the pushbutton is assigned to each menu element of the menu, comprising receiving a position signal that depends on the position of a user's finger on the pushbutton; highlighting the menu element assigned to the haptically detectable menu element located at the finger's position; and activating a function assigned to the highlighted menu element if the pushbutton is pressed.
Convenience is achieved in performing processing depending on decoding capability in a reception side. High-frame-rate ultra-high-definition image data is processed to obtain first image data for acquisition of a base-frame-rate high-definition image, second image data for acquisition of a high-frame-rate high-definition image by being used with the first image data, third image data for acquisition of a base-frame-rate ultra-high-definition image by being used with the first image data, and fourth image data for acquisition of a high-frame-rate ultra-high-definition image by being used with the first to third image data. A container is transmitted including a predetermined number of video streams including encoded image data of the first to fourth image data. Information is inserted into the container, the information corresponding to information that is inserted into each of the predetermined number of video streams and associated with image data included in the video streams.
Provided are a system and method for publishing a disparate live media output stream manifest that includes one or more media segments corresponding to key events. The system comprises one or more processors that generate a programming schedule, based on a synchronization of one or more disparate sub-systems in the system, includes one or more key events that occurred from a starting point until a current live point in a live input stream. Further, a reference clock provides a reference time to synchronize the one or more disparate sub-systems. Based on the programming schedule, one or more processors insert the current live point and one or more media segments corresponding to the one or more key events that occurred prior to the current live point included in a live input stream manifest into a disparate live media output stream manifest, which is further published based on the insertion.
A media user agent, a media user client and respective methods performed thereby for providing media from a media server to the media user client in a user terminal are provided. The method performed by the media user agent in a node in a communication network for providing media from a media server to a media user client in a user terminal comprises receiving a request for media from the media user client, the request for media comprising information about the requested media; and transmitting a request of the media to a media server, the request comprising the information about the requested media. The method further comprises receiving an MPD from the media server; and autonomously requesting segment(s) of the media from the media server based on the MPD.
Disclosed is a module for correcting and applying an input value applied to a plurality of pixels in a display including a plurality of pixels. The module includes a processor configured to determine a plurality of unit blocks by dividing the plurality of pixels in a preset unit, receive the first input value for a current pixel included in a current block of the plurality of unit blocks, determine a middle input value of a real number, by correcting the first input value by applying a gain value and offset value assigned to the current block, compare the product of a decimal value indicative of the decimal part of the middle input value and the size of the current block with a root value corresponding to the current pixel, determine the final input value by performing rounding-up or rounding-off on the middle input value based on a result of the comparison, and apply the final input value to the current pixel and memory configured to store the gain value, the offset value and the root value.
An apparatus configured to encode or decode video data that includes a memory configured to store at least one reconstructed sample of video data and at least one processor, in communication with the memory, that is configured to identify at least one reconstructed sample, determine at least one extended angular intra prediction mode to use for intra prediction of at least one sample of a current block, intra predict, using the at least one extended angular intra prediction mode, at least one sample of the current block based on the at least one reconstructed sample, extended angular intra prediction modes including angular intra prediction modes other than angular prediction modes between horizontal −45 degrees and vertical −45 degrees, and encode or decode the current block based on the at least one predicted sample.
An example device for processing video data includes a memory configured to store video data; and one or more processors implemented in circuitry and configured to decode a supplemental enhancement information (SEI) network abstraction layer (NAL) unit of a video bitstream including the video data, the SEI NAL unit containing a motion constrained tile sets (MCTS) nesting SEI message; determine that the SEI NAL unit does not contain any non-MCTS-nesting SEI messages in response to the SEI NAL unit containing the MCTS nesting SEI message; and decode subsequent SEI messages of the SEI NAL unit as MCTS nesting SEI messages in response to the determination.
A depth generation system with adjustable light intensity includes at least one light source, at least one image capturer, a depth map generator, and a controller. Each light source of the at least one light source is used for generating emitted light. Each image capturer of the at least one image capturer is used for capturing an image including at least one reflected light generated by at least one object reflecting the emitted light. The depth map generator is coupled to the each image capturer for generating a corresponding depth map according to the image or the at least one reflected light. The controller is coupled to the depth map generator for determining whether to adjust intensity of the emitted light according to information of the corresponding depth map or intensity of the at least one reflected light.
Systems and methods of providing stereo depth cameras for head-mounted display systems that require less memory and/or processing power. The stereo depth camera may include a left camera and a right camera spaced apart from each other by a distance. Each of the left and right cameras may be skewed outward by a non-zero angle from a forward direction of the head-mounted display system to provide a relatively wide field of view for the stereo depth camera. Each of the left and right cameras may include a camera sensor array and a camera lens positioned forward of the camera sensor array. Each of the camera lenses may include an optical axis that is laterally offset from the center of the associated camera sensor array toward a center of the support structure to center the left camera lens substantially on a scene center or principal point.
A 3-dimensional physical object dynamic display comprises a plurality of electrically-conductive particle control plates and a plurality of electrically-conductive particles that are loosely disposed over at least some of the plurality of electrically-conductive particle control plates. These particles are each capable of holding an electrostatic charge. The display further comprises a control circuit configured to use the plurality of electrically-conductive particle control plates to selectively position at least some of the plurality of electrically-conductive particles into an aggregated form to thereby dynamically form a 3-dimensional physical object.
What is shown is a projection device having at least one light source and an array of optical channels. Each channel includes a first refractive optical free-form surface and a second refractive optical free-form surface and projection optics. The first and second refractive optical free-form surfaces are arranged between the light source and the projection optics and cause Köhler illumination of the projection optics by an object light pattern, resulting in the image to be projected on an image surface of the projection optics, wherein images of the array of optical channels superimpose one another.
A portable camera may be activated in response to the activity of a firearm. Furthermore, a communications channel may be established between a firearm telematics sensor and a video camera, optionally by means of intermediary devices. When the telematics sensor detects that its associated firearm has been removed from a holster of the firearm, is in motion, or is being discharged, the telematics sensor may signal the video camera to initiate recording.
A system and method for driving a solid-state image pickup device including a pixel array unit including unit pixels. Each unit pixel includes a photoelectric converter, column signal lines and a number of analog-digital converting units. The unit pixels are selectively controlled in units of rows. Analog signals output from the unit pixels in a row selected by the selective control though the column signal lines are converted to digital signals via the analog-digital converting units. The digital signals are added among a number of unit pixels via the analog-digital converting units. The added digital signals from the analog-digital converting units are read. Each unit pixel in the pixel array unit is selectively controlled in units of arbitrary rows, the analog-distal converting units being operable to performing the converting in a (a) normal-frame-rate mode and a (b) high-frame-rate mode in response to control signals.
The present invention pertains to a pixel for use in a system for determining a distance to an object by range gating, said pixel comprising: a first charge storage well (221) and a second charge storage well (222) for accumulating electrical charges representative of amounts of light impinging on said pixel during respective sets of exposure intervals, wherein said first charge storage well (221) has a charge capacity that is at least 50% greater than a charge capacity of said second charge storage well (222). The invention also pertains to a range gating system comprising such a pixel.
An image conversion device is provided. The device includes a driving environment recognition unit that has a camera acquiring a base image of areas behind and to the side of a subject vehicle and a sensor sensing a driving environment behind and to the side of the subject vehicle. A display unit displays the base image and a navigation unit provides information regarding a location of the subject vehicle. A controller determines whether a blind spot is created in the driving environment based on information acquired from the driving environment recognition unit and the navigation unit, converts the base image into an image including the blind spot to generate the converted image, and operates the display unit to display the converted image.
An electronic device is provided that includes a display, and a first camera module including a first lens and a first lens driving unit. The electronic device also includes a second camera module including a second lens and a second lens driving unit. The electronic device further includes a processor configured to display a first image, which is obtained through the first camera module. The processor is also configured to receive an input associated with switching from the first camera module to the second camera module. Additionally, the processor is configured to move the second lens in a direction that reduces parallax with the first camera module by using the second lens driving unit. The processor is further configured to display a second image, which is obtained through the second camera module in the state in which the second lens is moved.
The present invention discloses a fast scan-type panoramic image synthesis method and device. The device includes: simultaneously acquiring two original images of the same angle of view, wherein one is an exposure-locked image and the other is a non-exposure-locked image; performing HDR processing on the two simultaneously acquired original images by using the exposure-locked image as a reference image to obtain an HDR processed outcome image; performing exposure compensation on the HDR processed outcome image of the current frame based on the temporary panoramic outcome image of the previous frame; and performing image fusion and synthesis according to the temporary panoramic outcome image of the previous frame and the exposure compensated HDR processed outcome image of the current frame to generate a new temporary panoramic outcome image of the current frame. The present invention can effectively restore lost details in areas of over-exposure and under-exposure in the original images, thereby avoiding the issue of detail loss in a panoramic image caused by locked exposure.
A display method and an electronic device are provided. The display method comprises: displaying a source panorama; based on a viewing angle during displaying the source panorama, determining an initial viewing angle of the destination panorama; and in response to switching from the source panorama to the destination panorama, displaying an image of the destination panorama at the initial viewing angle.
Provided are an imaging device, an imaging device main body, and a focusing control method of an imaging device capable of appropriately supporting a photographer at the time of focusing. An image sensor movement driver that moves an image sensor along an optical axis is provided, and a subject is tracked by moving the image sensor within a movable range. A focusing operation detector that detects a focusing operation for the subject and a movable range switch that switches the movable range of the image sensor are provided. In a case where the focusing operation is detected by the focusing operation detector, the movable range switch widens the movable range of the image sensor.
Provided are a distance image acquisition apparatus capable of obtaining a wide-range and high-accuracy distance image, and an application thereof. The distance image acquisition apparatus includes a distance image generation unit (42) that generates a distance image including a plurality of distance values corresponding to a time of flight of light from an light emitting unit (12) to a light-receiving surface of an imaging unit (20) on the basis of an imaging result of the imaging unit (20); a storage unit (22) that stores correction information corresponding to a lens thickness difference between a plurality of main light beam paths from a lens (14) to the light-receiving surface of the imaging unit (20); and a correction unit (44) that corrects the distance values in the distance image on the basis of the correction information.
An optical image capturing module includes a lens assembly and a circuit assembly including a circuit substrate, a sensor holder, and an image sensing component electrically connected to the circuit substrate via signal transmission elements. The lens assembly includes a fixed base disposed on the sensor holder, a movable base, and a lens group. The fixed base made of an opaque material has a focusing hole penetrating through two ends of the fixed base, thereby the fixed base is hollow, and the image sensing component is located in the focusing hole. The movable base is disposed in the focusing hole, and could move relative to the fixed base. The lens group includes at least two lenses having refractive power, and is disposed in a receiving hole of the movable base, thereby light could pass through the lens group and the through hole and project onto the image sensing component.
A small light-emitting device is provided. A light-emitting device which is less likely to produce a shadow is provided. A structure including a switching circuit for supplying a pulsed constant current and a light-emitting panel supplied with the pulsed constant current has been conceived.
An optical image capturing module is provided, including a circuit assembly and a lens assembly. The circuit assembly may include a circuit substrate, a plurality of image sensor elements, a plurality of signal transmission elements, and a multi-lens frame. The image sensor elements may be connected to the circuit substrate. The signal transmission elements may be electrically connected between the circuit substrate and the image sensor elements. The multi-lens frame may be manufactured integrally, be covered on the circuit substrate, and surround the image sensor elements and the signal transmission elements. The lens assembly may include a lens base, an auto-focus lens assembly, and a driving assembly. The lens base may be fixed to a multi-lens frame. The auto-focus lens assembly may have at least two lenses with refractive power.
An image processing apparatus includes an obtaining unit to obtain image data and a dynamic range conversion unit to convert an input luminance signal included in the image data into an output luminance signal for an image printing apparatus by using a conversion parameter. A dynamic range of luminance of the converted image data is narrower than that of the unconverted image data before the dynamic range conversion. When the input luminance signal indicates an input black reference luminance value, the output luminance signal indicates an output black reference luminance value, and, when the input luminance signal indicates a predetermined reference input luminance value, the output luminance signal indicates a reference output luminance value, the reference output luminance value being a value calculated based on the predetermined reference input luminance value and the output black reference luminance value for observing a print product to be printed by the printing apparatus.
A memory control method uses a memory including a plurality of bank groups each having a plurality of banks. The memory control method includes masking write control data and read control data based on an inside-bank group constraint period that is a command to command interval during which a processing is restricted inside an identical bank group and an inter-bank group constraint period that is a command to command interval during which a processing is restricted inside different bank groups, and storing an unmasked command in an arbitration queue. An arbitration raises a priority order of control data requesting a processing on the bank group that has been accessed last among the plurality of bank groups.
[Object] To propose an information processing device, an information processing method, and a program capable of efficiently transmitting captured images between devices connected via a network even when a moving image or a plurality of still images are captured as a series of images.[Solution] The information processing device includes: an acquisition unit configured to acquire a series of images captured by an imaging unit in accordance with a predetermined operation mode on the basis of an instruction from an external device connected via a network; and a transmission control unit configured to transmit a series of thumbnail images corresponding to the series of images to the external device via the network. The transmission control unit transmits at least some of the series of images to the external device via the network in accordance with an instruction from the external device to which the series of thumbnail images has been transmitted.
This application discloses the display of stored information when creating a dialstring for use with mobile smartphones and other computer-enabled telephones. A software app recognizes input from the user (such as the initial digits of a phone number) that identifies the organization to be called, and accesses stored representations of information along with corresponding IVR phone tree information and user display preferences. The app then presents a graphical representation of all or part of the retrieved information on a display using the display preferences. The user can then respond to the graphical representation by providing selective inputs that cause the synthesis all or part of the dialstring needed to navigate the phone tree to the desired destination. Once a dialing option has been synthesized, the user may provide additional input that the system interprets as an instruction to open a phone call and dial the synthesized number.
When a new communication is received at a server, the system can generate machine readable data pertaining to the communication, e.g., a transcript for the communication. Using the transcript, the system can utilize natural language processing techniques to find at least one request in the communication. The system can search summaries of prior communications, and if there is a communication including a similar request, the system can display a record of the prior communication.
A mobile terminal and a method for starting shooting on a mobile terminal, which are used to enable a user of a mobile terminal to capture a view quickly. The mobile terminal includes a camera, a control module, and a button disposed on a housing of a mobile terminal, where the control module is configured to perform detection with respect to the button when the mobile terminal is in standby mode with a lock screen activated, and turn on the camera for shooting when detecting that a pressing operation of a user on the button meets a first preset condition. According to the embodiments of the present disclosure, a user of a mobile terminal can capture a view quickly; therefore, photo shooting experience of the user is improved.
Embodiments of the present disclosure provide a display screen component and an electronic device. The display screen component includes a display screen and an ambient-light sensor. The ambient-light sensor is oriented towards a periphery of the display screen, and is configured to sense an intensity of an ambient light incident on the ambient-light sensor from the periphery of the display screen.
The present disclosure discloses an SCTP-based communications method and system, and an apparatus. The method includes: A network element selector receives an SCTP packet that includes a plurality of SCTP data chunks of a plurality of user terminals. Because each SCTP data chunk carries index information, the network element selector may select a service providing device for each user terminal based on the index information carried in each SCTP data chunk. Therefore, application layer messages of different user terminals in the SCTP may be routed to different servers based on LBI parameters, and corresponding session persistence is implemented in a subsequent interaction process.
An audio system and method for sending sensor data including a first wearable audio device having a speaker, a first communication module arranged to establish a first connection with a first peripheral device and obtain a first data characteristic of the first wearable audio device, and obtain a second data characteristic of a first application running on a first peripheral device, and a sensor arranged to obtain a sensor data. The first wearable audio device or the first peripheral device are arranged to: compare the first data characteristic and the second data characteristic, and send or receive the sensor data obtained from the sensor to the first peripheral device for use with the first application if the first data characteristic and the second data characteristic match.
A communication system includes transmitters and a receiver. The receiver includes a template extractor configured to extract a template consisting of a common portion and a variable portion of transmission data received from the transmitters on the basis of transmitter identification information included in the transmission data and content of the transmission data and a template transmitter configured to transmit the extracted template to the transmitters. The transmitters each include a transmission unit that compresses the transmission data using the template and transmits the compressed transmission data to the receiver.
A computer-implemented method, computer program product, and computing system is provided for managing quality of experience for communication sessions. In an implementation, a method may include determining a participant focus metric for each of a plurality of participants of a communication session. The method may also include identifying one of the plurality of participants of the communication session as having sufficient capacity to support the communication session based upon, at least in part, the participant focus metric for each of the plurality of participants of the communication session. The method may also include selecting the one of the plurality of participants having a sufficient capacity to support the communication session as a selected focus for the communication session. The method may further include adaptively implementing a centralized communication session architecture utilizing the selected focus.
This document describes systems, methods and apparatus for locating an object and/or processed versions of that object in a CDN cache system. When a CDN server needs to send a forward request to an origin server to retrieve an object, the CDN server can append a ‘cache hint’ (sometimes referred to herein as a pointer or as ‘reverse cookie’) to its request. The cache hint preferably includes information that will be stored at the origin server and provided to other CDN servers that subsequently ask for the same object. Preferably the information is a pointer that will enable the object to be located within the CDN and/or enable the location of modified version of the object that have already been created and stored within the CDN.
Technologies for managing replica caching in a distributed storage system include a storage manager device. The storage manager device is configured to receive a data write request to store replicas of data. Additionally, the storage manager device is configured to designate one of the replicas as a primary replica, select a first storage node to store the primary replica of the data in a cache storage and at least a second storage node to store a non-primary replica of the data in a non-cache storage. The storage manager device is further configured to include a hint in a first replication request to the first storage node that the data is to be stored in the cache storage of the first storage node as the primary replica. Further, the storage manager device is configured to transmit replication requests to the respective storage nodes. Other embodiments are described and claimed.
There is a need to acquire more reliable profile information without relying on only the personal subjective judgment on the profile information. Profile information about a dweller is automatically extracted by evaluating and comprehensively determining each of feature amounts concerning the dweller from sensing data acquired from a sensor or a usage log concerning an equipment instrument in a living space based on a criterion for the feature amounts predetermined for a profile item. The reliability of the self-reported profile information is evaluated by comparing and verifying the automatically extracted profile information with the self-reported profile information supplied by the dweller.
An apparatus in one embodiment comprises a host device configured to communicate over a network with a storage system comprising a plurality of storage devices. The host device comprises a set of input-output queues and a multi-path input-output driver configured to select input-output operations from the set of input-output queues for delivery to the storage system over the network. The multi-path input-output driver is further configured to generate a command comprising a cluster identifier of a cluster that includes the first host device and at least a second host device, and to send the command to the storage system over the network. The command is configured for utilization by the storage system to verify that the second host device is part of the same cluster as the first host device. The command may further comprise a group identifier for utilization by the storage system to identify the first host device of the cluster having the cluster identifier.
A cloud migration tool manages and monitors a cloud migration project that migrates data from a legacy environment to a target data center environment. The cloud migration tool includes an analytics engine that applies data regression models to generate a delay risk prediction for activities that are scheduled during the cloud migration project.
Disclosed are various embodiments for a framework for time-associated data stream storage, processing, and replication. A plurality of streams of time-associated data are received from a plurality of sources via a network using an application-layer protocol. Each of the plurality of streams is divided into a plurality of fragments. An acknowledgement is sent to each of the plurality of sources for each of the plurality of fragments via the network using the application-layer protocol. Processing is performed on each of the plurality of fragments for individual ones of the plurality of streams. An action is implemented relative to a respective fragment based at least in part on a result of the processing.
Technologies for streaming device role reversal include a source computing device and a destination computing device coupled via a communication channel. The source computing device and destination computing device are each configured to support role reversal. In other words, the source computing device and the destination computing device are each capable of switching between receiving and transmitting digital media content over the established communication channel. The source computing device is configured to initiate the role reversal, pause transmit functionality of the source computing device, and enable receive functionality of the source computing device. The destination computing device is configured to receive a role reversal indication from the source computing device, locally process the content, transmit a content stream to the source computing device, and display the content stream on an output device of the source computing device. Other embodiments are described and claimed herein.
Simplified and/or user friendly interfaces can be employed to facilitate administration of a routing platform that couples devices of a local area network (LAN) to an external communication network (e.g., the Internet). In one aspect, the routing platform comprises a firewall that can be employed to perform access control and/or an Internet of Things (IoT) hub that can be employed to control operations of IoT devices of the LAN, for example, based on domain information, user-defined tags and peer-defined criteria to make correlations that are leveraged to implement access control policies. A search and command interface is employable to issue textual (e.g., natural language) commands to configure access control policies, tags for devices and/or websites, and/or search for data.
An encrypted link is established with multiple ciphers. During a handshake protocol when establishing a secure session, at least two sets of cipher suites are transmitted to a server by a client. A choice cipher suite for each set of the at least two sets of cipher suites are received by the client from the server. The client selects a first choice cipher suite from among the choice cipher suites received from the server. The client establishes a connection with the server using the first choice cipher suite to encrypt the connection.
A system, method, and computer program product are provided for isolating services of a communication network in response to a distributed denial of service attack. In use, an indication of a detection of a distributed denial of service (DDoS) attack directed at one or more resources of a communication network is received. Additionally, at least one first network service associated with the communication network that is subject to the DDoS attack is identified. Further, the at least one first network service associated with the communication network that is subject to the DDoS attack is isolated.
An operation information specification unit 82, with use of terminal-specific countermeasure information indicating an applicable countermeasure for each terminal against a security risk and definition information defining a correspondence relationship between a type of operation information of the terminal and a countermeasure against the security risk, specifies a type of operation information corresponding to the countermeasure applicable to the terminal. An operation information acquisition unit 83 acquires operation information of the type specified by the operation information specification unit 82, from among operation information of the terminal. A prediction unit 85, based on the operation information acquired by the operation information acquisition unit 83, predicts the number of remaining terminals at a future time, and predicting the number of remaining terminals at the future time in expectation of the number of countermeasure suspension days that is the number of delay days from a scheduled date of countermeasure application in the past to an actual date of countermeasure application in the past.
A method, an electronic device, and a computer readable medium for vulnerability detection are disclosed. The method includes generating a mapped dataset of a portion of an OPC UA server by mapping the portion of the server, wherein the server is compatible with OPC UA machine to machine (M2M) protocol communication including transport encodings and services. The method also includes identifying input test data to test the portion of the server based in part on the mapped dataset set in order to detect errors. The method further includes performing a plurality of targeted attacks by loading the input test data onto the portion of the server. In response to loading the input test data into the server, the method includes monitoring responses of the server to detect an error. Further, in response to detecting the error the method includes generating a report that indicates the detect error.
The present disclosure relates generally to improved systems and methods for ensuring continued network security in a data network. More specifically, present embodiments are directed to detecting and responding to the failure of a security detection module employed for network security in the data network. A detection failure monitoring system may detect that a security detection module has failed by executing a number of test cases simulating conditions that should be flagged by the security detection module. To that end, when the detection failure monitoring system determines that a security detection module did not flag a condition produced by an executed test case, the detection failure monitoring system may implement a response to address the failed security detection module. Accordingly, the systems and techniques provided herein may maintain network security with improved granularity and robustness.
A malware detection system based on stored data that analyzes an electronic message for threats by comparing it to previously received messages in a message archive or to a contacts list. Threat protection rules may be generated dynamically based on the message and contacts history. A message that appears suspicious may be blocked, or the system may insert warnings to the receiver not to provide personal information without verifying the message. Threat checks may look for unknown senders, senders with identities that are similar to but not identical to previous senders or to known contacts, or senders that were added only recently as contacts. Links embedded in messages may be checked by comparing them to links previously received or to domain names of known contacts. The system may flag messages as potential threats if they contradict previous messages, or if they appear unusual compared to the patterns of previous messages.
Embodiments detect unauthorized access to cloud-based resources. One technique analyzes cloud-based events to distinguish potentially malicious velocity incidents from benign velocity incidents. A velocity incident occurs when the same user causes events from two geographically remote locations in a short time. Benign velocity incidents are distinguished from malicious velocity incidents by comparing an event with past events that have the same features. Embodiments probabilistically determine if a velocity incident is malicious or benign based on a weighted multi-feature analysis. For each feature of an event, a probability is calculated based on past events that have the same feature. Then, each feature is associated with a weight based on a relative frequency of past events having that feature. A weighted average of probabilities is calculated, and the resulting probability is compared to a defined threshold to determine if the velocity incident is likely malicious or benign.
Various embodiments enable an application on a first device to log into an online meeting in association with a trusted entity, such as a trusted user. Once trust is established between the trusted entity and the meeting domain, such as an enterprise domain, permissions can be assigned to a meeting device, by virtue of the trust relationship with the trusted entity, to enable the meeting device to join the meeting as a participant, thus allowing the meeting device to bypass an initial join process such as a meeting lobby and the like. By virtue of the assigned permissions, the meeting device may take control of the meeting and control the experience for others in the meeting as a meeting organizer or some other permission-centric role.
The present teaching relates to user authentication based on a visual representation of a location. In one example, a request is received for authenticating a user with respect to a user identity. A location of the user is determined. A candidate visual representation of the location is obtained from the user. One or more visual representations are retrieved from a database. The retrieved one or more visual representations are associated with the user identity in the database. Whether the user is authenticated is determined based on the candidate visual representation and the retrieved one or more visual representations.
Systems and methods are disclosed herein for tracking related and known attributes and/or online activities connected with a digital identity of an entity. In one embodiment, a computing apparatus is configured to associate unique, anonymous alphanumeric identifiers with an entity and to build a unique mapping of entity attributes/activities with associated temporal information to identify suspicious/outlier behaviors so that fraudulent account access or transactions may be prevented.
Aspects of the subject disclosure may include, for example, a process that includes receiving first input defining a relationship between first and second entities, generating a first rule based on the first input, wherein the first rule determines accessibility of a networked service, and associating the first rule with the relationship. The first rule modifies settings of a service management infrastructure to effectuate the first rule in accordance with the relationship, wherein the service management infrastructure provides access to the networked service based on the accessibility. Other embodiments are disclosed.
Embodiments herein relate to a method and an information appliance device having a unique access card for preventing security breach in the information appliance device. A multimedia content server transmits a one-time access key to both the information appliance device and a user of the information appliance device. The user must input the access key to the information appliance device. The information appliance device verifies the access key and provides access to the user for the multimedia services, by activating a periodic activation key upon successful verification of the access key. Therefore, even if unauthorized user tries to skip the access key verification process through modification of access cards used in information appliance device, the unauthorized user cannot access the multimedia service due to lack of the periodic activation key required for activating multimedia service. Hence, security breach such as, cloning or duplication of the access cards will be minimized.
Mechanisms and techniques for customized user validation. A login attempt is received from a remote electronic device with one or more computing devices that provide access to one or more resources. The login attempt is analyzed to determine a profile from a plurality of profiles corresponding to the login attempt. The one or more computing devices support the plurality profiles with each profile having a corresponding flow. The flow corresponding to the profile is performed prior to allowing continuation of the login attempt. The login attempt is continued, via the one or more computing devices, after the flow corresponding to the profile is completed. Access is granted to the one or more resources, via the one or more computing devices, in response to a successful completion of the login attempt.
Some embodiments of proxy-less Secure Sockets Layer (SSL) data inspection have been presented. In one embodiment, a secured connection according to a secured network protocol between a client and a responder is setup via a gateway device, which is coupled between the client and the responder. The gateway device transparently intercepts data transmitted according to the secured network protocol between the client and the responder. Furthermore, the gateway device provides flow-control and retransmission of one or more data packets of the data without self-scheduling the packet retransmissions using timeouts and based on the packet retransmission logic of either the client-side or the responder side of the connection. The gateway device is further operable to perform security screening on the data.
Techniques for providing secured, automatic log-in and authentication of a user to a website via a browser executing at the user's personal electronic device (PED) include generating a token based on an identifier of the PED and a user identifier, and storing the token at the user's PED for use in validating and authenticating the user and device credentials against those stored at back-end system and/or in another memory location at the device. Based on the persisted token (and optionally on a user preference), the user may be automatically logged in as the user navigates across restricted and unrestricted portions of the website, and/or to other websites (e.g., without the user's knowledge). At least these features enable automatic log-in and authentication to be performed on an as-needed basis, and/or on a per-device basis, thereby providing significantly more secure access as compared to known techniques.
Method and apparatus for creating a second unique identifier for a user in a second system based on a first unique identifier for a user in a first system. A first authentication process is initiated based on a first unique identifier associated with the user in the first system. Responsive to the user successfully authenticating during the first authentication process, the second unique identifier for a user in the second system is generated. The second unique identifier is based on user data associated with the first unique identifier in the first system, and the second unique identifier is different from the first unique identifier.
A security controller (SC) restoration method is provided. The method includes: designating, by a master node, a node to which a backup SC belongs, where the master node includes an original DM or a backup DM; sending, by the master node to a first node, a message indicating the backup SC, where the message indicating the backup SC includes an identifier of the node to which the backup SC belongs; in a case in which a node to which an original SC belongs is disconnected, sending, by the master node to the first node, a message for enabling an SC function, for performing authentication, according to the message for enabling an SC function.
A method and system for authenticating a communication device with an application server. The application server includes a gateway registration port, a gateway server port, and an electronic processor. The electronic processor is configured to receive, via the gateway registration port, a registration request, including a unique identifier, from a first device over a first communications network that operates in accordance with a first modality and receive, at the gateway server port, an access request including an identifier from an unknown device over a second communications network that operates in accordance with a second modality. The electronic processor is configured to compare the second identifier with the first identifier to determine if the identifiers match, grant the unknown device access when the identifiers match, and deny the unknown device access when the identifiers do not match.
A technique for authenticating network users is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for authenticating network users. The method may comprise receiving, from a client device, a request for connection to a network. The method may also comprise evaluating a security context associated with the requested connection. The method may further comprise assigning the client device one or more access privileges based at least in part on the evaluation of the security context.
A method for enabling a scalable public-key infrastructure (PKI) comprises invoking a process of receiving a message for a device, identifying an association ID for the device, retrieving encrypted association keys stored on the server for communicating with the device, the encrypted association keys encrypted using a wrapping key stored on a Hardware Security Module (HSM). The method further comprises sending the message and the encrypted association keys to the HSM, unwrapping, by the HSM, the encrypted association keys to create unwrapped association keys, cryptographically processing the message to generate a processed message, deleting the unwrapped association keys, sending the processed message to the device, and invoking, concurrently and by a second application, the process.
Apparatus and methods are disclosed for generating, sending, and receiving messages in a networked environment using autonomous (or semi-autonomous) agents. In one example of the disclosed technology, a method of collecting data from an agent executing on a host computer connected to one or more agent data consumers via a network connection includes collecting host data, the collecting occurring whether or not the agent can currently send data via the network connection. When the agent cannot send data via the network connection, the agent spools at least a portion of the collected host data in a spooler. When the agent can send data via the computer network, the agent sends at least a portion of the spooled host data to at least one of the agent data consumers.
An industrial control system that includes a cloud platform facilitates secure execution of command data for an industrial device in communication with the cloud platform. The system includes an interface component, a validation component and an execution component. The interface component transmits industrial data associated with an industrial device to the cloud platform that analyzes the industrial data. The interface component also receives, from the cloud platform, command data for the industrial device that is generated based on the industrial data. The validation component validates the command data received from the cloud platform based on execution data indicative of a set of conditions for the command data. The validation component also establishes a secure communication link with the industrial device in response to a determination that the command data is approved for execution on the industrial device. The execution component initiates execution of the command data via the industrial device.
A method and system for communicating between a managed device and a device manager is provided by sending the managed device a message over a first communications channel, and then initiating communication between the managed device and the device manager over a second communications channel in response to the message, wherein the first communications channel and the second communications channel are of different types.
A network security device configured to monitor and control incoming and outgoing network traffic allows for concurrently or parallel access to a network session table by multiple session managers in order to increase the network session setup rate within the device. Each of the multiple session managers can gain access to the session table in parallel with each other when the session managers are processing packets associated with different network sessions. Session managers utilize an identifier unique to each network session to be established in the network session table, which is used to determine which session managers can concurrently access the network session table.
An integrated security system is described that integrates broadband and mobile access and control with conventional security systems and premise devices to provide a tri-mode security network (broadband, cellular/GSM, POTS access) that enables users to remotely stay connected to their premises. The integrated security system, while delivering remote premise monitoring and control functionality to conventional monitored premise protection, complements existing premise protection equipment. The integrated security system integrates into the premise network and couples wirelessly with the conventional security panel, enabling broadband access to premise security systems. Automation devices (cameras, lamp modules, thermostats, etc.) can be added, enabling users to remotely see live video and/or pictures and control home devices via their personal web portal or webpage, mobile phone, and/or other remote client device. Users can also receive notifications via email or text message when happenings occur, or do not occur, in their home.
A computer-implemented method for domain analysis comprises: obtaining, by a computing device, a domain; and inputting, by the computing device, the obtained domain to a trained detection model to determine if the obtained domain was generated by one or more domain generation algorithms. The detection model comprises a neural network model, a n-gram-based machine learning model, and an ensemble layer. Inputting the obtained domain to the detection model comprises inputting the obtained domain to each of the neural network model and the n-gram-based machine learning model. The neural network model and the n-gram-based machine learning model both output to the ensemble layer. The ensemble layer outputs a probability that the obtained domain was generated by the domain generation algorithms.
A method, apparatus, system, and computer readable storage medium provide the ability to identify an internet connected household (ICH). An Internet Protocol (IP) address is received at an Internet entity. Determinations are made regarding whether device activity from the IP address does not exceed a defined activity threshold and whether an IP assignment age for the IP address is greater than a defined threshold age. Based on the determinations, the IP address can be identified as belonging to an ICH or not.
In one embodiment, a request to share a message is received from a first user. The request includes a first location, the message, and note-access criteria for sharing the message based on one or more groups of second users. A particular second user is identified having a second location that is within a threshold distance of the first location. Based on the note-access criteria and one or more groups associated with the particular second user, it is determined that the message should be shared with the particular second user, the message is sent to the particular second user, and a location of the first user is determined to be within a predetermined distance from the first location. If the first user is currently within the predetermined distance, a notification is sent to the first user informing the first user that the message was sent to the particular second user.
Systems, methods, and non-transitory computer-readable media can identify a page within a social networking system. Information associated with at least one of the page or a representative of the page can be acquired. A set of calls to action implementable at the page can be identified. The set of calls to action can be ranked based on the information associated with at least one of the page or the representative of the page.
In some examples, a method includes receiving, by a data center infrastructure monitoring system, a registration request that indicates a method of a subscription application programming interface and specifies one or more event subjects of events describing a system operation of a data center; storing, by the data center infrastructure monitoring system to a data-topic map, respective mappings for the one or more event subjects to a topic of a cloud-based publication platform; monitoring, by a data center infrastructure monitoring system, a plurality of physical infrastructure assets that enable system operation within the data center to obtain an event that describes one of the event subjects; and publishing, by the data center infrastructure monitoring system, the event to the topic.
Some embodiments include a device for managing end-to-end connections of a network including a plurality of end-to-end connections with assigned queues including a data flow having data packets to be transmitted collectively comprising: a processor; a state unit to provide a current status of a quality of service parameter of a queue to which a new data flow is to be allocated; a resource allocation unit to allocate the new data flow to the queue based on a threshold for the quality of service parameter for the queue and the current status of the quality of service parameter of the queue; and a routing unit to route the data packets of the new data flow based on the allocation.
Packet processors or other devices with packet processing pipelines may implement pipelined evaluations of algorithmic forwarding route lookups. As network packets are received, a destination address for the network packets may be divided into different possible prefix lengths and corresponding entries in a routing table for the different possible prefix lengths may be determined according to a hash scheme for the routing table. The entry values may be read from the routing table and evaluated at subsequent stages to identify the entry with a longest prefix match with respect to the destination address for the network packet. The routing table may include entries for different types of network packets and may be configured to include virtual routing and forwarding for network packets.
A system for storing data includes a controller, an Ethernet switch and a storage device. The controller is configured to receive data routing instructions, and manage forwarding rules of a switch forwarding table to implement the data routing instructions. The Ethernet switch is configured to receive data, access the switch forwarding table, and route the data to the storage device using the switch forwarding table.
A packet sub-engine coupled to a packet buffer determines which of multiple look up tables (LUTs) is to be searched for a matching entry that matches a received data packet. Each LUT corresponds to a different type of packet handling action and includes multiple entries, each with a match field and a corresponding collection of one or more actions for handling packets that match the match field. The packet sub-engine searches the determined LUT for a matching entry, processes the received data packet according to the action(s) in the matching entry, and determines whether a further LUT is to be searched for a further matching entry. The processed data packet is provided as an output if no further LUT is to be searched, or otherwise the packet sub-engine searches the further LUT and further processes the processed packet according to the action(s) in the further matching entry.
Systems and methods for supporting resource quotas for multicast group creation and membership in a high performance computing environment. In accordance with an embodiment, multicast group membership can present an issue in that inter-subnet partitions can, if left unchecked, runaway with multicast group creation within any given connected subnet. This can starve address map resources at router ports. A quota can be supplied that provides a maximum number of multicast groups any given inter-subnet partition is allowed to create within any given subnet.
In one embodiment, a network device includes an interface to receive packets from sources in a network for forwarding to destinations in the network, the sources and destinations being assigned to groups, each packet including a source and destination identifier, a memory configured to store a source-group mapping table that maps source identifiers to source-groups, a destination-group mapping table that maps destination identifiers to destination-groups, and an intergroup access-control list that maps source-destination-group pairs to forwarding rules, and a single IC chip configured, for each packet, to find a source-group for the source identifier in the source-group mapping table, find a destination-group for the destination identifier in the destination-group mapping table, find a forwarding rule for a source-destination pair including the found source and destination-group in the intergroup access-control list, and forward or drop the packet according to the found forwarding rule.
A method of configuring a forwarding element that includes several message processing stages. The method identifies a first processing stage that starts processing a first header field of a message and a second processing stage that is the last message processing stage that processes the first header field. The method configures a field of a packet header container to store the first header field from the beginning of the first message processing stage. The method identifies a second header field used in a third processing stage after the second processing stage. The method configures a set of circuitries in the data plane to initialize the container field after the end of the second processing stage. The method configures the field of the container to store the second header field of the message after the end of the second processing stage and before the start of the third processing stage.
A wireless communication network serves data content to a wireless user device. An access wireless relay wirelessly receives a user request for the data content from the wireless user device. The access wireless relay wirelessly transfers the data content to the wireless user device when it stores the data content. When the access wireless relay does not store the data content, it transfers content requests having a Time-To-Live (TTL). Serving wireless relays receive the content requests during the TTL. The serving wireless relays transfer the data content to the access wireless relay if they store the data content. The serving wireless relays forward the content requests with the TTL when they do not store the data content. Terminating wireless relays receive the content requests after the TTL. The terminating wireless relays stop forwarding the content requests.
A system includes a query response engine that identifies first and second query responses. The engine stores the first query response in a locked configuration and the second query response in a configuration that enables the stored second query response to be modified. The query engine generates query response data associated with the first query response or the second query response. The system includes a connection assessor that determines a connection variable by assessing a network connection and determines whether a transmission condition is satisfied based on the connection variable. The system includes a query response transmitter that, when it is determined that the transmission condition is satisfied, transmits the query response data from the query response transmitter of the system to another device.
Testing a packet sequence number checker. The packet sequence number checker may check a packet-based data communication between two interconnected devices. An error injector may be provided in-between the interconnected devices such that the data packets may be received from one of the two interconnected devices and may be sent to the other one of the two interconnected devices by the error injector. A received packet is randomly selected from a packet data stream between the two interconnected devices and stored in a buffer. A length of a later received data packet from the same sender of the two interconnected devices is compared with the selected buffered data packet, and the later received data packet is replaced by the selected buffered data packet.
An information processing system stores operation history information of an output apparatus; stores settings of one or more types of reports available to each of customers; displays, on a terminal apparatus that is operated by a customer, one or more types of reports available to the customer on the basis of the stored settings of one or more types of reports available to each of the customers, to receive a selection of a type of a report from the customer from among the displayed one or more types of reports; and generates a report of the type selected by the customer concerning an operation history of an output apparatus that is used by the customer with the use of stored operation history information of the output apparatus, to display the generated report on the terminal apparatus.
Embodiments of the present invention provide a scale-out association method and apparatus, so as to implement a scale-out association operation between VNFs. After initiating a scale-out, a first VNF sends a scale-out notification message to a second VNF that is directly associated with the first VNF. The scale-out notification message of the first VNF carries a scale-out magnitude parameter of the first VNF. The second VNF determines, according to the scale-out magnitude parameter of the first VNF and a service processing capability of the second VNF, whether the second VNF needs to be scaled out. If it is determined the second VNF needs to be scaled out, then the second VNF sends a scale-out request message to a VNFM.
In one embodiment, a method includes monitoring, by a control loop including a processor and a memory, a first environment. The control loop includes one or more predetermined control loop parameters. The method also includes receiving, by the control loop and in response to monitoring the first environment, first data from the first environment and receiving, by the control loop, information from an adaptation control loop. The method also includes determining, by the control loop, to automatically adjust at least one of the one or more predetermined control loop parameters based at least in part on the information received from the adaptation control loop and automatically adjusting, by the control loop, the one or more predetermined control loop parameters. The method further includes determining, by the control loop, to initiate an action based on the first data collected from the first environment and the one or more adjusted control loop parameters.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be an embedded-system device. The embedded-system device receives at least one IPMI message from a client device. The embedded-system device extracts message data from the at least one IPMI message. The embedded-system device determines, from the message data, a function call including at least one operation code and for processing a data collection. The embedded-system device processes the data collection based on the at least one operation code. The disclosure describes a common implementation of data transfer and usage that can serve different clients as well as future features with zero or minimum redesign or redevelopment.
Provided are methods (400) of estimating a time delay and/or a frequency shift of a reference signal. Such methods include receiving (405) a first reference signal that is generated using a first Zadoff-Chu (ZC) sequence, receiving (410) a second reference signal that is generated using a second ZC sequence that is different than the first ZC sequence, and processing (415) the first reference signal and the second reference signal to estimate at least one of the time delay and the frequency shift of the first reference signal and/or the second reference signal.
A method and an apparatus for transmitting broadcast signals thereof are disclosed. The apparatus for transmitting broadcast signals, the apparatus comprises an encoder to encode service data corresponding to each of a plurality of physical paths, a time interleaver to the encoded service data in each physical path by a TI (Time Interleaving) block, wherein at least one virtual FEC block is ahead of FEC blocks in at least one TI block, wherein each TI block includes a variable number of FEC blocks of the encoded service data, wherein a number of the at least one virtual FEC block is defined based on a maximum number of FEC blocks of a TI block, a frame builder to build at least one signal frame including the time interleaved DP data, a modulator to modulate data in the built at least one signal frame by an OFDM (Orthogonal Frequency Division Multiplex) scheme and a transmitter to transmit the broadcast signals having the modulated data.
The present specification presents a configuration technique of a field for control information in a wireless communication system. Specifically, presented is a configuration technique of a signal field including user-specific information in a wireless LAN system. A plurality of MCS techniques are applied to each field of a signal field, according to the present embodiment, and each field can be ordered according to the MCS techniques. The signal field according to the present embodiment can be used for a single user or multiple users, wherein the length of each field can be determined for blind decoding of the single user and the multiple users. The signal field according to the present embodiment can be an SIG-B field according to a wireless LAN standard.
The present invention is directed to communication systems and electrical circuits. According to an embodiment, an input termination circuit includes a first attenuation resistor and a second attenuation resistor. The resistance values of these two resistors are adjusted in opposite directions to maintain a stable output impedance. There are other embodiments as well.
The present disclosure provide a packet processing method, a related apparatus, and an NVO3 network system. A first NVE receives a first packet sent by a first CE, where the first packet includes a MAC address of the first CE and a VLAN ID; the first NVE determines a VNI of the first CE according to an inbound interface of the first packet and the VLAN ID; the first NVE performs NVO3 encapsulation on the first packet to obtain an NVO3 encapsulated first packet, where the NVO3 encapsulated first packet includes the VNI of the first CE, and a source IP address in an NVO3 header of the NVO3 encapsulated first packet is a first shared VTEP IP address shared by the first NVE and a second NVE; and the first NVE forwards the NVO3 encapsulated first packet to a remote NVE.
A switch receives a first packet, where the first packet includes a source media access control MAC address. The switch obtains a first flapping count corresponding to the source MAC address. The switch determines, based on the first flapping count, whether a loop failure occurs in a network in which the switch is located. When the loop failure occurs in the network in which the switch is located, the switch obtains a flapping port set corresponding to the source MAC address. The switch determines a primary port in the plurality of ports, where the primary port is a port that must be suppressed. The switch enables a flooding suppression function on the primary port, where the flooding suppression function is used to suppress forwarding of a received flooding packet by the primary port.
An example method described herein includes obtaining a private identifier for a private radio access network (RAN). The private identifier may be used by a user equipment (UE) to access the private RAN. The method may include deploying network functions to one or more devices of a private network platform. The network functions may be associated with one or more radio access technologies (RATs). The method may include configuring the private network platform to host the network functions to provide a private multi-access edge computing (MEC) environment. The private MEC environment may be configured to host one or more MEC applications. The method may include configuring a communication interface between the private RAN and the private MEC environment to enable the UE to access, via the private RAN, the private MEC environment and performing an action associated with the private MEC environment.
Various examples are directed to systems and methods for communications security. For example, a computing device may generate a connection between the computing device and a client device. A first application executing at the computing device may send a first application session key to the client device via the connection. The first application may perform a cryptographic operation on a first message based at least in part on the first application session key to generate a first cryptographic result and send the first cryptographic result to the client device via the connection. The first application may receive a second cryptographic result from the client device via the connection and determine that the second cryptographic result was obtained with the first application session key.
A method for authenticating a trusted user interface of a first user terminal which incorporates a scan function, comprising the steps a) installing an app that provides the trusted user interface which contains a private and public key pair of a first asymmetric cryptosystem and opening the app on the first user terminal, b) opening a dedicated web page on a second user terminal and inputting a self-chosen certificate of authenticity in an open web session on the web page which likewise contains a private and public key pair of the first cryptosystem, c) generating and displaying a graphic code on a display screen of the second user terminal via the web session of the dedicated web page, d) scanning the graphic code displayed on the second user terminal into the app by means of the first user terminal, e) identifying the web session of the dedicated web page with the app based on the graphic code and logging into same via the first user terminal, f) mutually authenticating and establishing of an encrypted connection between the app and the web page by means of their key pairs, g) transmitting the certificate of authenticity from the web session to the app on the first user terminal, h) sustained displaying of the respective certificate of authenticity on the open trusted user interface on the first user terminal.
Methods of short-distance network electronic authentication are described. In one embodiment, a method includes storing encrypted authentication data for a user and a corresponding encryption key on a mobile device; establishing electronic communication between the mobile device and a computer via a short distance network; detecting a request for user-specific authentication data from a third-party application running on the computer; requesting, via an authentication client on the computer, authentication credentials from an authentication service running on the mobile device; accessing, via the authentication service, in response to the requesting step, the encrypted authentication data and encryption key; decrypting the authentication data using the encryption key via the authentication service; transmitting the decrypted authentication data to the authentication client on the client computer; passing the decrypted authentication data from the authentication client to the third-party application; and authenticating the user in the third-party application.
Aspects of the technology implement a authenticating protocol that enables a Trusted Provider to vouch for a requesting entity when that entity seeks verification from an authenticating entity (FIG. 1). This is done without sharing the requesting entity's confidential or other personal information directly with the authenticating entity (FIG. 1). Instead, the Trusted Provider is able to use specific information about a requesting entity, such as contact information that forms an identity record (404), and generate a hash of the record (408). The hash is sent to an authenticating entity (410), which returns a secure token to the Trusted Provider (508). The secure token and identity record information are used to create a verification URL (414), which is shared with the requesting entity (416). The verification URL, when clicked, links back to the authenticating entity (FIG. 1), which validates the requesting entity (512, 514). This allows for instant identification of the requesting entity without the parties having to perform advanced cryptographic operations (516).
Methods, systems, and techniques for facilitating data transfer between blockchains, Data is sent from a first blockchain to a second blockchain. The data includes lineage verification data that permits the second blockchain to verify a lineage of at least one block of the first blockchain; a proper subset of all non-header data stored using the at least one block; and validity verification data that permits the second blockchain to verify validity of the proper subset of all non-header data sent to the second blockchain from the first blockchain. The proper subset of non-header data may be a slice of state data of an application stored in the first blockchain. The second blockchain verifies the lineage and validity of the data it receives, and creates a new block having non-header data comprising the data it received.
A method of asymmetrical encryption and transferring encrypted data is provided that incorporates the Lucente Stabile Atkins Cryptosystem (“LSA” algorithm). This algorithm uses certain properties of mathematical objects called “groups”. Groups are sets of elements that are equipped with an operator and have the closure, associativity, identity, and invertibility properties. The LSA algorithm uses groups to encrypt and decrypt (secret sharing) any kind of symbolic information between two or more parties.
Techniques are provided for reduction of processing requirements for portions of a received transmission relative to processing requirements for other portions of the same transmission. Different coding schemes may be employed for portions of a data transmission. In some examples, a tail portion of a data transmission may use a coding scheme that had reduced processing requirements relative to other portions of the data transmission. The reduced processing requirements may allow a receiver to generate an acknowledgment of receipt relatively quickly, which may reduce latency for acknowledging receipt of a transmission.
Embodiments of the present disclosure relate to methods and apparatuses for transmitting and receiving reference signals. In transmitting reference signals, reference signals are transmitted using a first group of configuration resources within a first transmission resource group; and the reference signals are transmitted using a second group of configuration resources within a second transmission resource group. The first group of configuration resources are determined based on allocated resource configurations for the reference signals and the second group of configuration resources are a subset of the first group of configuration resources.
The present invention relates to a pilot tone generating method and apparatus of an orthogonal frequency division multiple access system and method, and a channel estimation method and apparatus using the same. The channel estimation apparatus includes a pilot tone extracting unit for extracting a pilot tone, which is inserted within a frame with data tone, masked with an orthogonal code; a pilot tone unmasking unit for unmasking of the pilot tone extracted from the pilot tone extracting unit by using an orthogonal code information; and a channel estimation operating unit for estimating a channel by calculating an average of the pilot tones which is unmasked in the unmasking unit.
The present specification presents a technique for transmitting a PPDU by using a resource unit including carriers of different sizes. For example, a PPDU is transmitted by using five frequency bands, a left guard band, and a right guard band. Null subcarriers can be included in the five frequency bands according to the type of included resource unit. The null subcarriers can be the leftmost side or the rightmost side of each frequency band, and the number of included null subcarriers can be determined according to the size of the carrier included in each resource unit or the type of resource unit. A frequency band including DC carriers can include only one resource unit having a discontinuous carrier, and null subcarriers can be further included around the DC carriers.
A method includes detecting (205), in a first communications apparatus, the number of failed code blocks in a transport block transmitted to the first apparatus from a second apparatus and a corresponding feedback size indicator. The feedback size indicator is received in the first apparatus from the second apparatus e.g. via control channel signalling. Alternatively, the feedback size indicator is received in the transport block. The first apparatus selects the format of a HARQ feedback message to be generated based on the feedback size indicator, and generates the feedback message based on the number of failed code blocks in the transport block. The generated feedback message is of the selected format and indicates the failed code blocks in the transport block. The first apparatus transmits the generated feed back message to the second apparatus.
An iterative receiver receives a signal including useful and interfering signal components, and detects information carried thereon. The receiver includes at least one estimating unit receiving the signal and providing an estimate of each signal component, and at least two decoding and regenerating units, at each iteration, each decoding and regenerating unit decoding a respective one among the estimates and for regenerating the respective decoded estimate into a respective regenerated estimate. At each receiver iteration, the at least one estimating unit provides estimates based on regenerated estimates provided at a previous iteration. The receiver further includes a control unit determines activation or deactivation of each decoding and regenerating unit at each process step of a detection process dedicated to detection of the signal, and determines, for each process step, a respective number of allowed iterations for each decoding and regenerating unit whose activation has been determined for that process step.
An apparatus comprises: a processor configured to: select a first channel from among a plurality of channels in a network, and generate a first message assigning a first grant corresponding to the first channel; a transmitter coupled to the processor and configured to transmit the first message; and a receiver coupled to the processor and configured to receive a second message on the first channel and in response to the first message. A method comprises: selecting a first channel from among a plurality of channels in a network; generating a first message assigning a first grant corresponding to the first channel; transmitting the first message; and receiving a second message on the first channel in response to the first message.
A transmission device includes an interface configured to acquire, from a base band unit having a communication destination that is one of remote radio heads, communication destination information relating to the remote radio head of the communication destination, a receiver configured to receive signals of given wavelength from optical termination devices, and a transmitter configured to transmit a first signal that includes wavelength information indicative of the given wavelength and the communication destination information to optical termination devices, wherein, when the receiver receives, from an optical termination device of the remote radio head of the communication destination from among optical termination devices, a second signal of the given wavelength according to the first signal, the receiver sets, between the receiver and the optical termination device, a relay path that relays communication between the base band unit and the remote radio head of the communication destination.
An measurement apparatus (antenna apparatus) 1 includes: an OTA chamber 50 having an internal space 51 that is not influenced by the surrounding radio wave environment; a reflector 7 that is housed in the internal space 51, radio signals transmitted or received by an antenna 110 of a DUT 100 being reflected through a paraboloid of revolution; a plurality of test antennas 6 that use radio signals in a plurality of measurement target frequency bands for measuring the transmission and reception characteristics of the DUT 100; and automatic antenna arrangement means 60 for sequentially arranging each of the test antennas 6 at a focal position F, which is determined from the paraboloid of revolution, according to the measurement target frequency bands.
Provided is a wireless positioning calibration system, including a plurality of transmission base stations, at least one sniffer base station and a positioning server. The at least one sniffer base station receives a plurality of channel state information (CSI) transmitted by the plurality of transmission base stations. The positioning server receives the plurality of CSI transmitted by the at least one sniffer base station. The positioning server calculates a phase error and an antenna spacing error generated by the at least one sniffer base station by means of the plurality of CSI, and compensates the phase error and the antenna spacing error. A wireless positioning calibration method is also provided.
A device for determining a DC component in a zero-IF radio receiver comprises an input configured to receive a complex baseband signal; and an analyzer configured to analyze the complex baseband signal to determine a DC component in the complex baseband signal by selecting at least three samples of the complex baseband signal and determining the intersection of at least two perpendicular bisectors of at least two straight lines, each straight line running through a different pair of two of said selected samples, said intersection representing the DC component. Further, a corresponding method, a radar device and a radar method are disclosed.
Aspects relate to a photonic processing system, a photonic processor, and a method of performing matrix-vector multiplication. An optical encoder may encode an input vector into a first plurality of optical signals. A photonic processor may receive the first plurality of optical signals; perform a plurality of operations on the first plurality of optical signals, the plurality of operations implementing a matrix multiplication of the input vector by a matrix; and output a second plurality of optical signals representing an output vector. An optical receiver may detect the second plurality of optical signals and output an electrical digital representation of the output vector.
A timing recovery system generates a sampling clock to synchronize sampling of a receiver to a symbol rate of an incoming signal. The input signal is received over an optical communication channel. The receiver generates a timing matrix representing coefficients of a timing tone detected in the input signal. The timing tone representing frequency and phase of a symbol clock of the input signal and has a non-zero timing tone energy. The receiver computes a rotation control signal based on the timing matrix that represents an amount of accumulated phase shift in the input signal relative to the sampling clock. A numerically controlled oscillator is controlled to adjust at least one of the phase and frequency of the sampling clock based on the rotation control signal.
A dual-mode optical transceiver is disclosed. The dual-mode optical transceiver includes a receiver section configured to receive both coherently modulated and intensity modulated optical signals and to be optically switched between a first receiver mode for direct detection and a second receiver mode for coherent detection, and a transmitter section including a nested Mach-Zehnder Modulator or a polarization multiplexed quad Mach-Zehnder Modulator configured to be operated in a first transmission mode to output an intensity modulated optical signal and a second transmission mode to output a coherently modulated optical signal. In some implementations, the dual-mode optical receiver includes an optical switch configured to selectively direct a received optical signal down a direct detection optical circuit or a coherent detection optical circuit based on a control signal applied to the optical switch.
A device includes an optical fiber bundle having at least one optical data fiber and at least three optical tracking fibers, a mirror package configured to direct an incoming optical beam to the optical fiber bundle, at least three detectors, each detector corresponding to one of the at least three optical tracking fibers, the at least three detectors configured to receive portions of the incoming optical beam from the corresponding optical tracking fibers and convert the portions of the incoming beam to electrical tracking signals, and a controller configured to receive the electrical tracking signals from the at least three detectors and generate a feedback control based on the electrical tracking signals to control a position of the mirror package.
Various arrangements are presented for optimizing data transmission between a satellite and a user equipment. A satellite gateway system may receive a message from the user equipment indicative of a current location of the user equipment. Data may be retrieved from the Internet to be transmitted to the user equipment via the satellite. The satellite gateway system may transmit a downlink message to the satellite that comprises the retrieved data and beam steering data. The beam steering data may instruct the satellite to target a downlink spot beam on the current location of the user equipment based on the message received from the user equipment. The retrieved data may be transmitted to the user equipment via the targeted downlink spot beam.
Various embodiments provide for systems, methods, or apparatuses that provide a fronthaul architecture that facilitates high fidelity and low latency communication between a radio processing unit, such as a baseband unit (BBU), which may be located a central office (CO), and a remote transceiver, which may comprise a remote radio head (RRH) or a remote radio unit (RRU), which may be located at remote cell site.
The user equipment transmits a scheduling request by means of a scheduling request channel resource configured in the user equipment for beam recovery when uplink data is generated in the user equipment or when paging data is received therefor from a base station while the user equipment is in a discontinuous reception (DRX) mode. The user equipment receives an uplink grant in response to the scheduling request.
One embodiment of the present disclosure relates to a method for use in a terminal device. The method comprises: obtaining signal quality measurements of plural beams; and selecting at least one serving beam from the plural beams depending upon the obtained signal quality measurements and scheduling constraint information of the plural beams. The embodiments of the present disclosure also relates to relevant radio access node device. When selecting or reselecting a serving beam for a terminal device, the scheduling constrains applied on the beams/links can be taken into consideration, which may allow an mmW network operating the link-specific coordination to control the probability that a terminal device is served by a coordinated beam on constrained radio resources at a lower level as possible.
Disclosed herein is a first portable electronic device facilitating a proximity based interaction with at least one second portable electronic device. The first portable electronic device may include at least one first sensor device configured to generate at least one of a first sensor data, at least one second sensor data, and a third sensor data. Further, the first portable electronic device may include a first transceiver configured for communicating with at least one second transceiver associated with the at least one second portable electronic device. Further, the first portable electronic device may include a first processor communicatively coupled with each of the first transceiver and the at least one first sensor device. Further, the first portable electronic device may include a presentation device configured to present the combined digital asset and a memory device configured for storing the combined digital asset based on the post-tap gesture.
A sensor device includes a first detector circuit, a near field communication (NFC) circuit, and a sensor package. The first detector circuit configured to detect a stimulus using a resistive change polymer type detector, a capacitive shift polymer type detector, a dielectric change polymer type detector, a graphene based sensor, or a metal-oxide (MOX) type detector. The NFC circuit having an NFC powered receiver and an NFC data transceiver. The NFC power receiver configured to receive power from a mobile device using an NFC standard protocol and to provide operating power for the sensor device. The NFC data transceiver configured to transmit data to the mobile device using the NFC standard protocol, the data corresponding to the first stimulus. The sensor package configured to house the first detector circuit and the NFC circuit.
An LED light and communication system includes Visible Light Communication Transceiver Glasses having at least one projector, lens(es), and optical transceiver, the optical transceiver including a light support and a processor. The light support has at least one light emitting diode and at least one photodetector attached. The processor is in communication with the at least one light emitting diode and the at least one photodetector. The processor is capable of illuminating the at least one light emitting diode to create at least one light signal which is not observable to the unaided eyes of an individual. The second light signal includes at least one data packet. The processor may generate a signal for the projector to display information on the lens(es).
A wireless communication apparatus is provided with: a first means for determining a noise generation interval on the basis of a noise measuring result; and a second means for determining the size of a data transmission unit that can be transmitted within the noise generation interval, and constructing said data transmission unit of said size.
A Sigma-Delta analog to digital converter (ADC) is described. The Sigma-Delta ADC includes a series arrangement of a gain tracker, a first discrete-time integrator stage and a quantizer between an ADC input and an ADC output. The Sigma-Delta ADC includes a digital to analog converter (DAC) having a DAC input and a DAC output connected to the gain tracker. The Sigma-Delta analog to digital converter includes a controller having a control input connected to the quantizer output. The controller provides a digital input to the DAC input and provides a gain control signal to the gain tracker.
A multi-stage analog-to-digital converter includes a signal input terminal, a first stage analog-to-digital converter, a digital-to-analog converter; a second stage analog-to-digital converter, and dither circuitry. The first stage analog-to-digital converter includes an input coupled to the signal input terminal. The digital-to-analog converter includes an input coupled to an output of the first stage analog-to-digital converter, and an input coupled to the signal input terminal. The second stage analog-to-digital converter includes a first input coupled to an output of the digital-to-analog converter. The dither circuitry is coupled to a second input of the second stage analog-to-digital converter, and is configured to provide a dither signal to the second stage analog-to-digital converter during selection of fewer than all bits of a digital value of a residue signal received from the digital-to-analog converter.
A switch interface adapter allowing a simple open/close switch to be adapted to a digital and analog diagnostic switch interface includes: at least one coil having a first terminal and a second terminal, wherein the switch is electrically connected to the first terminal or the second terminal, and the at least one coil is activated or deactivated via the switch; a first contact switch comprising a digital line, wherein the at least one coil controls opening and closing of the first contact switch to break and complete the digital line respectively, the digital line is electrically connected to the ECU, and a digital signal is generated from the digital line as a digital input for the ECU; a second contact switch comprising an analog line, wherein the at least one coil controls opening and closing of the second contact switch to break and complete the analog line respectively, the analog line is electrically connected to the ECU, an analog signal is generated from the analog line as an analog input for the ECU, and the digital line comprises a first resistor serially connected to the second contact switch; and a second resistor comprising the analog line, wherein the second resistor is parallel disposed across the first resistor and the second contact switch. The ECU compares the digital input and the analog input to diagnose the switch interface.
An A/D converter includes multiple bin comparators that compare an analog voltage to corresponding bin threshold voltages to provide output signals for providing corresponding comparison results. Some of the comparators includes enable inputs that selectively enable the output signal of the bin comparator to provide the corresponding comparison result based on a corresponding comparison result from at least one other bin comparator. The A/D convertor includes an encoder that utilizes the output signals to provide encoded bit values of the digital output. The A/D converter includes a bin selection circuit that utilizes the output signals to select a voltage level based on the output signals and provides the selected voltage level to a next stage of the A/D convertor. The next stage uses the selected voltage level and the analog voltage to provide at least one lessor bit of the digital output.
An apparatus for determining one or more calibration values of an ADC is configured to receive a first reference signal and a second reference signal and apply to the ADC the following: over a first signal application period, a first ADC input signal including the first reference signal; over a second signal application period, a second ADC input signal having a substantially equal magnitude and an inverse polarity to the first ADC input signal; over a third signal application period, a third ADC input signal including the second reference signal; and over a fourth signal application period, a fourth ADC input signal having a substantially equal magnitude and an inverse polarity to the third ADC input signal. The apparatus is configured to determine the one or more calibration values based, at least in part, on an ADC output signal of the ADC over the four signal application periods.
By changing frequencies of an oscillation signal and an injection signal, a frequency-converted self-injection-locked radar has an oscillation frequency different to a frequency of a transmitted signal from a transceiver antenna element such that the frequency-converted self-injection-locked radar with high sensitivity and penetration or with high sensitivity d low cost is achieved.
In one embodiment, a distributed oscillator computes a first error value based on a first state value for the distributed oscillator and first state values for other distributed oscillators, and computes a second error value based on a second state value for the distributed oscillator and second state values for the other distributed oscillators. The distributed oscillator computes a new first state value for the distributed oscillator based on the first error value, the first state value for the distributed oscillator, and the second state value for the distributed oscillator, and computes a new second state value for the distributed oscillator based on the second error value, the first state value for the distributed oscillator, and the second state value for the distributed oscillator. The distributed oscillator transmits the new first state value and the new second state value to the other distributed oscillators.
The present invention discloses a processor comprising three-dimensional memory (3D-M) array (3D-processor). Instead of logic-based computation (LBC), the 3D-processor uses memory-based computation (MBC). It comprises an array of computing elements, with each computing element comprising an arithmetic logic circuit (ALC) and a 3D-M-based look-up table (3DM-LUT). The ALC performs arithmetic operations on the LUT data, while the 3DM-LUT is stored in at least one 3D-M array.
A switch having a drain, a source, and a control. The switch comprising a depletion-mode transistor including a first, a second, and a control terminal and an enhancement-mode transistor including a first, a second, and a control terminal. The first terminal of the depletion-mode transistor is the drain of the switch and the control of the depletion-mode transistor is coupled to the source of the switch. The control of the enhancement-mode transistor is coupled to the control of the switch, the second terminal of the enhancement-mode transistor is the source of the switch. The switch comprises a clamp circuit to clamp a voltage of the first terminal of the enhancement-mode transistor to a threshold, the clamp circuit comprises a resistor and a pn-junction device coupled between the first and second terminals of the enhancement-mode transistor and between the second terminal and the control of the depletion-mode transistor.
A semiconductor integrated circuit includes: a power supply terminal that receives a power supply voltage; an external terminal; an output PMOS transistor connected between the power supply terminal and the external terminal; an auxiliary PMOS transistor connected between a gate of the output PMOS transistor and the external terminal; and a bias voltage generating circuit connected to a gate of the auxiliary PMOS transistor. The bias voltage generating circuit supplies a voltage lower than the power supply voltage to the gate of the auxiliary PMOS transistor, if it is necessary to maintain an OFF state of the output PMOS transistor by supplying an external voltage received at the external terminal to the gate of the output PMOS transistor.
A gate drive circuit includes a signal generation unit configured to generate a first gate drive signal, a signal isolation unit configured to produce, at an output side thereof in response to the first gate drive signal, a second gate drive signal electrically isolated from the signal generation unit, an output stage device configured to receive the second gate drive signal at an input side thereof and to produce a third gate drive signal at an output side thereof in response to the second gate drive signal, a first path connecting the output side of the signal isolation unit and the input side of the output stage device; and a second path connecting the output side of the signal isolation unit and the output side of the output stage device.
Methods, apparatus, systems and articles of manufacture are disclosed to transmit signals in isolated gate drivers. An example apparatus includes a first encoder including: an edge detector coupled to a first sensor; a first clock counter coupled to the edge detector; a first signal selector coupled to the first clock counter; and a first multiplexer coupled to a signal generator, the first clock counter, and the first signal selector; and a second encoder including: a level detector coupled to a second sensor; a second clock counter coupled to the level detector; a second signal selector coupled to the level detector and the second clock counter; and a second multiplexer coupled to the first multiplexer, a reference voltage, the second signal selector, and a modulator.
A system includes a trickle charge control circuit coupled to a charge pump and a motor driver circuit. The trickle charge control circuit is configured to sense a voltage at a bootstrap capacitor voltage node (VBST) of the motor driver circuit; as a result of the voltage at VBST being greater than a voltage at an input voltage node (VIN), couple a charge pump voltage node (VCP) to VBST of the motor driver circuit, where a voltage at VCP is greater than the voltage at VIN; and as a result of the voltage at VBST being less than the voltage at VIN, decouple VCP from the charge pump from VBST of the motor driver circuit.
a radio frequency (RF) switching circuit, including: a conducting module, configured to conduct an RF signal; a gate control voltage generating module, configured to provide a gate control voltage for the conducting module to control the conducting module operating at ON-state or OFF-state; wherein the gate control voltage generating module further includes: a first resistance adaptive module, providing a first impedance in a first state for a series branch where the conducting module and the gate control voltage generation module locate, and a second impedance in a second state for the series branch where the conducting module and the gate control voltage generation module locate, wherein the first impedance is greater than the second impedance. FOM is improved comprehensively, and Ron, Coff, and a power breakdown performance are optimized, which further improves circuit performance and reduces cost.
Aspects of the disclosure provide for a circuit. In some examples, the circuit includes a first inverter coupled between first and second nodes, a second inverter coupled between third and fourth nodes, and a first logic circuit having a first input coupled to the second node, a second input coupled to the fourth node, and an output, a first positive feedback circuit coupled between the first and third nodes and having a control input. The first positive feedback circuit comprises a first switch coupled between the first and fifth nodes and having a control input, a second switch coupled between the third and sixth nodes and having a control input, a third inverter having an input coupled to the sixth node and an output coupled to the fifth node, and a fourth inverter having an input coupled to the fifth node and an output coupled to the sixth node.
Disclosed is a measuring circuit for quantizing variations in the operating speed of a target circuit. The measuring circuit includes: a signal generator configured to generate a predetermined signal; an adjustable delay circuit configured to generate a first and second delay signals according to the predetermined signal respectively; a signal detector configured to detect the first and second delay signals respectively and thereby generate a first and second detection results respectively; and a calibrating circuit configured to enable a first and second numbers of delay units of the adjustable delay circuit according to the first and second detection results respectively so as to make each of the delays respectively caused by the first and second numbers of delay units be less than a delay threshold, in which the first and second numbers relate to the operating speed of the target circuit operating in the first and second conditions respectively.
A latch circuit including: a first inverter having a first pull-up transistor connected between a first power supply node and a first output node, and a first pull-down transistor connected between a second power supply node and the first output node; a second inverter having a second pull-up transistor connected between the first power supply node and a second output node, and a second pull-down transistor connected between the second power supply node and the second output node; a first current control transistor connected between the first pull-up transistor and the first output node; a second current control transistor connected between the second pull-up transistor and the second output node; a third current control transistor connected between the first pull-down transistor and the first output node; and a fourth current control transistor connected between the second pull-down transistor and the second output node.
A temperature compensated current controlled oscillator (CCO) including a first current generator configured to produce a proportional to absolute temperature (PTAT) current based upon a trim signal, a second current generator configured to produce a complementary to absolute temperature (CTAT) current based upon a temperature measurement, and a ring oscillator configured to receive the PTAT current and the CTAT current and to produce a frequency signal based upon the PTAT current and the CTAT current.
Methods and devices are described for reducing the audible effect of pre-responses in an audio signal. The pre-responses are effectively delayed by employing a digital non-minimum-phase filter, which includes a zero lying outside the unit circle in its z-transform response. This zero is not paired with another zero at a reciprocal position inside the unit circle, as this would linearise the phase modification. The filtering can introduce a greater group delay at the pre-response frequency than at a low frequency, such as 500 Hz or even 0 Hz. The technique can be used to reduce pre-responses in an existing audio signal and also to pre-empt pre-responses that would be introduced to the audio signal by subsequent processing.
A delay line includes one or more phase-shifting cells, where each phase-shifting cell includes a high-pass filter circuit that may be selectively coupled to or decoupled from a transmission line. The filter circuit is couplable in parallel with the transmission line and shifts a signal conveyed through the transmission line by a predetermined phase angle. The high-pass filter circuit includes one or more capacitors and one or more reactance elements (e.g., inductors). The selective coupling may be achieved using multi-gate transistors.
A first transistor (2a), a second transistor (2b), a third transistor (2c) and a fourth transistor (2d) are provided. A first transistor (2a) amplifies a first I signal VIP inputted from a first input terminal (1a). A second transistor (2b) amplifies a first Q signal VQP inputted from a second input terminal (1b). A third transistor (2c) amplifies a second I signal VIN when the second I signal VIN is inputted from a third input terminal (1c), the second I signal VIN forming a differential signal with the first I signal VIP. A fourth transistor (2d) amplifies a second Q signal VQN when the second Q signal VQN is inputted from a fourth input terminal (1d), the second Q signal VQN forming a differential signal with the first Q signal VQP.
An acoustic wave resonator includes: a piezoelectric substrate; and an IDT that is located on the piezoelectric substrate and includes comb-shaped electrodes facing each other, each of the comb-shaped electrodes having grating electrode and a bus bar connected to the grating electrodes, a duty ratio of grating electrodes of the comb-shaped electrodes in a center region of an overlap region differing from a duty ratio of grating electrodes of the comb-shaped electrodes in an edge region of the overlap region in an arrangement direction of the grating electrodes, the grating electrodes of each of the comb-shaped electrodes overlapping with the grating electrodes of the other in the overlap region, a grating electrode of a first one of the comb-shaped electrodes in the center region having a different width from a grating electrode of a second one of the comb-shaped electrodes in the center region.
An amplifier module that implements two or more amplifying units connected in series is disclosed. The amplifier module includes a package, input and output terminals, two or more amplifying units including the first unit and the final unit, an output bias terminal for supplying an output bias to one of amplifying units except for the final unit, and an input bias terminal for supplying an input bias to another one of the amplifying units except for the first unit. A feature of the amplifier module is that the output bias terminal and the input bias terminal are disposed in axial symmetry with respect to a reference axis connecting the input terminal with the output terminal in one side of the package.
An amplifier with switchable and tunable harmonic terminations and a variable impedance matching network is presented. The amplifier can adapt to different modes and different frequency bands of operation by appropriate switching and/or tuning of the harmonic terminations and/or the variable impedance matching network.
A dual-mode signal amplifying circuit includes: a first and a second input terminals for receiving differential input signals; two output terminals for providing differential output signals; a first through a third current sources; a first switch positioned between the first current source and a first node, and controlled by the first input terminal; a second switch positioned between the first current source and a second node, and controlled by the second input terminal; a third switch positioned between the first node and a fixed-voltage terminal, and controlled by a third node; a fourth switch positioned between the second node and a fixed-voltage terminal, and controlled by the third node; a fifth switch positioned between the second current source and a fixed-voltage terminal, and controlled by the first node; and a sixth switch positioned between the third current source and a fixed-voltage terminal, and controlled by the second node.
Embodiments can provide individualized controlling of noise injection during startup of a crystal oscillator. In some embodiments, a simple learning block can be placed in parallel to a crystal oscillator circuit to control noise injection during the startup of the crystal oscillator. The learning block can be configured to control the noise injection during the startup of the crystal oscillator by determining whether the crystal oscillator has been stabilized. In some implementations, an adjustment block may be employed to adjust the count determined by the learning block based on one or more characteristics of the crystal oscillator during a startup of the crystal oscillator. In some embodiments, a simple block that creates a negative capacitance can be configured in parallel to the crystal oscillator.
The Totem Pole Solar Capture Housing is an improved design for a photo voltaic module enclosure. It is cylindrical in shape to capture the maximum amount of solar radiation on the housing's surface transferred to the module for conversion to electricity, and eliminates positional orientation. The cylindrical glass outer shell exposes one half of its circumference to solar radiation on contact. Used singly or in multiples interconnected together, one atop the other and erected vertically on a foot print. The inner photo voltaic module support core diameter and height can be sized to fit modules of different electrical outputs. The hollow center of the support core acts as the wiring channel to the base. Assembly couplings form the top and bottom of the enclosure and are critical in joining multiple enclosures into one vertical electrical output-enhanced assembly.
The method for controlling a rotating electric machine according to the invention comprises a step of controlling the phase currents of the machine by means of a full-wave control (C). According to the invention, the full-wave control (C) is generated via a pulse width modulated signal of which the signal frequency is greater than an electric frequency of the machine. According to another feature, ascending or descending fronts (24, 25) of the pulse width modulated signal are synchronised with first and second crossings of first and second angular switching thresholds (S1, S2) by an electric position (θ) of the machine and a duty ratio (α) of the pulse width modulated signal is periodically refreshed to the signal frequency.
Operating an asynchronous machine includes: closed loop control of a first and a second three-phase winding by a first and a second closed loop control method, respectively. The second closed loop control method supplies a voltage vector to a second inverter device, and changes from the first closed loop control method to a first open loop control method. The first open loop control method includes supplying a first reference current vector to a first filter device, supplying a filtered first reference current vector to a calculation device for calculating an electrical angle, supplying the electrical angle to a first transformation device for transforming a first open loop control deviation vector, transforming a first open loop control deviation vector into a third voltage vector, and supplying the third voltage vector to the first inverter device for the operation of the first three-phase winding.
A portable power generation system includes a power generation unit and a monitoring unit. The power generation unit is detachable from the wheeled occupant apparatus and includes a pivoting arm, a rotating gear, and a control unit. The rotating gear is in communication with the wheeled occupant apparatus and is configured to rotate upon movement of the wheeled occupant apparatus, such that rotation of the rotating gear induces an electrical power generation effect. The control unit is in communication with the rotating gear through the pivoting arm and regulates the storage and transmission of electrical power. The monitoring unit is in electrical communication with the power generation unit and dispenses electrical power and provides user data to a user.
A brake control system includes: a plurality of motors each provided with a brake device and a position detecting section; and a brake control device that controls a plurality of the brake devices using one brake-oriented power source. The position detecting section includes a position detecting circuit section and a communication circuit section. The brake device includes: a current detecting section that detects a brake current flowing through a brake coil of an electromagnetic brake; and an insulating circuit section that electrically insulates the current detecting section and the communication circuit section. The communication circuit section transmits to the brake control device the brake current acquired via the insulating circuit section. The brake control device includes a fault specifying section that specifies the faulty brake device based on a plurality of detection signals detected by a plurality of the current detecting sections.
A motor includes a pressing member pressing a vibrator onto a contacting member, first and second holding members respectively holding the vibrator and a transmission member, which transmits pressing force by the pressing member to the vibrator, and a coupling member coupling the first and second holding members. The vibrator and the contacting member move by vibrations occurring in the vibrator. The coupling member includes a rolling member moving the first and second holding members in a pressing direction of the pressing member, and an urging member, which is held by the second holding member, urging the first and second holding members in parallel with a moving direction of the vibrator and the contacting member. The rolling member is sandwiched between the first and second holding members, and abuts against the first holding member on a center side of the vibrator in the moving direction.
In one embodiment, an apparatus includes a first stage comprising a first active switch, a first resonant inductor, and a resonant capacitor and a second stage comprising a second active switch, a second resonant inductor, and a filter capacitor. The first and second stages form a non-isolated multi-resonant converter for converting a DC input voltage to a DC output voltage.
Disclosed examples include inverting buck-boost DC-DC converter circuits with a switching circuit to alternate between first and second buck mode phases for buck operation in a first mode, including connecting an inductor and a capacitor in series between an input node and a reference node to charge the inductor and the capacitor in the first buck mode phase, and connecting the inductor and the capacitor in parallel between an output node and the reference node to discharge the inductor and the capacitor to the output node. For boost operation in a second mode, the switching circuit alternates between connecting the inductor and the capacitor in series between the input node and the reference node to discharge the inductor and charge the capacitor in a first boost mode phase, and connecting the inductor between the input node and the reference node to charge the inductor and connecting the capacitor between the first output node and the reference node to discharge the capacitor to deliver power to the output node in a second boost mode phase.
The present invention relates to a method for reducing common mode current in power electronic equipment comprising two or more active front end (AFE) components (1) coupled in parallel between an AC supply grid (2) and a DC-link (3). A duty cycle of pulse width modulation (PWM) for the AFE components (1) is determined, and an error signal is derived based on the determined duty cycle of PWM and on a common mode current of the AFE components (1). A correction voltage is derived, based on the error signal, and a DC voltage control signal is derived based on the derived correction voltage and a measured DC voltage of the DC-link (3) and/or a DC voltage reference. The power electronic equipment is controlled in accordance with the derived DC voltage control signal. The present invention also relates to a method for starting active front end (AFE) components (1) of power electronic equipment comprising two or more AFE components (1) coupled in parallel between an AC supply grid (2) and a DC-link (3).
During a first mode of operation, a zero current detect (ZCD) signal is asserted in response to detecting a zero current condition at a switch node of a power converter. The power converter enters a light load mode of operation when the ZCD signal is asserted between a beginning point and a trigger point of a period of a PWM signal. A compensator voltage is generated based on a feedback voltage indicative of an output voltage. The compensator voltage is compared to a threshold voltage that represents a limit for the compensator voltage during the light load mode of operation determined over a range of the output voltage. The power converter exits the light load mode back to the first mode of operation in response to the compensator voltage being beyond the threshold voltage.
A voice coil motor includes a base, a housing, a lower-resilient member, a lens frame, a coil, a magnet, an upper-resilient member, an upper cover plate, and a pin arranged on the base. The lower-resilient member, the lens frame, the coil, the magnet, the upper-resilient member, and the upper cover plate are arranged in sequence between the base and the housing. The lens frame and the coil are integrally formed. The coil surrounds an outer surface of the lens frame.
Aspects of the invention provide methods and systems for moving moveable stages relative to a stator. A stator is operationally divided into multiple stator tiles. The movement of the one or more moveable stages is controlled by a plurality of controllers (each assigned particular control responsibilities). A controller is provided for each stator sector, where each stator sector comprises a group of one or more stator tiles. Controllers from neighboring sectors share various information to facilitate controllable movement of one or more moveable stages relative to the stator.
A linear vibration motor comprises: a motor housing, a stator, a vibrator, and at least two sets of elastic support assemblies for suspending the vibrator in the motor housing and for supporting the vibrator and providing an elastic restoring force. The elastic support assemblies are located between the inner wall of the motor housing and the vibrator, each set of the elastic support assemblies comprising at least two elastic supports. The elastic support comprises a first connection point fixedly connected to the vibrator and a second connection point fixedly connected to the inner wall of the motor housing. The second connection point is coupled to a side wall of the motor housing parallel to the vibration direction of the vibrator. The first connection point and the second connection point of the elastic support are located at the same side of the central axis of the vibrator parallel to the vibration direction of the transducer. The structure of the linear vibration motor is simplified, the vibration support assemblies have better vibration effect, and give the user a good experience.
An insulating resin coating method for coating with an insulating resin a weld of a stator having a plurality of the welds formed by welding ends of coil wires together, the method including the steps of: sandwiching and covering the weld of the coil wires by a pair of resin-molding molds; and injecting the resin into the resin-molding molds by a resin injector.
In an electronic control unit, a current circuit part is provided on a substrate and includes a switching element. During the control of a control target, a current having a relatively large value of a predetermined value or more flows in the current circuit part. A control circuit part is provided on the substrate and includes a control part that controls actuation of the switching element on the basis of a control signal to control the control target. A current input part is provided on the substrate so as to be located opposite to the control circuit with respect to the current circuit portion. To the current input portion, the current to be supplied to the control target via the current circuit portion is input.
A motor for a driving device includes: a rotor rotatable around a central axis, a stator facing the rotor, a busbar electrically connected to the stator, a busbar support to hold the busbar, a terminal bar including a first end electrically connected to the busbar, the terminal bar including a connection terminal at a second end and that is to be electrically connected to the driving device, and a seal to be attached to the driving device and located between the busbar and the connection terminal. The seal portion includes a through-hole into which the terminal bar is press-fitted.
An electric machine comprises a frame, a cooling fan disposed in a fan housing and an integrated airflow inducer in a shape of a partial cone. The partial cone defines a skirt disposed as a differential sized ring with a larger entrance and a smaller exit around the frame of the electric machine at a boundary between the frame and the fan housing including a rotating fan to cool the electric machine. The integrated airflow inducer includes an inducer inlet and an inducer outlet. The integrated airflow inducer is configured to increase an airflow across the frame of the electric machine as the rotating fan develops a higher pressure at the inducer outlet than the inducer inlet of the integrated airflow inducer so that the integrated airflow inducer takes advantage of the high pressure to draw in air from a low pressure at the inducer inlet so that the electric machine operates at a lower temperature than without the integrated airflow inducer.
A consequent-pole-type rotor including a rotor core and a permanent magnet 1 disposed inside the rotor core, includes a first rotor core having a first region into which the permanent magnet is inserted and a second rotor core that has a second region communicating with the first region and is stacked on the first rotor core, wherein a second width is larger than a first width, where the first width is a width of the first region in a radial direction of the rotor core and the second width is a width of the second region in the radial direction of the rotor core.
In a wireless charging system, a power-transmitting node (TX) has a transmitter for transmitting power wirelessly to a power-receiving node (RX), and a signal receiver for receiving signals from the RX. During a power-transfer session, the TX accumulates data corresponding to its transmitted power level, detects an end of a received power (RP) packet from the RX, and then identifies a subset of the accumulated data. The TX calculates its transmitted power level using the subset of the accumulated data. The TX extracts a received power level of the RX from the received RP packet and compares its calculated transmitted power level with the RX's received power level to determine a presence of a foreign object. Accuracy of FO detection when packets from the RX are not properly received by the TX is improved.
According to an embodiment of the present invention, a system comprises a removable interface module and wireless dock for an automated external defibrillator. The removable interface module includes a first processor, a first memory and first low-power radio transceiver communicatively coupled with the first processor and configured to receive status information from the automated external defibrillator. The removable interface module further includes a wireless power receiver and a rechargeable energy storage device electrically coupled with the wireless power receiver and configured to receive power wirelessly for the removable interface module. The wireless dock includes a second processor, a second memory and second low-power radio transceiver communicatively coupled with the second processor and configured to receive the status information from the removable interface module when the automated external defibrillator is powered off and transmit the status information through a networking interface. The wireless dock further comprises a wireless power transmitter.
The present invention is directed to an electrical wiring assembly that includes a plurality of line terminals configured to be coupled to a source of AC power. A circuit assembly is coupled to the plurality of line terminals. The circuit assembly includes a control circuit coupled to at least one electro-magnetic coil, the control circuit being configured to provide an electrical drive signal to the at least one electro-magnetic coil in accordance with a predetermined wireless charging regimen. The at least one electro-magnetic coil is configured to propagate a magnetic field in accordance with the electrical drive signal. A wall plate assembly is configured to accommodate the circuit assembly therewithin, the wall plate assembly including a charging interface region configured to accommodate a portable electronic device. The charging interface region is configured to position the at least one electro-magnetic coil proximate the portable electronic device so that the portable electronic device is disposed within the propagated magnetic field in accordance with the predetermined wireless charging regimen.
According to one embodiment, an electronic device includes a power delivery controller and an embedded controller. The power delivery controller supplies a first signal to the embedded controller when reception of a power from an external device is started, and supplies a second signal to the embedded controller when a first value of the power from the external device is changed. The embedded controller acquires first data from the power delivery controller when the first signal is supplied in an activation time, acquires a second value of the power to be received from the external device from a power circuit, and acquires second data from the power delivery controller when the first value indicated by the first data is different from the second value.
An electrical power system includes a system-level controller and a plurality of clusters of subsystems defining a stator power path and a converter power path for providing power to the power grid. The converter power path includes a partial power transformer. The system further includes a cluster transformer connecting each cluster to the power grid and a plurality of cluster-level controllers communicatively coupled with the system-level controller. Each of the clusters is communicatively coupled with one of the cluster-level controllers. Thus, the system-level controller regulates system-level active and/or reactive power based on required active or reactive power for the system, respectively, and compares the system-level active or reactive power with preferred values thereof. Further, the system-level controller receives feedback signal(s) from the cluster-level controllers, generates cluster-level power command(s) based on the comparison and the feedback signal(s), and sends the cluster-level power commands to the cluster-level controllers.
A reverse current protection circuit for a switch circuit includes a reverse current control circuit and an enable/disable circuit coupled to the reverse current control circuit. The reverse current control circuit is coupled to an input terminal and an output terminal of the switch circuit, and disconnects the output terminal of the switch circuit from the input terminal of the switch circuit when an output voltage of the switch circuit is higher than a first predetermined voltage. The enable/disable circuit disables the reverse current control circuit for a first predetermined time period when the output voltage of the switch circuit becomes lower than the first predetermined voltage after being higher than the first predetermined voltage, and enables the reverse current control circuit after the first predetermined time period.
A vehicle includes an Alternating Current (AC) source, a receptacle, and a switch. The AC source has a line and neutral potential. The receptacle is carried by a body of the vehicle and includes line, neutral, and ground conductors, and a ground fault interrupter (GFI) circuit. The switch is coupled between the AC source and the GFI circuit configured to selectively short the neutral and ground conductors.
A portable lightning protection system including a multi-section conductive mast assembly including at least a base mast section and a top mast section; an air terminal attachable to the top mast section; and a base assembly attachable to the base mast section via a hinge assembly, wherein the hinge assembly may be configured to allow the base mast section to hinge relative to the base assembly. A catenary lightning protection system including at least two lightning protection systems, each lightning protection system may include a multi-section conductive mast assembly including at least a base mast section and a top mast section; an air terminal attachable to the top mast section; a base assembly attachable to the base mast section; and may further include a catenary wire connected between the at least two lightning protection systems.
A cable stripping tool is provided for making a circumferential or ring cut and a spiral cut in the jacket of a cable. A cutting blade of the tool includes first and second blade portions which are integrally formed with each other and are angled relative to each other. In use, after the cutting blade penetrates the jacket, the tool is rotated in a first direction and the first blade portion cuts the jacket to form a ring cut. The tool is then rotated in a second, opposite direction and the second blade portion cuts the jacket to form a spiral cut. Thereafter, the tool is rotated in the first direction and the first blade portion cuts the jacket to form a ring cut. The cuttings by the blade portions are done without disengaging the cutting blade from the cable.
An aggregation roller for extending a conductor over a span for electrical distribution. The aggregation roller is useful providing safety for linemen, adaptability to new technologies for conductors, low friction to easily pull the conductors and durability. The aggregation roller is useful in reducing the chances of electrocution of the lineman when the aggregation roller is near energized conductors. Further, the aggregation roller replaces multiple rollers as is used today.
An electrically-operated semiconductor laser device and method for forming the laser device are provided. The laser device includes a fin structure to which a waveguide is optically coupled. The waveguide is optically coupled to passive waveguides at either end thereof. The fin structure includes an array of fin elements, each fin element comprising Group III-V materials.
Embodiments of the present application provide an optical signal generation device. The device includes a laser, a first modulator, a second modulator, a first adjustment module, and a beam combiner. The laser is configured to: output a first optical signal to the first modulator, and output a second optical signal to the second modulator. The two modulators are separately configured to: receive an optical signal and a loaded electrical modulation signal, and modulate the optical signal based on the electrical modulation signal, to obtain a first modulated optical signal and a second modulated optical signal. The first adjustment module is further configured to adjust a phase of the modulated optical signal or an optical path to the beam combiner. The beam combiner is configured to: combine the first modulated optical signal obtained after the adjustment and the second modulated optical signal, and output a combined signal.
This disclosure provides planar waveguides with enhanced support and/or cooling. One or more endcaps could be disposed between coating/cladding layers at one or more ends of a core region, where the core region is doped with at least one active ion species and each endcap is not doped with any active ion species that creates substantial absorption at pump and signal wavelengths. A core region could include at least one crystal or crystalline material, and at least one cladding layer could include at least one glass. Different types of coolers could be disposed on or adjacent to different coating/cladding layers. Side claddings could be disposed on opposite sides of a planar waveguide, where the opposite sides represent longer sides of the waveguide. Endcaps and one or more coolers could be sealed to a housing, and coolant can flow through a substantially linear passageway along a length of the waveguide. One side of a planar waveguide could be uncooled.
An orthogonal female connector includes a plurality of terminal components, a main body, and a shell; the terminal components inserted in the main body and including a 40-pin, a 15-pin, a 7-pin, and a 6-pin terminal members; the terminal components having a board end and a plug end; the board end formed on a lower portion of the terminal component and combined on a printed circuit board; the plug end formed on an anterior portion of the terminal component and connected with a solid state disk interface; an angle included by pins of the board end and the plug end being 90 degrees; such that the 40-pin, 15-pin, 7-pin, and 6-pin terminal members are applied to be connected with a PSAS male connector; and the 15-pin and 7-pin terminal members are corporately applied to be connected with a SAS male connector, simplifying the structure and lowering cost.
Following the cylindrical bend processing of the shape crimping portion corresponding part corresponding to the crimping section in the sheet-shaped terminal base material, the high bending-rate processing process of bend processing at a bending rate higher than a bending rate for plastically deforming at least a part of a deformation portion to be plastically deformed in a predetermined bend processing shape in the crimping portion corresponding part, and the shaping process of shaping the crimping portion corresponding part into the cylindrical crimping section are performed in this order.
There is provided an antenna arrangement for a radio transceiver device. The antenna arrangement comprises at least two antenna arrays, wherein at least one of the at least two antenna arrays has antenna elements of two polarizations. The antenna elements of one polarization at each of the at least two antenna arrays define a respective set of antenna elements. The antenna arrangement comprises at least two baseband chains. The antenna arrangement comprises a switching network configured to selectively operatively connect each of the at least two baseband chains with its own set of antenna elements such that no two baseband chains are operatively connected to one and the same set of antenna elements. Each of the at least one antenna array that has antenna elements of two polarizations is operatively connected to the switching network via a respective hybrid connector configured to provide a signal from one of the baseband chains to antenna elements of both polarizations.
A router includes a housing, a printed circuit board disposed within the housing, a cellular module disposed within the housing and electrically connected to the printed circuit board, the cellular module being configured to enable connection to a mobile broadband network, at least one antenna terminal formed in the housing for connecting an external antenna to the cellular module, and a switch associated with the at least one antenna terminal, the switch being configured to automatically switch from an internal antenna of the router to the external antenna when the external antenna is connected to the router via the at least one antenna terminal.
An apparatus comprises a radio frequency (RF) antenna circuit; an antenna aperture tuning circuit; an antenna impedance measurement circuit; and a processor circuit electrically coupled to the tunable antenna aperture circuit and the impedance measurement circuit. The processor circuit is configured to: set the antenna aperture tuning circuit to an antenna aperture tuning state according to one or more parameters of an RF communication network; initiate an antenna impedance measurement; and change the antenna aperture tuning state to an antenna aperture tuning state indicated by the antenna impedance.
An antenna structure includes a housing and a feeding source. The housing forms a radiating portion, a first coupling portion, and a second coupling portion. The first coupling portion and the second coupling portion are grounded. The feeding source is electrically connected to the radiating portion for feeding current to the radiating portion and divides the radiating portion into a first radiating section and a second radiating section. When the feeding source supplies current, the current flows through the first radiating section and is coupled to the first coupling portion to activate a first operation mode and a second operation mode. When the feeding source supplies current, the current flows through the second radiating section and is coupled to the second coupling portion to activate a third operation mode and a fourth operation mode.
A battery charging apparatus includes a charging power source, a plurality of charging circuits, a plurality of batteries, a plurality of switching circuits and a control circuit. The control circuit is configured to determine the type of charging power source based on a current-voltage curve of the charging power source, and to control conduction states of the switching circuits to connect the charging circuits and the batteries in series in a series charging mode and to connect the charging circuits and the batteries in parallel in an equalizing charging mode. A battery charging method of the battery charging apparatus is also introduced.
Examples are disclosed herein that relate to curved batteries. One example provides a battery comprising an anode arranged on an anode substrate, a cathode arranged on a cathode substrate, the anode substrate being curved at a first curvature and the cathode substrate being curved at a second curvature, and a separator between the anode and the cathode. A thickness of the anode substrate and a thickness of the cathode substrate are determined based on the curvature of the respective substrate, such that the one of the anode substrate and the cathode substrate with a larger curvature has a larger thickness.
A device for supplying fuel to a motor vehicle having a fuel cell, comprising a generating device for generating hydrogen, a filling device for filling an exchangeable hydrogen storage device with hydrogen generated, and a loading and unloading device for the automatic unloading of an emptied hydrogen storage device from a mounting device of the motor vehicle, as well as for loading the mounting device with a filled hydrogen storage device.
A device intended to generate electricity includes a planar fuel cell having: cells each provided with an anode and a cathode associated with a membrane, and a first face and a second face opposite to the first face, the first face being arranged on the side with the anodes of the fuel cell and the second face being arranged on the side with the cathodes of the fuel cell. Furthermore, this device includes a system configured to generate a first air flow intended to cooperate thermally with the first face, and configured to generate a second air flow intended to cooperate with the second face to ensure the supply of oxidizer to the cathodes of the fuel cell.
A method for producing porous graphite capable of realizing higher durability, output and capacity, and porous graphite. A carbon member having microvoids is obtained by a dealloying step for selectively eluting other non-carbon main components into a metal bath by immersing a carbon-containing material, composed of a compound including carbon or an alloy or non-equilibrium alloy, in the metal bath, wherein the metal bath has a solidifying point lower than the melting point of the carbon-containing material, and is controlled to a temperature lower than the minimum value of a liquidus temperature within a composition fluctuation range extending from the carbon-containing material to carbon by reducing the other non-carbon main components. The carbon member obtained in the dealloying step is graphitized by heating in a graphitization step. The carbon member graphitized in the graphitization step is subjected to activation treatment by an activation step.
Provided is a method of manufacturing a positive electrode material for an electrical storage device, the positive electrode material for an electrical storage device including a positive electrode active material represented toy the general formula Nax(Fe1−aMa)yP2Oz, where M represents at least one kind of transition metal element selected from the group consisting of Cr, Mn, Co, and Ni, x satisfies 1.2≤x≤2.8, y satisfies 0.95≤y≤1.6, a satisfies 0≤a≤0.9, and z satisfies 7≤z≤8, the method including a step of firing an oxide material serving as a raw material at from 400° C. to 610° C. in a reducing atmosphere.
To provide a transition metal-containing hydroxide, which is a precursor of a lithium-containing composite oxide, with which it is possible to obtain a lithium ion secondary battery excellent in the discharge capacity and cycle characteristics, by using as a cathode active material a lithium-containing composite oxide obtained from the hydroxide. A transition metal-containing hydroxide, which is a precursor of a lithium-containing composite oxide, wherein in a distribution of the logarithmic derivative pore specific surface area relative to the pore size, obtained by BJH method, the proportion of the sum of the logarithmic derivative pore specific surface areas with pore sizes of 10 nm or larger, to 100% of the sum of the logarithmic derivative pore specific surface areas in the entire distribution, is at least 23%.
Porous silicon and methods for preparation and use of the same are disclosed. The porous silicon materials have utility either alone or in combination with other materials, for example, combined with carbon particles for energy storage applications.
An article having a continuous network of zinc and a continuous network of void space interpenetrating the zinc network. The zinc network is a fused, monolithic structure. A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; annealing and/or sintering the sponge to form an annealed and/or sintered sponge; heating the annealed and/or sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and electrochemically reducing the zinc oxide to form a zinc metal sponge.
A negative electrode for a non-aqueous electrolyte secondary battery of the present disclosure includes a negative electrode current collector, a negative electrode composite material layer formed on the surface of the negative electrode current collector. The negative electrode composite material layer includes a negative electrode active material containing silicon oxide and heat expandable microcapsules. The ratio of silicon oxide to the total amount of the negative electrode active material is 30 mass % or less. The blending ratio of the heat expandable microcapsules to the total amount of the negative electrode active material is 0.5 mass % or more. The ratio of the heat expandable microcapsules in contact with silicon oxide to the amount of the heat expandable microcapsules contained in the negative electrode composite material layer is 70 mass % or more.
The present invention provides a positive electrode active material for a secondary battery, the positive electrode active material including a lithium composite metal oxide particle represented by Formula 1 below, and a secondary battery including the same. LiaNi1−x−yCoxM1yM2zM3wO2 [Formula 1] In Formula 1,M1 is a metal element whose surface energy (ΔEsurf) calculated by Equation 1 below is −0.5 eV or higher, M2 is a metal element whose surface energy (ΔEsurf) calculated by Equation 1 below is −1.5 eV or higher and less than −0.5 eV, M3 is a metal element whose surface energy (ΔEsurf) calculated by Equation 1 below is less than −1.5 eV, and 1.0≤a≤1.5, 0
Preparation, characterization, and an electrochemical study of Mg0.1V2O5 prepared by a novel sol-gel method with no high-temperature post-processing are disclosed. Cyclic voltammetry showed the material to be quasi-reversible, with improved kinetics in an acetonitrile-, relative to a carbonate-, based electrolyte. Galvanostatic test data under a C/10 discharge showed a delivered capacity >250 mAh/g over several cycles. Based on these results, a magnesium anode battery, as disclosed, would yield an average operating voltage ˜3.2 Volts with an energy density ˜800 mWh/g for the cathode material, making the newly synthesized material a viable cathode material for secondary magnesium batteries.
A porous separator for secondary batteries is formed of a porous film, and has a first layered region having an average pore diameter of 100 nm or more and 500 nm or less, and a second layered region having a larger average pore diameter than the first layered region. The first layered region is positioned in one outermost surface of the porous film. Both the first layered region and the second layered region may be positioned as outermost surfaces of the porous film.
The present invention provides a nonaqueous electrolyte secondary battery having excellent battery characteristics, including a battery separator containing a polyolefin porous film; a positive electrode plate; and a negative electrode plate. The polyolefin porous film has a puncture strength of at least 26.0 gf/g/m2 and satisfies Formula (A), and the positive and negative electrode plates satisfy Formula (B). 0.00≤|1−T/M|≤0.54 (A) 0.00≤|1−T/M|≤0.50 (B) T represents a distance by which the polyolefin porous film or positive or negative electrode plate moves in a traverse direction from a starting point to a point where a critical load is obtained in a scratch test under a constant load of 0.1 N, and M represents a distance by which the porous film or positive or negative electrode plate moves in a machine direction from the starting point to the point where the critical load is obtained.
A battery mounting structure has a battery that is placed in a luggage space and that has a positive electric power terminal which protrudes upward near a rear end of the battery, a battery cover that covers at least a part of the battery, a rear pillar that is placed at a boundary between a side surface and a back surface of the vehicle and that has a flange which protrudes to a front side, and an insulating sheet that is attached to the battery cover so as to be positioned between the positive electric power terminal and the flange.
The invention refers to a battery lock-up device, a new energy vehicle comprising the battery lock-up device, and a method for installing/detaching a power battery. The battery lock-up device comprises: a connection bracket having a first connection hole and a dual limited position structure; a housing structure having a second connection hole; a press plate and a nut, the press plate comprising a head portion and a pillar portion passing through the first connection hole and the second connection hole, the pillar portion being formed with a threaded portion for engaging with the nut and having a distal end adapted to mate with a rotational operation tool; and an anti-rotation locking member which locks the nut against the housing structure. When the press plate is in the first limited position, the press plate and the nut which is engaged on the threaded portion lock-up the connection bracket and the housing structure; and when the press plate reaches the second limited position, the head portion of the press plate can exit via the first connection hole so as to realize unlocking. The invention applies to a situation of detaching and installing the battery quickly. By retaining only the locking function and quick detaching/installing function on the new energy vehicle, the mechanical structure is simplified, arrangement space is reduced, the cost of a single vehicle is reduced, and the reliability is improved.
An energy storage apparatus includes: one or more energy storage devices; an outer case; and a plate-like spacer disposed between the energy storage device at an end among the above-mentioned one or more energy storage devices and the outer case.
Sealing cell for encapsulating a microelectronic component arranged on a substrate, with a cap, said sealing cell including: a bottom including a receiving zone for the substrate and a peripheral zone surrounding the receiving zone, a side wall formed of an internal face, an external face and an upper face, the upper face being configured to support the cap facing the receiving zone, an opening, arranged in the bottom of the cell, in the side wall, or in the cap, the opening being configured to be connected to a pumping system, in such a way as to be able to place under controlled atmosphere a cavity delimited by the side wall, the bottom and the cap.
The present application relates to a secondary battery, including a naked battery core and a secondary battery head cover assembly. The secondary battery head cover assembly includes a head cover and an insulation structure. The insulation structure includes a top connection sheet and two naked battery core insulation sheets, and the two naked battery core insulation sheets are connected to two long sides of the top connection sheet, respectively. The top connection sheet is located below the head cover. The naked battery core is located below the top connection sheet. The head cover is provided with an explosion-proof valve, the top connection sheet is provided with an explosion-proof valve air hole, and the explosion-proof valve air hole is provided correspondingly below the explosion-proof valve.
Provided are a case assembly, a prismatic secondary battery, and a method of fabricating the prismatic secondary battery. The prismatic secondary battery includes: an electrode assembly including a first electrode plate, a second electrode plate, and a separator between the first and second electrode plates; a case formed of a first material, wherein an electrode assembly accommodation cavity is formed in the case to accommodate the electrode assembly, and an opening through which the electrode assembly is to be inserted is formed in a portion of the case; and a cap plate sealing the opening. A gas discharge hole is formed in the case to discharge gas generated during a pre-charging operation. The gas discharge hole is sealed with a gas seal formed of a second material.
A front plate for a lighting device includes a translucent substrate having a first surface, a high refractive index layer formed on the first surface of the translucent substrate and having a refractive index higher than a refractive index of the translucent substrate, and an electrically conductive light reflection layer formed on a surface of the high refractive index layer on an opposite side of the translucent substrate. The electrically conductive light reflection layer is formed on a portion corresponding to a non-luminous region around a luminous region on the surface of the high refractive index layer.
The disclosed technology includes systems, devices, and methods associate with producing an organic semiconductor film having electrical dopant molecules distributed to a controlled depth. In an example implementation, a semiconductor device is provided. The semiconductor device can include a first substrate and an organic semiconductor film disposed on the first substrate. The organic semiconductor film includes a first region characterized by electrical dopant molecules distributed to a controlled depth with respect to a first surface of the organic semiconductor film. The semiconductor device further can include an electrode in contact with at least a portion of the first region of the organic semiconductor film.
There is provided a material comprising a n-doped electrically conductive polymer comprising at least one electron-deficient aromatic moiety, each electron-deficient aromatic moiety having a gas-phase electron affinity (EA) of 1-3 eV; and at least one counter-cation covalently bonded to the polymer or to a further polymer comprised in the material, the polymer being n-doped to a charge density of 0.1-1 electron per electron-deficient aromatic moiety, the polymer being capable of forming a layer having a vacuum workfunction (WF) of 2.5-4.5 eV, and wherein all the counter-cations comprised in the material are immobilised such that any electron in the polymer cannot significantly diffuse or migrate out of the polymer. There is also provided a method of preparing the material.
Embodiments of the present invention are directed to a method for fabricating a magnetoresistive random access memory (MRAM) device. A non-limiting example of the method includes depositing a dielectric layer on a contact arranged on a substrate including a magnetic tunnel junction (MTJ) pillar. The method includes reducing a width of the MTJ pillar. The method further includes depositing an encapsulation layer on the dielectric layer and the MTJ pillar.
An example device for performing a write operation, the device including a Magnetic Tunnel Junction (MTJ) element and processing circuitry. The MTJ element including a free structure, a pinned structure, and a tunnel barrier arranged between the free structure and the pinned structure. The processing circuitry is configured to receive an instruction to set the MTJ element to a low-resistance state and provide a write voltage to the MTJ element such that the tunnel barrier breaks down to generate a low-resistance channel between the free structure and the pinned structure.
A composite article has 1) a dry piezoelectric layer, and 2) a pair of non-electrically-connected co-planar patterned electrodes that are arranged contiguously with an opposing surface of the dry piezoelectric layer. Each electrode essentially has (a) an electrically-conductive material; and (b) particles having a Young's modulus that is different from the Young's modulus of the (a) electrically-conductive material by at least 10%.
Disclosed is a method for manufacturing a semiconductor light emitting device, the method including: providing a mask having a plurality of openings on a base; placing semiconductor light emitting chips on exposed portions of the base through the openings, respectively, by a device carrier which recognizes a shape of the mask and calibrates position for a semiconductor light emitting chip to be seated; and supplying an encapsulant to each of the openings, with the mask serving as a dam.
The present application relates to a light emitting diode, a light emitting device, and a display device. The light emitting device includes a light emitting diode and a substrate; the substrate is coated with a bonding substance; the light emitting diode is provided with a positive electrode pad and a negative electrode pad; the surface of the positive electrode pad and/or the negative electrode pad is provided with a plurality of protrusions which are embedded in the bonding substance; and the positive electrode pads and the negative electrode pads are fixed to the substrate through the bonding substance. The embodiment of the present application provides projections on the pad of the light emitting diode, avoids the need of increasing the area of the pad, increases the contact area between the pad and the solder with the constant pad area, improves the bonding stability between the light emitting diode and the substrate, and reduces the production cost.
A light emitting device includes a resin package including: a first lead and a second lead, each including a top surface and a bottom surface, and a first resin portion located between the first lead and the second lead and extending in a first direction; a first light emitting element and a second light emitting element arrayed on the top surface of the first lead in the first direction, the first light emitting element and the second light emitting element each including at least a first side surface; and an encapsulant located on the top surface of the first lead and covering the first light emitting element and the second light emitting element. The first side surface of the first light emitting element and the first side surface of the second light emitting element partially face each other.
A display apparatus includes a light source generating blue light. A display panel is configured to display an image. A light guide member is disposed below the display panel. A first light conversion layer is disposed between the light guide member and the display panel. The first light conversion layer includes a plurality of quantum dots. A low refractive layer is disposed between the light guide member and the first light conversion layer. The low refractive layer has a refractive index that is less than that of the light guide member. A second light conversion layer is disposed between the light source and the first light conversion layer and includes a plurality of fluoride-based or nitride-based phosphors. The first light conversion layer is configured to convert the blue light into green light, and the second light conversion layer is configured to convert the blue light into red light.
A light-emitting module and a display device including the same are disclosed. In an embodiment a light-emitting module includes a plurality of emission regions configured to emit light, at least one first emission region and at least one second emission region of a first type configured to emit light of a first color locus and at least one first emission region and at least one second emission region of a second type configured to emit light of a second color locus and a control device for supplying the emission regions with current, wherein the emission regions are arranged on a common semiconductor chip, wherein the first color locus is different from the second color locus, wherein the first and second emission regions of the first type are adjacent to one another, and wherein the first and second emission regions of the second type are adjacent to one another.
The present disclosure provides a display panel, a display device comprising such a display panel, and a method for processing defective pixels of such a display panel. The display panel comprises: a substrate; a plurality of pixel units on the substrate and arranged in an array. Each of the pixel units includes a light emitting region and a driving circuit region. In each of the pixel units, the driving circuit region includes a transistor, the light emitting region includes a first electrode, and the first electrode is electrically coupled to a first terminal of the transistor. In a row direction or a column direction of the plurality of pixel units arranged in an array, light emitting regions of two adjacent pixel units are adjacent to each other.
In an example, the present invention provides a method of separating a photovoltaic strip from a solar cell. The method includes providing a solar cell, placing the front side of the solar cell on a platen such that the backside is facing a laser source, initiating a laser source to output a laser beam having a wavelength from 200 to 600 nanometers and a spot size of 18 to 30 microns, subjecting a portion of the backside to the laser beam at a power level ranging from about 20 Watts to about 35 Watts to cause an ablation to form a scribe region having a depth, width, and a length, the depth being from 40% to 60% of a thickness of the solar cell, the width being between 16 and 35 microns to create a plurality of scribe regions spatially disposed on the backside of the solar cell.
As a display device has a higher definition, the number of pixels, gate lines, and signal lines are increased. When the number of the gate lines and the signal lines are increased, a problem of higher manufacturing cost, because it is difficult to mount an IC chip including a driver circuit for driving of the gate and signal lines by bonding or the like. A pixel portion and a driver circuit for driving the pixel portion are provided over the same substrate, and at least part of the driver circuit includes a thin film transistor using an oxide semiconductor interposed between gate electrodes provided above and below the oxide semiconductor. Therefore, when the pixel portion and the driver portion are provided over the same substrate, manufacturing cost can be reduced.
A thin film transistor is provided. The thin film transistor includes an oxide semiconductor layer including a source region, a drain region, and a channel region wherein a portion of the source and drain regions has an oxygen concentration less than the channel region. Further provided is a thin film transistor that includes an oxide semiconductor layer including a source region, a drain region, and a channel region, wherein a portion of the source and drain regions includes a dopant selected from the group consisting of aluminum, boron, gallium, indium, titanium, silicon, germanium, tin, lead, and combinations thereof.
A tunnel field-effect transistor (TFET) includes a fin, an insulator layer, and at least one gate. The fin has a doped first region, a doped second region, and an interior region between the first region and the second region. The interior region is undoped or is more lightly doped than the first region and the second region. At least the interior region of the fin formed as a type II superlattice, wherein materials of the superlattice alternate vertically. The insulator layer is formed around the interior region. The gate is formed on at least a portion of the insulator region. The insulator layer and the at least one gate are configured to generate an inhomogeneous electrostatic potential within the interior region.
Cell circuits having a diffusion break with avoided or reduced adjacent semiconductor channel strain relaxation and related methods are disclosed. In one aspect, a cell circuit includes a substrate of semiconductor material and a semiconductor channel structure(s) of a second semiconductor material disposed on the substrate. The semiconductor material applies a stress to the formed semiconductor channel structure(s) to induce a strain in the semiconductor channel structure(s) for increasing carrier mobility. A diffusion break comprising a dielectric material extends through a surrounding structure of an interlayer dielectric, and the semiconductor channel structure(s) and at least a portion of the substrate. The relaxation of strain in areas of the semiconductor channel structure(s) adjacent to the diffusion break is reduced or avoided, because the semiconductor channel structure(s) is constrained by the surrounding structure.
A semiconductor device includes a substrate, a first dielectric layer on the substrate, a hard mask layer on the first dielectric layer, a trench in the hard mask layer and the first dielectric layer, a first source/drain electrode layer on a sidewall of the trench, a second dielectric layer on the first source/drain electrode layer in the trench, a second source/drain electrode layer on the second dielectric layer in the trench, a third dielectric layer on the second source/drain electrode layer in the trench, an ILD layer overlying the trench, an nFET disposed over the trench, and a pFET disposed over the trench and spaced apart from the nFET.
Transistor connected diode structures are described. In an example, the transistor connected diode structure includes a group III-N semiconductor material disposed on substrate. A raised source structure and a raised drain structure are disposed on the group III-N semiconductor material. A mobility enhancement layer is disposed on the group III-N semiconductor material. A polarization charge inducing layer is disposed on the mobility enhancement layer, the polarization charge inducing layer having a first portion and a second portion separated by a gap. A gate dielectric layer disposed on the mobility enhancement layer in the gap. A first metal electrode having a first portion disposed on the raised drain structure, a second portion disposed above the second portion of the polarization charge inducing layer and a third portion disposed on the gate dielectric layer in the gap. A second metal electrode disposed on the raised source structure.
A vertical transistor structure is provided that includes a bottom source/drain structure that includes a doped semiconductor buffer layer that contains a first dopant species having a first diffusion rate, and an epitaxial doped semiconductor layer that contains a second dopant species that has a second diffusion rate that is less than the first diffusion rate. During a junction anneal, the first dopant species readily diffuses from the doped semiconductor buffer layer into a pillar portion of a base semiconductor substrate to provide the bottom source/drain extension and bottom source/drain junction. No diffusion overrun is observed. During the junction anneal, the second dopant species remains in the epitaxial doped semiconductor layer providing a low resistance contact. The second dopant species does not interfere with the bottom source/drain extension and bottom source/drain junction due to limited diffusion of the second dopant species.
Provided is a semiconductor wafer in which a nitride crystal layer on a silicon wafer includes a reaction suppressing layer to suppress reaction between a silicon atom and a Group-III atom, a stress generating layer to generate compressive stress and an active layer in which an electronic element is to be formed, the reaction suppressing layer, the stress generating layer and the active layer are arranged in an order of the reaction suppressing layer, the stress generating layer and the active layer with the reaction suppressing layer being positioned the closest to the silicon wafer, and the stress generating layer includes a first crystal layer having a bulk crystal lattice constant of al and a second crystal layer in contact with a surface of the first crystal layer that faces the active layer, where the second crystal layer has a bulk crystal lattice constant of a2 (a1
A display device can include a first subpixel and a second subpixel disposed on a substrate; a first electrode disposed in each of the first subpixel and the second subpixel; a first light emitting layer disposed on the first electrode, the first light emitting layer being configured to emit light of a first color; a second electrode disposed on the first light emitting layer; a second light emitting layer disposed on the second electrode, the second light emitting layer being configured to emit light of a second color; and a third electrode disposed on the second light emitting layer, in which the first light emitting layer and the second electrode are both included in the first subpixel, and the first light emitting layer and the second electrode are both absent from the second subpixel.
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a substrate and a gate structure formed over the substrate. The semiconductor structure further includes a first source/drain structure and a second source/drain structure formed in the substrate adjacent to the gate structure. The semiconductor structure further includes an interlayer dielectric layer formed over the substrate to cover the gate structure, the first source/drain structure, and the second source/drain structure. The semiconductor structure further includes a first conductive structure formed in the interlayer dielectric layer over the first source/drain structure. The semiconductor structure further includes a second conductive structure formed in the interlayer dielectric layer over the second source/drain structure. In addition, the first conductive structure is in direct contact with the first source/drain structure, and the second conductive structure is not in direct contact with the second source/drain structure.
The present disclosure provides a semiconductor structure, including a memory region and a logic region adjacent to the memory region. The memory region includes a first Nth metal line, a first stop layer being disposed over a magnetic tunneling junction (MTJ) over the first Nth metal line, and a first (N+1)th metal via being disposed over the MTJ and surrounded by the first stop layer, the first (N+1)th metal via having a first height. The logic region includes a second Nth metal line, a second stop layer being disposed over an (N+1)th metal line, and a second (N+1)th metal via over the (N+1)th metal line and having a second height. N is an integer greater than or equal to 1 and the first height is greater than the second height. A method of manufacturing the semiconductor structure is also disclosed.
A method of manufacturing a solid-state image sensor, includes forming a first isolation region of a first conductivity type in a semiconductor layer having first and second surfaces, the forming the first isolation region including first implantation for implanting ions into the semiconductor layer through the first surface, forming charge accumulation regions of a second conductivity type in the semiconductor layer, performing first annealing, forming an interconnection on a side of the first surface of the semiconductor layer after the first annealing, and forming a second isolation region of the first conductivity type in the semiconductor layer, the forming the second isolation region including second implantation for implanting ions into the semiconductor layer through the second surface. The first and second isolation regions are arranged between the adjacent charge accumulation regions.
An image generation device includes a receiver and a controller. The receiver receives travel information about the travel state of a movable-body apparatus. The controller selects, based on the travel information, a first partial region from an entirety of a plurality of pixels of an image sensor or an entirety of image data captured by the image sensor, and generates image data in which a region other than the first partial region has a resolution lower than the resolution of the first partial region. The image sensor is to be mounted to the movable-body apparatus and is configured to capture an area in a traveling direction of the movable-body apparatus.
A semiconductor device includes a first fin field effect transistor (FinFET) device, the first FinFET device including a plurality of fins formed in a substrate, an epitaxial layer of semiconductor material formed on the fins forming non-planar source/drain regions, and a first gate structure traversing across the plurality of fins. The semiconductor device includes a second FinFET device, the second FinFET device including a substantially planar fin formed in the substrate, an epitaxial layer of the semiconductor material formed on the substantially planar fin and forming substantially planar source/drain regions, and a second gate structure traversing across the substantially planar fin.
A memory device comprises an array of two-transistor memory cells, two-transistor memory cells in the array including a vertical select transistor and a vertical data storage transistor. The array comprises a plurality of stacks of conductive lines, a stack of conductive lines including a select gate line and a word line adjacent the select gate line. The device comprises an array of vertical channel lines disposed through the conductive lines to a reference line, gate dielectric structures surrounding the vertical channel lines at channel regions of vertical select transistors in the array of vertical channel lines and the select gate lines, charge storage structures surrounding the vertical channel lines at channel regions of vertical data storage transistors in the array of vertical channel lines and the word lines, and bit lines coupled to the vertical channel lines via upper ends of the vertical channel lines.
Systems, methods, and apparatus for an improved protection from charge injection into layers of a device using resistive structures are described. Such resistive structures, named s-contacts, can be made using simpler fabrication methods and less fabrication steps. In a case of metal-oxide-semiconductor (MOS) field effect transistors (FETs), s-contacts can be made with direct connection, or resistive connection, to all regions of the transistors, including the source region, the drain region and the gate.
An integrated circuit device is provided as follows. A fin-type active region extends on a substrate in a first horizontal direction. A gate line extends on the fin-type active region in a second horizontal direction intersecting the first horizontal direction. A source/drain region is disposed in the fin-type active region at one side of the gate line. An insulating cover extends parallel to the substrate, with the gate line and the source/drain region arranged between the insulating cover and the substrate. A source/drain contact that vertically extends through the insulating cover has a first sidewall covered with the insulating cover and an end connected to the source/drain region. A fin isolation insulating unit vertically extends through the insulating cover into the fin-type active region. The source/drain region is arranged between the fin isolation insulating unit and the gate line.
A semiconductor device has a first fin, a second fin, an isolation structure between the first fin and the second fin, a dielectric stage in the isolation structure, and a helmet layer over the dielectric stage. A top surface of the helmet layer is higher than a top surface of the isolation structure.
A semiconductor device has a protected line connected to a ground line by a triggered clamp. A variable shunt, which includes a depletion mode JFET, is connected between the protected line and the ground line, in parallel with the triggered clamp. The depletion mode JFET is formed in a substrate of the semiconductor device. The channel of the depletion mode JFET provides a resistive path for the variable shunt when the semiconductor device is unpowered, to dissipate charge from the powered line after an ESD event. When the semiconductor device is operated, that is, powered up, the gate of the depletion mode JFET may be biased to turn off the channel, and so reduce impairment of operation of the semiconductor device.
An optoelectronic component includes a carrier, wherein a first optoelectronic semiconductor chip and a second optoelectronic semiconductor chip are arranged above a top side of the carrier, the optoelectronic semiconductor chips each include a top side, an underside situated opposite the top side, and side faces extending between the top side and the underside, the undersides of the optoelectronic semiconductor chips face the top side of the carrier, a first potting material is arranged above the top side of the carrier, the first potting material covering parts of the side faces of the first optoelectronic semiconductor chip, and a second potting material is arranged above the top side of the carrier, and the second potting material covering the first potting material.
The present disclosure relates to power modules. The teachings thereof may be embodied in a power unit and/or a drive unit for driving the power unit, along with methods for producing a power module. For example, a power module may include: a power unit including a heat sink; a power device disposed on the heat sink; an insulating layer covering the heat sink and the power device; and a drive unit for driving the power unit, the drive unit comprising a contact element corresponding to the contact area of the power unit. An underside of the power unit is defined by an underside of the heat sink. A top side of the power unit is defined by a contact area thermally and/or electrically coupled to the power device and a surface of the insulating layer surrounding the contact area. The contact element may be disposed abutting the contact area of the power unit for making electrical and/or thermal contact with the power device.
A semiconductor device may include a first semiconductor chip, a second semiconductor chip, an encapsulant encapsulating the first and second semiconductor chips, a first signal terminal extending over inside and outside of the encapsulant and connected to the first semiconductor chip inside the encapsulant, and a second signal terminal extending over the inside and the outside of the encapsulant and connected to the second semiconductor chip inside the encapsulant. The first and second signal terminals may protrude from the encapsulant in a same direction. The first signal terminal may include, inside the encapsulant, a section where the first signal terminal extends farther away from the second signal terminal along a direction toward the first semiconductor chip. The second signal terminal may include, inside the encapsulant, a section where the second signal terminal extends farther away from the first signal terminal along a direction toward the second semiconductor chip.
The present disclosure provides a method for manufacturing an electronic package, with an electronic component bonded to a carrier structure by means of solder tips formed on conductive bumps, wherein the solder tips do not require a reflow process to be in contact with the carrier structure, thereby allowing the conductive bumps to have an adequate amount of solder tips formed thereon and thus precluding problems such as cracking and collapsing of the solder tips.
An apparatus and method for reducing the volume of a resource allocation information message in a broadband wireless communication system are provided. The method includes transmitting a message including information indicating a periodicity of an uplink control channel for an initial network entry; and receiving an uplink signal for the initial network entry through the uplink control channel.
A microelectronic device has a pillar connected to an external terminal by an intermetallic joint. Either the pillar or the external terminal, or both, include copper in direct contact with the intermetallic joint. The intermetallic joint includes at least 90 weight percent of at least one copper-tin intermetallic compound. The intermetallic joint is free of voids having a combined volume greater than 10 percent of a volume of the intermetallic joint; and free of a void having a volume greater than 5 percent of the volume of the intermetallic joint. The microelectronic device may be formed using solder which includes at least 93 weight percent tin, 0.5 weight percent to 5.0 weight percent silver, and 0.4 weight percent to 1.0 weight percent copper, to form a solder joint between the pillar and the external terminal, followed by thermal aging to convert the solder joint to the intermetallic joint.
A high voltage (HV) converter implemented on a printed circuit board (PCB) includes a double diffused metal oxide semiconductor (DMOS) package comprising a lead frame and a main DMOS chip. The lead frame includes a gate section electrically connected to a gate electrode of the main DMOS chip, a source section electrically connected to a source electrode of the main DMOS chip and a drain section electrically connected to a drain electrode of the main DMOS chip. The PCB layout includes a large area source copper pad attached to and overlapping the source section of the DMOS package to facilitate cooling and a small area drain copper pad attached to and overlapping the drain section of the DMOS package to reduce electromagnetic interference (EMI) noise.
A MOS antifuse with an accelerated dielectric breakdown induced by a void or seam formed in the electrode. In some embodiments, the programming voltage at which a MOS antifuse undergoes dielectric breakdown is reduced through intentional damage to at least part of the MOS antifuse dielectric. In some embodiments, damage may be introduced during an etchback of an electrode material which has a seam formed during backfilling of the electrode material into an opening having a threshold aspect ratio. In further embodiments, a MOS antifuse bit-cell includes a MOS transistor and a MOS antifuse. The MOS transistor has a gate electrode that maintains a predetermined voltage threshold swing, while the MOS antifuse has a gate electrode with a void accelerated dielectric breakdown.
A semiconductor device includes a semiconductor substrate, a metal layer, a dielectric layer, and a via. The metal layer is disposed above the semiconductor substrate. The dielectric layer is disposed between the metal layer and the semiconductor substrate. The via is embedded in the dielectric layer and comprises a first portion and a second portion between the first portion and the semiconductor substrate. The first portion of the via has a first width. The second portion of the via has a second width greater than the first width of the first portion.
A stacked via structure including a first dielectric layer, a first conductive via, a first redistribution wiring, a second dielectric layer and a second conductive via is provided. The first dielectric layer includes a first via opening. The first conductive via is in the first via opening. A first level height offset is between a top surface of the first conductive via and a top surface of the first dielectric layer. The first redistribution wiring covers the top surface of the first conductive via and the top surface of the first dielectric layer. The second dielectric layer is disposed on the first dielectric layer and the first redistribution wiring. The second dielectric layer includes a second via opening. The second conductive via is in the second via opening. The second conductive via is electrically connected to the first redistribution wiring through the second via opening of the second dielectric layer.
A semiconductor package includes a lead frame, a die, a discrete electrical component, and electrical connections. The lead frame includes leads and a die pad. Some of the leads include engraved regions that have recesses therein and the die pad may include an engraved region or multiple engraved regions. Each engraved region is formed to contain and confine a conductive adhesive from flowing over the edges of the engraved leads or the die pad. The boundary confines the conductive adhesive to the appropriate location on the engraved lead or the engraved die pad when being placed on the engraved regions. By utilizing a lead frame with engraved regions, the flow of the conductive adhesive or the wettability of the conductive adhesive can be contained and confined to the appropriate areas of the engraved lead or engraved die pad such that a conductive adhesive does not cause cross-talk between electrical components within a semiconductor package or short circuiting within a semiconductor package.
A power control module includes a power device having a first side and a second side opposite from the first. The power control module includes a printed wiring board (PWB) spaced apart from the first side of the power device. The PWB is electrically connected to the power device. A heat sink plate is soldered to a second side of the transistor for heat dissipation from the transistor. The PWB and/or the heat sink plate includes an access hole defined therein to allow for access to the transistor during assembly. A method of assembling a power control module includes soldering at least one lead of a power device to a printed wiring board (PWB), pushing the power device toward a heat sink plate, and soldering the power device to the heat sink plate.
A method of attaching a semiconductor die or chip onto a support member such as a leadframe comprises: applying onto the support member at least one stretch of ribbon electrical bonding material and coupling the ribbon material to the support member, arranging at least one semiconductor die onto the ribbon material with the ribbon material between the support member and the semiconductor die, coupling the semiconductor die to the ribbon material.
A semiconductor device assembly can include a first die package comprising a bottom side; a top side; and lateral sides extending between the top and bottom sides. The assembly can include an encapsulant material encapsulating the first die package. In some embodiments, the assembly includes a cooling cavity in the encapsulant material. The cooling cavity can have a first opening; a second opening; and an elongate channel extending from the first opening to the second opening. In some embodiments, the elongate channel surrounds at least two of the lateral sides of the first die package. In some embodiments, the elongate channel is configured to accommodate a cooling fluid.
A case (6) surrounds a semiconductor chip (5). A case electrode (7) is attached to an upper face of the case (6). A wire (8) is connected to the semiconductor chip (5) and the case electrode (7). A first holding portion (10) presses down the case electrode (7) on the upper face of the case (6) outside a joint portion where the wire (8) is bonded to the case electrode (7). A second holding portion (11) presses down the case electrode (7) on the upper face of the case (6) inside the joint portion. A recess (12) is formed on the upper face of the case (6). The case electrode (7) is bent such as to fit into the recess (12). The second holding portion (11) is disposed inside the recess (12).
The invention relates to a power semiconductor device having a pin element which passes through a housing opening, an elastic sealing device which is arranged between a housing opening wall of the housing, where the housing opening wall delimits the housing opening and encircles the pin element. The pin element runs through the sleeve and through a sealing device opening of the sealing element. The sealing device is not connected in a materially bonded manner to the sleeve, to the housing opening wall and to the pin element and the sealing device seals off the housing opening wall from the sleeve and seals off the sleeve from the pin element. A crosslinked potting compound is arranged on the sealing device. The crosslinked potting compound is connected in a materially bonded manner to the sleeve, to the housing opening wall and to the pin element and the potting compound seals off the housing opening wall from the sleeve and seals off the sleeve from the pin element.
An example semiconductor wafer includes a semiconductor layer, a dielectric layer disposed on the semiconductor layer, and a layer of the metal disposed on the dielectric layer. An example method of determining an effective work function of a metal on the semiconductor wafer includes determining a surface barrier voltage of the semiconductor wafer, and determining a metal effective work function of the semiconductor wafer based, at least in part, on the surface barrier voltage.
An etch back air gap (EBAG) process is provided. The EBAG process includes forming an initial structure that includes a dielectric layer disposed on a substrate and a liner disposed to line a trench defined in the dielectric layer. The process further includes impregnating a metallic interconnect material with dopant materials, filling a remainder of the trench with the impregnated metallic interconnect materials to form an intermediate structure and drive-out annealing of the intermediate structure. The drive-out annealing of the intermediate structure serves to drive the dopant materials out of the impregnated metallic interconnect materials and thereby forms a chemical- and plasma-attack immune material.
An integrated circuit device includes a substrate, a landing pad on the substrate, and a through-via structure passing through the substrate and connected to the landing pad. The through-via structure may include a conductive plug, a first conductive barrier layer covering a sidewall and a lower surface of the conductive plug, and a second conductive barrier layer covering a sidewall of the first conductive barrier layer.
A device includes a substrate, a first dielectric layer over the substrate, a first conductive feature in the first dielectric layer, and an etch stop layer over the first dielectric layer. The etch stop layer includes metal-doped aluminum nitride. The device further includes a second dielectric layer over the etch stop layer, and a second conductive feature in the second dielectric layer. The second conductive feature extends into the etch stop layer and contacts the first conductive feature.
Conformal hermetic dielectric films suitable as dielectric diffusion barriers over 3D topography. In embodiments, the dielectric diffusion barrier includes a dielectric layer, such as a metal oxide, which can be deposited by atomic layer deposition (ALD) techniques with a conformality and density greater than can be achieved in a conventional silicon dioxide-based film deposited by a PECVD process for a thinner contiguous hermetic diffusion barrier. In further embodiments, the diffusion barrier is a multi-layered film including a high-k dielectric layer and a low-k or intermediate-k dielectric layer (e.g., a bi-layer) to reduce the dielectric constant of the diffusion barrier. In other embodiments a silicate of a high-k dielectric layer (e.g., a metal silicate) is formed to lower the k-value of the diffusion barrier by adjusting the silicon content of the silicate while maintaining high film conformality and density.
A substrate warpage detection device for detecting warpage of a substrate loaded on a substrate loading region having a recess shape formed on a rotary table along a circumferential direction during rotation of the rotary table, includes a light transmitting part configured to transmit a light beam obliquely upward from a side of the rotary table such that a lower portion of the light beam collides with an upper end of a side surface of the rotary table and an upper portion of the light beam positioned more upward than the lower portion of the light beam passes a portion near the surface of the rotary table, and a light receiving part installed to face the light transmitting part and configured to receive the light beam passing the portion near the surface of the rotary table so as to detect an amount of received light.
A semiconductor processing station including a central transfer chamber, a load lock chamber disposed adjacent to the central transfer chamber, and a cooling stage disposed adjacent to the load lock chamber and the central transfer chamber is provided. The load lock chamber is adapted to contain a wafer carrier including a plurality of wafers. The central transfer chamber communicates between the cooling stage and the load lock chamber to transfer a wafer of the plurality of wafers between the cooling stage and the load lock chamber.
Electronic device processing apparatus including factory interface chamber with environmental controls and a purge control apparatus allowing purge of a chamber filter. The filter purge apparatus includes a chamber filter and a flushing gas supply configured to supply flushing gas to the chamber filter when an access door to the factory interface chamber is open to allow personnel safe servicing access to the factory interface chamber. The supply of flushing gas to the chamber filter minimizes moisture contamination of the chamber filter by factory ambient air when the access door is open thereby allowing rapid resumption of substrate processing after factory interface servicing. Purge control methods and apparatus are described, as are numerous other aspects.
An etching apparatus includes: a placement table serving as a lower electrode and configured to place a workpiece to be subjected to an etching processing thereon; a DC power supply configured to generate a negative DC voltage applied to the placement table; and a controller configured to: periodically apply a negative DC voltage to the placement table from the DC power supply when the etching processing on the workpiece placed on the placement table is initiated, and decrease a frequency of the negative DC voltage applied to the placement table with an elapse of processing time of the etching processing.
A semiconductor device comprising a substrate layer, an epitaxial layer, a dielectric layer, a first aluminum layer, a first titanium interlayer and a second aluminum layer. The first titanium interlayer is disposed between the first aluminum layer and the second aluminum layer. A process for fabricating a semiconductor device comprising the steps of: preparing a semiconductor wafer; depositing a first aluminum layer onto the semiconductor wafer; depositing a first titanium interlayer onto the first aluminum layer; depositing a second aluminum layer onto the first titanium interlayer; applying an etching process so that a plurality of trenches are formed so as to expose a plurality of top surfaces of a dielectric layer; and applying a singulation process so as to form a plurality of separated semiconductor devices.
A method of forming doped regions by diffusion in gallium nitride materials includes providing a substrate structure including a gallium nitride layer and forming a mask on the gallium nitride layer. The mask exposes one or more portions of a top surface of the gallium nitride layer. The method also includes depositing a magnesium-containing gallium nitride layer on the one or more portions of the top surface of the gallium nitride layer and concurrently with depositing the magnesium-containing gallium nitride layer, forming one or more magnesium-doped regions in the gallium nitride layer by diffusing magnesium into the gallium nitride layer through the one or more portions. The magnesium-containing gallium nitride layer provides a source of magnesium dopants. The method further includes removing the magnesium-containing gallium nitride layer and removing the mask.
A method of manufacturing a substrate includes forming a support structure by providing a polycrystalline ceramic core, encapsulating the polycrystalline ceramic core in a first adhesion shell, encapsulating the first adhesion shell in a conductive shell, encapsulating the conductive shell in a second adhesion shell, and encapsulating the second adhesion shell in a barrier shell. The method also includes joining a bonding layer to the support structure, joining a substantially single crystalline silicon layer to the bonding layer, forming an epitaxial silicon layer by epitaxial growth on the substantially single crystalline silicon layer, and forming one or more epitaxial III-V layers by epitaxial growth on the epitaxial silicon layer.
Methods and apparatuses suitable for encapsulation layers for memory devices at temperatures less than about 300° C. are provided herein. Methods involve introducing a reactive species by pulsing plasma while exposing a substrate to deposition reactants, and post-treating deposited encapsulation films to densify and reduce hydrogen content. Post-treatment methods include periodic exposure to inert plasma without reactants and exposure to ultraviolet radiation at a substrate temperature less than about 300° C.
Described herein are boron-containing precursor compounds, and compositions and methods comprising same, for forming boron-containing films. In one aspect, the film is deposited from at least one precursor having the following Formula I or II described herein.
An ion optical device includes one or more pairs of confinement electrode units arranged at two sides of a first direction; a power supply device for applying opposite radio-frequency voltages to the paired confinement electrode units respectively and forming thereon DC potentials distributed in a second direction orthogonal to the first direction to form a potential barrier herein over a length portion of the first direction; one first area and one second area positioned at two sides of the potential barrier in the second direction; and a control device connected with the power supply device for controlling an output thereof to change the potential barrier to manipulate the ions transported/stored in the first area being transferred to the second area through the potential barrier in ways based on the mass to charge ratio or mobility of the ions and continue being transported along the first direction.
Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate. The method includes forming a plasma in a processing region of a chamber using an RF supply coupled to a multi-compositional target, translating a magnetron relative to the multi-compositional target, wherein the magnetron is positioned in a first position relative to a center point of the multi-compositional target while the magnetron is translating and the plasma is formed, and depositing a multi-compositional film on a substrate in the chamber.
A simple and environment-friendly production equipment for carbon nano-materials includes a power source and an AC/DC rectifier. A vacuum device for producing the carbon nano-materials is connected with two output ends of the AC/DC rectifier. An alternate current is generated by the power source and then is rectified into a direct-current power supply through the AC/DC rectifier to provide a power supply for a first graphite rod and a second graphite rod in the same direction, so as to generate a high-voltage electric arc at a junction of the first graphite rod and the second graphite rod, and plasma ionization is conducted on substances on the two graphite rods through the high-voltage electric arc, so that carbon atoms in the two graphite rods are decomposed, and carbon nano-materials are separated out and collected into a collector through a cover.
A charged particle beam apparatus includes: an optical system that irradiates a sample mounted on a sample stage with a charged particle beam; at least one detector that detects a signal generated from the sample; an imaging device that acquires an observation image; a mechanism for changing observation positions in the sample which has at least one of a stage that moves the sample stage and a deflector that changes the charged particle beam's irradiation position; a display unit that displays an operation screen provided with an observation image displaying portion that displays the observation image and an observation position displaying portion that displays an observation position of the observation image; and a controller that controls display processing of the operation screen. The controller superimposes and displays on the observation position displaying portion a plurality of observation position images at different magnifications, based on the observation images' magnifications and coordinates.
An apparatus may include an ion source, arranged to generate an ion beam at a first ion energy. The apparatus may further include a DC accelerator column, disposed downstream of the ion source, and arranged to accelerate the ion beam to a second ion energy, the second ion energy being greater than the first ion energy. The apparatus may include a linear accelerator, disposed downstream of the DC accelerator column, the linear accelerator arranged to accelerate the ion beam to a third ion energy, greater than the second ion energy.
Disclosed is a low pressure wire ion plasma discharge source including an elongated ionization chamber housing at least two parallel anode wires extending longitudinally within the ionization chamber. A first of the at least two anode wires is connected to a DC voltage supply and a second of the at least two anode wires is connected to a pulsed voltage supply.
An electron emitting device (100) includes a first electrode (12), a second electrode (52), and a semi-conductive layer (30) provided between the first electrode (12) and the second electrode (52). The semi-conductive layer (30) includes a porous alumina layer (32) having a plurality of pores (34) and silver (42) supported in the plurality of pores (34) of the porous alumina layer (32).
An electric fuse box or junction box assembly has a high voltage electric line cutter assembly inside an electric fuse box or junction box. The assembly has a box housing for connecting a plurality of electrical lines or connections to a power source. The housing has a pair of mounting stanchions for affixing the high voltage electric line cutter assembly with an electric current carrying busbar having a pair of stub ends. Each stub end of the busbar for carrying electric current from the power source to the plurality of electrical lines is secured to one of the mounting stanchions. Each mounting stanchion has an attachment platform for attaching and supporting the stub end of the busbar and an underlying chamber below the attachment platform for receiving exhaust gases generated when the high voltage electric line cutter assembly is activated.
A switch device and a cooking device having a switch device. The switch device may include a first switch configured to be opened or closed based on contact or non-contact between a first blade and a second blade; a second switch configured to be opened and closed based on contact or non-contact between a third blade and a fourth blade; a housing that accommodates the first switch and the second switch therein; and an actuator disposed in the housing and actuated to selectively open and close the first switch and the second switch.
A key structure including a keycap, a bottom plate, a backlight module, and a thin film circuit board is provided. The bottom plate includes a body and a plurality of protrusions, wherein the body has a plurality of openings, and the protrusions protrude from a first surface of the body and are disposed around the openings. The backlight module is disposed on a second surface of the body, wherein the first surface and the second surface are opposite surfaces. The thin film circuit board and the keycap are disposed on the first surface of the body, and the thin film circuit board is located between the keycap and the bottom plate, and the protrusions are located within an orthographic projection range of the keycap.
A switch device includes an operation switch including a switch knob formed integrally with a recess configured to allow a finger to be inserted. The operation switch includes a detector configured to detect a change in a physical amount caused by operation of the switch knob.
In a contact member, a mesh-like contact including one or more layers of a metal other than a noble metal is embedded in such a manner as to be exposed from one of the surfaces of a rubbery elastic body. The contact member includes a highly conductive metal coat layer only in the regions of the mesh-like contact which are exposed from the rubbery elastic body, the coat layer having conductivity higher than that of the metal on the outermost surfaces of the mesh-like contact.
A capacitor component is disclosed. In an embodiment a capacitor component includes a winding having an oval core hole, which has a maximum diameter and a minimum diameter, wherein the minimum diameter is smaller than the maximum diameter, and wherein the winding is designed such that a deformation of the winding that occurs only locally is producible by a force acting punctiformly on the winding.
An electrical junction box includes: a connector housing that is to be fitted to a mating connector housing; a terminal held by a terminal holding portion provided in the connector housing; a first board connected to an end portion on an extension portion side of the terminal, the extension portion extending from the terminal holding portion toward a direction opposite to a fitting direction; a second board facing the first board; and a heat-generating component installed on the second board in the vicinity of the extension portion.
An electronic device including: a first chip component, having approximately rectangular parallelepiped shape; a second chip component, having approximately rectangular parallelepiped shape; and an external terminal electrically connected to a first terminal electrode and a second terminal electrode. The external terminal includes an electrode connecting component, connected to the first terminal electrode and the second terminal electrode. The electrode connecting component includes: a first component, connected to the coupling component and faces the first terminal electrode; and a second component, extends upward from the first component and faces the first terminal electrode and the second terminal electrode. Length of the second component in a width direction is shorter than a length of the first component in a width direction. Length W2 of the second component in a width direction is shorter than lengths W3, W4 of the first chip component and the second chip component in a width direction.
An electronic device includes a chip component and a metal terminal. The chip component includes an element body containing laminated internal electrodes and a terminal electrode formed outside the element body to connect with ends of the internal electrodes. The metal terminal is connectable with the terminal electrode of the chip component. The metal terminal includes an electrode facing portion, a holding portion, and a mount portion. A connection member connecting between the electrode facing portion and the end surface of the terminal electrode exists in a joint region in a predetermined range. A non-joint region is formed between an edge of the joint region and the holding portion. A non-joint gap between the electrode facing portion and the end surface of the terminal electrode becomes larger toward the holding portion in the non-joint region.
A multilayer coil component includes magnetic layers and inner electrode layers that are alternately laminated on one another. The inner electrode layers are electrically connected to each other to constitute a helical coil conductor. The coil conductor is buried in an element body composed of the magnetic layers. Outer electrodes having folded portions are disposed on both end portions of the element body. The inner electrode layers of the coil conductor have protrusions protruding from both outer edges extending in a length direction of the element body.
Systems and implementations for inductance tuning systems that are configured to operate in a wide range of frequencies are provided herein. The subject matter described herein can in some embodiments include an inductance tuning system including at least one inductor connected to a first terminal, the at least one inductor comprising of a plurality of inductive elements that are substantially magnetically coupled to each other, wherein spacing between the inductive elements are substantially less than diameters of the windings. At least one capacitor can be connected between one or more of the plurality of inductive elements and a second terminal.
An actuating apparatus having a first actuating unit and a second actuating unit arranged adjacent to the first actuating unit. The actuating units each have elongated tubular coil bodies, actuator coils which are wound around the coil bodies, electromagnetically actuatable actuators which are guided in the coil bodies and are movable relative to the actuator coils, and the coil bodies are D-shaped and face one another with the flattened sides thereof.
A chip resistor includes an insulating substrate made of alumina, a pair of electrodes disposed on an upper surface of the insulating substrate, a glass glaze layer made of glass disposed on the upper surface of the insulating substrate, and a resistive element disposed on the upper surface of the glass glaze layer. The resistive element is disposed between the pair of electrodes. The softening point of the glass of the glass glaze layer ranges from 580° C. to 760° C. This chip resistor prevents the resistive element from being peeled off.
A system includes a partition element (4) and a first component (1) which is arranged on a first side of the partition element (4). The first component (1) includes at least one conductor (9), and the partition element (4) includes an associated feedthrough (5) for inserting and feeding through the conductor (9) and for electrically contacting the conductor (9) on a second side of the partition element (4) located opposite the first side. The conductor (9) forms a form-fitting connection to the feedthrough (5) and is pressed into the feedthrough (5).
Methods for dielectrically insulating electrical active parts The invention concerns methods for dielectrically insulating electrical active parts using certain fluorinated cyano-substituted ethers as well as compositions and apparatus comprising such compounds.
An insulative assembly includes an insulative mica-based carrier film and first and second resistive grading layers joined to opposite sides of the mica-based carrier film. The first resistive material layer is configured to engage one or more conductors and insulate the one or more conductors from at least one other conductor. A method for creating an insulative assembly for one or more conductors includes obtaining an insulative mica-based carrier film, depositing a first resistive grading layer on a first side of the mica-based carrier film, and depositing a second resistive grading layer on an opposite, second first side of the mica-based carrier film.
A melt-processable conductive material including a first continuous phase, a second continuous phase and a non-continuous phase. The first continuous phase includes a first polymer, the second continuous phase includes a second polymer, and the non-continuous phase includes a third polymer. The second continuous phase is co-continuous with the first continuous phase and the non-continuous phase is substantially contained within the first continuous phase. A plurality of conductive particles is distributed in the first polymer or at a boundary between the first continuous phase and the second continuous phase. The conductive particles form a conductive network.
The present disclosure provides a stopped cooling system including: a steam line connecting portion connected to a steam line so as to receive cooling water through the steam line connected to an outlet of a steam generator; a stopped cooling heat exchanger for receiving cooling water that enters the stopped cooling system through the steam line connecting portion, and discharging same through a passage of the heat exchanger; a stopped cooling pump activated to perform stopped cooling of the nuclear reactor upon normal stoppage of the nuclear reactor after primary cooling of the nuclear reactor cooling system or when an accident occurs, and for forming a circulating flow of cooling water that circulates between the steam generator and the stopped cooling heat exchanger; and a water supplying pipe connecting portion connected to the heat exchanger passage and a water supplying pipe, which is connected to the inlet of the steam generator, so as to supply the cooling water cooled in the stopped cooling heat exchanger to the steam generator through the water supplying pipe.
A vital-sign detecting system includes radio-frequency (RF) tags disposed on detected subjects respectively, the RF tags respectively generating incident RF signals with different predetermined frequencies, and the incident RF signal projecting on a corresponding detected subject to generate a corresponding reflected RF signal; and at least one RF radar that demodulates the reflected RF signal to obtain vital sign of the corresponding detected subject, and identifies the detected subject according to associated frequency of the reflected RF signal.
Provided are methods and systems for determining the clinical significance of a genetic variant. The methods entail determining, for the variant, (a) a function score based on known impact of the variant on a biological function of a cell or protein, (b) a frequency score based on the frequency of the variant in a population, (c) a co-occurrence score based on how the variant co-occurs with a reference variant having known clinical significance relating to a clinical disease or condition, and (d) a family segregation score based on how the variant segregates with a disease or condition in a family; and aggregating, on a computer, the function score, the frequency score, the co-occurrence score, the family segregation score to generate a clinical significance score indicating the clinical significance of the genetic variant.
A memory storage device and a memory testing method for testing a memory array of the memory storage device are provided. The memory testing method includes the following steps: writing first data into a plurality of first segments of the memory array, and writing second data to a second segment of the memory array; obtaining third data by reading the plurality of first segments, and obtaining fourth data by reading the second segment; converting the fourth data to fifth data, wherein the fifth data is the same as check data obtained by encoding the first data by using an encoding circuit corresponding to a decoding circuit of the memory storage device.
A controller includes an interface and a processor. The interface is configured to communicate with a nonvolatile memory including multiple memory cells organized in multiple memory blocks that each includes multiple Word Lines (WLs). The processor is configured to store first data in one or more WLs of a memory block, the first data occupies less than a maximal number of WLs available in the memory block, to calculate redundancy data over the first data and store the redundancy data in a dedicated memory, to program second data to a selected WL of the memory block that was not programmed with the first data, to check a programming status resulting from the programming of the selected WL, and in response to identifying that programming the second data to the selected WL has corrupted at least part of the first data, to recover the first data using the redundancy data.
A device having at least one memory cell over a substrate is provided. The at least one memory cell includes a source region and a drain region in the substrate, and a first gate and a second gate over the substrate. The first and second gates are arranged between the source region and the drain region. The first and second gate are separated by an intergate dielectric. The first gate is configured as a select gate and erase gate of the at least one memory cell, and the second gate is configured as a storage gate of the at least one memory cell. The second gate comprises a floating gate and a control gate over the floating gate. The device further includes source/drain (S/D) contacts extending from the source region and the drain region. The source region and the drain region are coupled to either one of a source line (SL) or a bit line (BL) through the S/D contacts.
Embodiments of three-dimensional memory device architectures and fabrication methods therefor are disclosed. In an example, the memory device includes a substrate and one or more peripheral devices on the substrate. The memory device also includes one or more interconnect layers and a semiconductor layer disposed over the one or more interconnect layers. A layer stack having alternating conductor and insulator layers is disposed above the semiconductor layer. A plurality of structures extend vertically through the layer stack. A first set of conductive lines are electrically coupled with a first set of the plurality of structures and a second set of conductive lines are electrically coupled with a second set of the plurality of structures different from the first set. The first and second sets of conductive lines are vertically distanced from opposite ends of the plurality of structures.
A high-speed memory circuit architecture for arrays of resistive change elements is disclosed. An array of resistive change elements is organized into rows and columns, with each column serviced by a word line and each row serviced by two bit lines. Each row of resistive change elements includes a pair of reference elements and a sense amplifier. The reference elements are resistive components with electrical resistance values between the resistance corresponding to a SET condition and the resistance corresponding to a RESET condition within the resistive change elements being used in the array. A high speed READ operation is performed by discharging one of a row's bit lines through a resistive change element selected by a word line and simultaneously discharging the other of the row's bit lines through of the reference elements and comparing the rate of discharge on the two lines using the row's sense amplifier. Storage state data are transmitted to an output data bus as high speed synchronized data pulses. High speed data is received from an external synchronized data bus and stored by a PROGRAM operation within resistive change elements in a memory array configuration.
Structures and methods for a multi-bit phase change memory are disclosed herein. A method includes establishing a write-reference voltage that incrementally ramps over a write period. The increments of the write-reference voltage correspond to discrete resistance states of a storage cell of the multi-bit phase change memory.
A method of controlling a reference cell in a resistive memory to identify values stored in a plurality of memory cells is provided. The method includes writing a first value to the plurality of memory cells, providing, to the reference cell, monotonically increasing or monotonically decreasing reference currents. The method includes reading the plurality of memory cells as each of the reference currents is provided to the reference cell, and determining a read reference current based on an aggregation of results of the reading.
A memory device is provided. The memory device receives a main clock signal and provides an internal main clock signal; a data clock buffer to receive a data clock signal; and a latency control circuit configured to generate latency information based on the data clock signal and provide the latency information to a data circuit. The latency control circuit includes: a divider configured to generate divided-by-two clock signals based on the data clock signal; a divider configured to generate divided-by-four clock signals based on a first group of the divided-by-two clock signals; a first synchronization detector configured to output divided-by-two alignment signals indicating whether a second group of divided-by-two clock signals is synchronized with the data clock signal; and a latency selector configured to detect phases of the divided-by-four clock signals based on the divided-by-two alignment signals and adjust a latency of the main clock signal based on the phases.
Memory devices and systems with partial array refresh control over memory regions in a memory array, and associated methods, are disclosed herein. In one embodiment, a memory system includes a memory controller and a memory device operably connected to the memory controller. The memory device includes (i) a memory array having a plurality of memory cells arranged in a plurality of memory regions and (ii) inhibit circuitry. In some embodiments, the inhibit circuitry is configured to disable one or more memory regions of the plurality of memory regions from receiving refresh commands such that memory cells of the one or more memory regions are not refreshed during refresh operations of the memory device. In these and other embodiments, the memory controller is configured to track memory regions that include utilized memory cells and/or to write data to the memory regions in accordance with a programming sequence of the memory device.
A semiconductor device includes a burst end signal generation circuit and an auto-pre-charge control circuit. The burst end signal generation circuit generates a write burst end signal based on a write flag and a latched burst mode signal in a first burst mode and generates the write burst end signal based on an internal write flag and an internal latched burst mode signal in a second burst mode. The auto-pre-charge control circuit performs an auto-pre-charge operation based on the write burst end signal.
A memory device includes a memory cell array that includes memory cells, a row decoder that is connected to the memory cell array through word lines, a column decoder that is connected to the memory cell array through bit lines and source lines, a write driver that transfers a write voltage to a bit line, which is selected by the column decoder, from among the bit lines by using a gate voltage in a write operation, and control logic that generates the gate voltage. The gate voltage is higher than the write voltage.
A memory device includes an array of memory cells, such as SRAM cells, and a plurality of peripheral circuits operably coupled to the memory array. A power control circuit is configured to individually control an application of power to each of the plurality of peripheral circuits and the array of memory cells.
A data storage system that moves and transfers components utilizing drones is disclosed. The data storage system comprises a data storage library for reading and writing of data on a plurality of data storage cartridges, at least one drone vehicle, a processing device, and a non-transitory, computer-readable memory containing programming instructions. The programming instructions are configured to cause the processing device to: receive a request to transfer a data storage component to a destination location in the data storage library, in response to receiving the request, instruct a drone vehicle to perform at least part of the transfer of the data storage component to the destination location, and perform at least part of the transfer of the data storage component to the destination location by the drone vehicle.
A disk drive head assembly includes a spin torque oscillator (STO) situated between a main pole and a trailing shield. A head-disk interference (HDI) sensor is placed between the main pole and a read sensor shield. A trace is connected between a preamplifier and the head assembly for providing a first biasing voltage level to the spin torque oscillator (STO) and to the head-disk interference (HDI) sensor for determining resistance changes in the head-disk interference (HDI) sensor. Further, the preamplifier is configured for determining a resistance change in the head-disk interference (HDI) sensor based on a change in current through the head-disk interference (HDI) sensor. The spin torque oscillator (STO) and the head-disk interference (HDI) sensor are connected in parallel to two connectors from the two contacting pads on the preamplifier.
Various audio encoders and methods of using the same are disclosed. In one aspect, an apparatus is provided that includes an audio encoder and an audio encoder mode selector. The audio encoder mode selector is operable to analyze video data and adjust an encoding mode of the audio encoder based on the analyzed video data.
An apparatus for encoding a multi-channel signal having at least three channels includes an iteration processor, a channel encoder and an output interface. The iteration processor is configured to calculate inter-channel correlation values between each pair of the at least three channels, for selecting a pair including a highest value or including a value above a threshold, and for processing the selected pair using a multi-channel processing operation to derive first multi-channel parameters for the selected pair and to derive first processed channels. The iteration processor is configured to perform the calculating, the selecting and the processing using at least one of the processed channels to derive second multi-channel parameters and second processed channels. The channel encoder is configured to encode channels resulting from an iteration processing to obtain encoded channels. The output interface is configured to generate an encoded multi-channel signal including the encoded channels and the first and second multi-channel parameters.
An audio packet error concealment system includes an encoding unit for encoding an audio signal consisting of a plurality of frames, and an auxiliary information encoding unit for estimating and encoding auxiliary information about a temporal change of power of the audio signal. The auxiliary information is used in packet loss concealment in decoding of the audio signal. The auxiliary information about the temporal change of power may contain a parameter that functionally approximates a plurality of powers of subframes shorter than one frame, or may contain information about a vector obtained by vector quantization of a plurality of powers of subframes shorter than one frame.
Embodiments of the present disclosure disclose an artificial intelligence based method and apparatus for classifying a voice-recognized text. A specific embodiment of the method includes: acquiring a current interactive text of a voice query from a user; analyzing the current interactive text using a lexical analyzer to obtain a current lexical structure; determining whether the current lexical structure matches a template of a category in a classifier; and classifying, if the current lexical structure matches the template of the category in the classifier, the current interactive text corresponding to the current lexical structure into the category belonging to the matched template. The embodiment can fast classify texts, effectively reduce the magnitude of manually annotated texts, and improve the annotation efficiency in intelligent voice interaction services.
Among other things, a developer of an interaction application for an enterprise can create items of content to be provided to an assistant platform for use in responses to requests of end-users. The developer can deploy the interaction application using defined items of content and an available general interaction model including intents and sample utterances having slots. The developer can deploy the interaction application without requiring the developer to formulate any of the intents, sample utterances, or slots of the general interaction model.
A driving circuit and an anti-interference method thereof are provided. The driving circuit includes a source driver. The source driver is configured to be controlled by a timing controller. The source driver is configured to adjust at least one of an operation frequency and a receiving bandwidth of a source driving circuit of the source driver when at least one of the timing controller and the source driver detects that an interference event occurs.
The invention comprises a system of client-server visualization with hybrid data processing, having a server digital data processor, that allows for server side rendering and processing image data, and client digital data processors simultaneously connected to the server, which receives messages from the clients, creates rendered images of data sets or other data processing results and sends those rendered images and results to the clients for display or further processing. Performing certain image rendering operations on either the server or the client according to which is better suited for the tasks requested by the user at any point in time, and possibly adjusting this division of work dynamically, improves rendering speed and application responsiveness on the clients.
A display driver comprises image processing circuitry and drive circuitry. The image processing circuitry is configured to output display image data representing a display image comprising an effective area to be displayed in a display area of a display panel and an invalid area not to be displayed in the display area. The drive circuitry drives the display panel based on the display image data comprising effective pixel data associated with first pixels included in the effective area and invalid pixel data associated with second pixels included in the invalid area. Effective pixel data associated with first pixels located within a boundary area adjacent to the invalid area is set to first grayscale values. The invalid pixel data associated with second pixels located within an insert area defined in the invalid area is set to second grayscale values comprising a value different from the first grayscale values.
A liquid crystal display device includes displaying each picture with two frame images in sequence; drive voltages of adjacent two sub-pixels on each frame image including a high drive voltage and a low drive voltage, and the drive voltages of each sub-pixel in the first frame image and in the second frame image including a high drive voltage and a low drive voltage; determining backlight brightness adjusting signals of each backlight sub-area according to the drive voltages of a first frame image area and a second frame image area corresponding to each backlight sub-area; the backlight brightness adjusting signals being in groups; and performing independent brightness adjustment on a backlight source of the sub-pixels of various colors in corresponding backlight sub-areas in respective frame images of a next picture according to the backlight brightness adjusting signal of each backlight sub-area.
An organic light emitting display comprises pixels connected to gate lines, and a gate driving circuit to supply a gate signal to at least one gate line, and having stages connected to each other in a cascading way. A nth (n is a positive integer) stage of the gate driving circuit includes a Q1 node charging unit to charge a Q1 node to a turn-on voltage using first and second clock signals in reverse-phase, and a pull-up transistor to apply the turn-on voltage to an output terminal in response to a Q1 node voltage. The Q1 node charging unit includes a first charging unit to charge the Q1 node voltage to the turn-on voltage using the second clock signal; and a second charging unit to charge a Q2 node, coupled to the Q1 node, using the first clock signal in a section where the Q1 node has the turn-on voltage.
The present embodiments may provide a display device that includes a display panel; a data driver configured to include a plurality of driver Integrated Circuits (ICs) configured to supply a data signal to the display panel and to be present on the display panel, and to have a first characteristic and a second characteristic corresponding to variation between at least two driver ICs among the plurality of driver ICs; and a controller configured to supply a first voltage and a second voltage to the data driver, to identify change values of the first characteristic and the second characteristic corresponding to the first voltage and the second voltage, and to change the first characteristic and the second characteristic corresponding to the change values, and may provide a method for operating the same.
A display driver integrated circuit may include a controller configured to receive first image data from an application processor positioned outside the display driver integrated circuit and a data driver configured to receive the first image data from the controller.
A display apparatus includes a light source, a light amount control unit configured to control an amount of light emitted from the light source, an image processing unit configured to control a signal level of the image signal, and a control unit configured to control the light amount control unit and the image processing unit based on the image signal. The control unit performs control such that, when the image signal changes, the signal level of the image signal controlled by the image processing unit becomes a signal level corresponding to the changed image signal more quickly than the light amount controlled by the light amount control unit reaches a light amount corresponding to the changed image signal.
A pixel array is implemented in a display device. The display device includes a plurality of data lines and a plurality of scan lines. The pixel array includes a first sub pixel row, a second sub pixel row, and a third sub pixel row. The first sub pixel row includes a first sub pixel, a second sub pixel, and a third sub pixel. The second sub pixel row includes a fourth sub pixel, a fifth sub pixel, and a sixth sub pixel. The third sub pixel row includes a seventh sub pixel, an eighth sub pixel, and a ninth sub pixel. The seventh sub pixel is electrically coupled to a first data line. The first sub pixel, the fourth sub pixel, and the fifth sub pixel are electrically coupled to a second data line. The second sub pixel, the third sub pixel, and the eighth sub pixel are electrically coupled to a third data line. The sixth sub pixel and the ninth sub pixel are electrically coupled to a fourth data line.
A display panel includes a substrate, an opening, a first gate driving circuit, a second gate driving circuit, a plurality of first gate lines, a plurality of second gate lines, and a plurality of third gate lines. The substrate has a display area, a first peripheral region, and a second peripheral region. The opening is located in the display area. The first gate driving circuit is located in the first peripheral region. The second gate driving circuit is located in the second peripheral region. The first gate lines are located between the opening and the first gate driving circuit. The second gate lines are located between the opening and the second gate driving circuit. The third gate lines are located between the first gate driving circuit and the second gate driving circuit.
A system and a method for universally projecting an image on a display device to an outside device. The system includes a housing, a screen capture device, a serializer, and a display interface. Further, the system includes a sound capture device, and a bracket to secure the display device to the system. The method includes receiving an image of a display device, converting the image to a digital signal, serializing the digital signal, and transmitting the serialized digital signal to an outside device.
In some embodiments, the disclosed subject matter involves a head worn device (HWD) for viewing augmented reality, or virtual images. A projector coupled to the HWD may use a microelectromechanical systems projector and project onto a holographic lens of the HWD. Images may be projected into an eyebox area that is deemed comfortable to the user, the eyebox area located in one of a plurality of vertically adjacent recording zones. The recording zone for projection may be selected by the user, or be automatically selected based on configuration parameters of the HWD. Horizontal correction of the eyebox may be included. In an embodiment, multiple horizontal images are displayed in the selected recording zone, in different wavelengths. Another embodiment adjusts horizontal shift of the projected image based on user inputs. Other embodiments are described and claimed.
Systems and methods are provided for using a rechargeable electronic sign label. Exemplary embodiments include an electronic sign label electrically coupled to a capacitor and an RFID tag. One or more RFID readers are in communication with the RFID tag. The RFID tag is configured to determine when the charge of the capacitor is below a threshold value, and in response transmit a message to the RFID readers. At least one RFID reader transmits a signal to the RFID tag that includes an instructions to charge the capacitor. An antenna of the RFID tag may be electrically coupled to the capacitor to allow the capacitor to charge based on the energy collected by the RFID tag antenna.
Systems and methods are disclosed for identifying high risk parking lots. High risk parking lots may be, for example, parking lots that pose a higher than average risk of collisions and/or theft. Auto insurance claim data may be analyzed to identify hazardous areas. A virtual navigation of roads within the hazardous area may be identified. Public parking lots within the virtual navigation map may be defined, with each public parking lot determined as either in a hazardous area or not. A vehicle may be determined to be approaching or parking in a parking lot in a hazardous area, and a nearby public parking lot not associated with the hazardous area may be selected instead. A route from a current position to the nearby public parking lot may be generated, and the vehicle may be routed to the nearby public parking lot. As a result, collisions and thefts may be reduced.
The disclosure relates to a method for requesting and granting priority between a host vehicle and other vehicles, and to a system which implements the method. The host vehicle, through the use of on-board vehicle sensors, detects and identifies an impeding vehicle which interferes with the host vehicle's path. The host vehicle transmits a priority request to the impeding vehicle. The priority request includes a remuneration offer. The impeding vehicle evaluates the priority request, including the sufficiency of the host vehicle's remuneration offer, and grants or denies the host vehicle's priority request. If granted, the impeding vehicle modifies its path to be less impeding to the host vehicle, for example by assuming a cooperative path that lets the host vehicle pass the impeding vehicle.
Provided is a communication apparatus installed in a vehicle, the communication apparatus including: an acquisition unit configured to acquire, via a network installed in the vehicle, a plurality of types of status information each indicating a status of the vehicle; an information creation unit configured to create, on the basis of each piece of the status information acquired by the acquisition unit, feature information having a data amount smaller than a total of data amounts of the respective pieces of the status information, the feature information including a feature amount of a traveling status of the vehicle; and a transmission unit configured to transmit vehicle information based on the feature information created by the information creation unit, to another communication apparatus.
An obstacle determination system includes an avoidance behavior detection unit configured to detect an avoidance behavior that is a behavior of a vehicle avoiding an obstacle, and an obstacle determination unit configured to determine that the obstacle is present when a road on which the avoidance behavior occurs is not a road on which avoidance of an oncoming vehicle is needed.
A vehicle safety driving guidance system includes a communication device that performs communication with a vehicle terminal, a data collection device that collects traffic information of a road section on which a vehicle having the vehicle terminal mounted therein travels, and a processor that provides safety driving guide information of the road section based on the traffic information collected by the data collection device.
A method captures data and transfers the data from a transmitter to a receiver, which is a transportation vehicle, and controls the capture and transfer of data. The method produces data and transfers the data from a transmitter to a receiver, which is a traffic participant. The data are based on a geographic environment model of the transmitter, wherein the geographic environment model includes a recognition of objects. Operations at the transmitter include capturing parameters of a transfer system for transferring the data and/or traffic-relevant parameters of the transmitter, producing the data in accordance with the recognized objects, and transferring the data in accordance with the parameters of the transfer system and/or the traffic-relevant parameters of the transmitter.
A method is provided to generate vehicle lane speed patterns. A method may include: receiving probe data from a plurality of probes, where the probe data includes probe data point location and heading; matching probe data points to a road segment to generate map-matched probe data points; analyzing the probe data relative to the road segment to establish a multi-modal distribution of probe data representing a distance of the probe data points from a pre-defined reference position of the road segment; matching the analyzed probe data points to individual lanes of the road segment, where peaks in the established multi-modal distribution are associated with individual lanes; and generating a vehicle lane speed pattern for each lane of the road segment based on a speed associated with probe data that is map-matched to the individual lanes.
Systems and methods for building and using a false alarm predicting model to determine whether to alert a user and/or relevant authorities about an alarm signal from a security system are provided. Such systems and methods can include a learning module receiving the alarm signal and additional information associated with the alarm signal, using the false alarm predicting model to process a combination of the alarm signal and the additional information to determine whether the combination represents a false alarm or a valid alarm, and transmitting a status signal indicative of whether the combination represents the false alarm or the valid alarm to an automated dispatcher module, and the automated dispatcher module using the status signal to automatically determine whether to alert the user and/or the relevant authorities about the alarm signal.
Devices, methods, and systems for detecting faults on a spur wired alarm circuit are described herein. One system includes a bipolar capacitor coupled to a last device on a spur wired alarm circuit, a voltage supply coupled to the spur wired alarm circuit, and a controller configured to operate the voltage supply such that a current flows through the spur wired alarm circuit, operate the voltage supply such that the current stops flowing through the spur wired alarm circuit for a particular amount of time, determine a voltage across the bipolar capacitor while the current has stopped flowing through the spur wired alarm circuit, and determine whether a fault has occurred on the spur wired alarm circuit based on the determined voltage.
A method for requesting help during an emergency event using a client device. The client device shows live video of the emergency event and provides a panic button in the GUI after receiving an input such as a touch gesture or keyboard input from the user. The user may select the button in the GUI to simultaneously request help from emergency services and neighbors. The request for help includes a link to view the live video.
A watching assistance system that assists watching over a subject on a bed, the watching assistance system includes: a detector configured to detect a position of a predetermined region of the subject from the image captured by an imaging device; a determination unit configured to determine whether the subject raises oneself up based on the position at which the predetermined region of the subject is detected; and an output unit configured to provide notification when the determination unit determines that the subject raises oneself up. Based on a bed region in the image, a lying region is set to an existing range of a predetermined region at a lying time, and a raising-up region is set to an existing range of the predetermined region at a raising-up time. The lying region and the raising-up region are disposed at an interval. The determination unit determines that the subject raises oneself up when a condition that predetermined region of the subject is detected in the raising-up region after the predetermined region of the subject is detected in the lying region is satisfied.
A fabric-based electronic device may include an electronic device housing coupled to fabric. Control circuitry may be mounted in the electronic device housing and may control the movement of an output device in the fabric that provides tactile output to a user. For example, the output device may include a wire enclosed within a flexible tube. The flexible tube may be intertwined with fibers in the fabric. The wire may include a kink or other irregularity that presses against the inner surface of the flexible tube. When the wire is rotated or moved into an appropriate position, the kink may press against the inner surface of the tube, which in turn forms a protrusion on the fabric. The protrusion may press against the user's body and may therefore be used to obtain the attention of a user that is wearing or holding the fabric-based electronic device.
Embodiments of the inventive subject matter include methods and systems for conducting metagames. A method can include providing a wagering game including a plurality of tasks, the plurality of tasks including a first task, a second task, and a third task, wherein the first task must be performed via a wagering game machine in a land-based casino, wherein the second task must be performed online, and wherein the third task must be performed via a ticket. The method can further include establishing a player account in at least one memory device. The method can further include determining that one or more of the plurality of tasks have been completed by a player associated with the player account. The method can further include in response to the determining, assigning an award to the player account.
A food vending machine has a food-preparing device and a storage device. The storage device is connected with the food-preparing device and has serving openings and a transmission mechanism. The transmission mechanism has multiple loading assemblies capable of moving along a transmission route. A food-serving method includes an ordering process, a preparing process, and a serving process. A consumer may choose later pick-up and optionally specify a pick-up time. Then, if the consumer chooses later pick-up but does not specify a pick-up time, the storage device serves the meal; if the consumer chooses later pick-up and specifies a pick-up time, the food-preparing device serves the meal, but the meal will be conveyed to the storage device after a pre-set time. Thus, a waiting time of the consumer may be reduced, and a formerly ordered but not-yet-picked-up meal may not interfere with a later consumer.
Systems and methods for automatically generating a commercial driver logbook based on vehicular data is disclosed herein. An example system includes a processor; and memory, the processor being configured to execute instructions stored in memory to perform a first type of authentication of a user based on an identifier received from a mobile device, unlock a door of a vehicle when the first type of authentication is complete, perform a second type of authentication of the user that is based on verification of a code transmitted to the user in response to completion of the first type of authentication, allow a key on event for the vehicle when both the first type of authentication and the second type of authentication are complete, and automatically generating a commercial driver logbook based on real-time drive time data collected from the vehicle.
This invention discloses a novel system and method for automated protocols between a mobile device and an electronic ticketing verification system, where proximity detection is used to automatically display the verification or to automatically control entry gates or turnstiles when the mobile device is verified has holding a valid ticket and being located in a specific location associated with the ticket.
Some embodiments include a computer server. The computer server can be configured to: add a security system associated with a user account; provision one or more communication devices associated with the security system; configure a cryptographic key to associate at least a communication device amongst the communication devices with the security system; configure an access control file that is cryptographically signed by the computer server and encrypted with the cryptographic key associated with the security system, wherein the access control file contains permissions of the communication devices to the security system; and provide a data payload including the access control file to a first communication device of the communication devices.
Embodiments of a system and method for using a mobile device to assist with the efficient and secure delivery of item. The mobile device can assist an item deliver to lock or unlock secure item delivery receptacles. The mobile device can also notify an item deliverer about particular delivery conditions associated with particular delivery endpoints. The mobile device can further help the item deliverer to determine whether or not he or she is delivering the item to the correct location.
Embodiments of the present disclosure disclose an image compositing method and apparatus, used for harmoniously obtaining and displaying a simulation object composited with an accessory, so that a user has desirable experience and visual enjoyment. The apparatus obtains first data of a skeletal model of a simulation object and skeleton data of an accessory to be composited to the simulation object and determines, based on the first data and the skeleton data of the accessory, a target skeleton that is on the skeletal model and that corresponds to the accessory. The apparatus copies first target data of the target skeleton from the first data and adjusts the first target data of the target skeleton based on preconfigured offset data of the target skeleton to obtain first adjusted data. Finally the apparatus performs shading based on the first adjusted data and the first data to obtain the simulation object composited with the accessory.
A virtual reality system includes a platform, a headset, a mount, and a control unit. The headset includes a motion-sensing unit and a display unit configured to display a video of a virtual environment. The mount is positioned on the platform and configured to releasably engage the headset. While the headset is engaged with the mount, the headset is positioned in a first position. While the headset is disengaged from the mount, the headset is positioned in a second position. The control unit is connected to the headset and configured to receive first data representing the first position and associate the first position with a predetermined first perspective of the virtual environment. The control unit is also configured to receive second data representing the second position, determine a second perspective of the virtual environment corresponding to the second position, and provide video of the virtual environment from the second perspective.
A method and system for generating an augmented reality experience without a physical marker. At least two frames from a video stream are collected and one of the frames is designated as a first frame. The graphical processor of a device prepares two collected frames for analysis and features from the two collected frames are selected for comparison. The central processor of the device isolates points on a same plane as a tracked point in the first frame and calculates a position of a virtual object in a second frame in 2D. The next frame from the video stream is collected and the process is repeated until the user navigates away from the URL, webpage or when the camera is turned off. The central processor renders the virtual object on a display of the device.
Aspects of the subject disclosure may include, for example, a process that analyzes image content of an immersive video frame and identifies a first group of segments of the immersive video frame based on the analysis. The segments collectively span an entire space portrayed by the immersive video frame and the first group of segments spans less than the entire space. A size of a display region of an immersive video viewer is determined that spans less than the entire space and a second group of segments is determined based on the first group of segments and the size of the display region. Transport of the second group of segments, spanning less than the entire space, is facilitated via a communication network to the immersive video viewer for presentation, without requiring transmission of all of the segments. Other embodiments are disclosed.
Provided is a an augmented reality providing device including: a sensing unit configured to sense a body part of a user; a display unit configured to display an image; a semi-transparent mirror unit disposed spaced from the display unit and configured to reflect light incident from the user to emit the reflected light to the user, and transmit light incident from the display unit to provide the transmitted light to the user; and a control unit configured to determine a position at which the image is displayed on the display unit based on the sensed body part.
An image acquiring unit acquires an image of a sheet on which a medium that presents an identification image, including identification information is to be placed, the sheet including a user image that is presented by a user. A first identification-information acquiring unit acquires the identification information from the image acquired by the image acquiring unit. An image extracting unit extracts the user image from the image acquired by the image acquiring unit. A second identification-information acquiring unit acquires the identification information from the medium alone. A first storage unit stores the user image in association with the identification information. A managing unit acquires, from the first storage unit, a user image such that the identification information associated with the user image matches the identification information acquired by the second identification-information acquiring unit, among the user images that are stored in the first storage unit.
A method for visualizing 3D image data of a 3D sensor (10) with a plurality of 3D points which form a lateral 2D arrangement with a respective depth value, wherein connected segments (32) are formed from connected 3D points and the segments (32) are displayed, and wherein two respective 3D points are connected in the same segment (32) if they are laterally adjacent and also differ in their depth value by at most a depth threshold (z).
A spatial indexing system receives a sequence of images depicting an environment, such as a floor of a construction site, and performs a spatial indexing process to automatically identify the spatial locations at which each of the images were captured. The spatial indexing system also generates an immersive model of the environment and provides a visualization interface that allows a user to view each of the images at its corresponding location within the model.
An exemplary directional occlusion system includes an object modeling system and a media player device. The object modeling system accesses a model of a virtual object to be integrated into a three-dimensional (“3D”) scene, the model including texture data defining respective sets of directional occlusion values for surface points on a surface of the virtual object. The object modeling system further generates a set of directional irradiance maps. The object modeling system provides the directional irradiance maps and the model storing the directional occlusion values to the media player device. The media player device receives the model and the directional irradiance maps and, based on this received data, renders the virtual object so as to appear to a user to be integrated into the 3D scene.
Embodiments of the present disclosure can provide systems, methods, and computer-readable medium for providing virtual lighting adjustments to image data. A number of source images may be generated to individually depict solid colors of a color space (e.g., RGB color space). Virtual lighting adjustments associated with a virtual lighting mode may be applied to each source image to generate a corresponding target image. The source images and the target images may be utilized to train a model to identify pixel modifications to be applied to image data. The modifications may be associated with a virtual lighting mode. Subsequently, a user may obtain image data (e.g., an image or video) select a virtual lighting mode via an image data processing application. The previously trained model may be utilized to modify the image to apply the virtual lighting effects associated with the selected virtual lighting mode.
Achieving a configuration that reduces the artificiality to give a strange feeling about the viewpoint of the user displayed on the display unit appearing different from the actual viewpoint. Photographed images from a plurality of different viewpoints are input to generate a plurality of virtual viewpoint images, and then, the plurality of virtual viewpoint images is combined to generate a combined image to be output on a display unit. The virtual viewpoint image generation unit generates a plurality of user viewpoint-corresponding virtual viewpoint images each corresponding to each of viewpoints of each of a plurality of viewing users viewing the display unit, while the image combining unit extracts a portion from each of the plurality of user viewpoint-corresponding virtual viewpoint images in accordance with a relative position between the viewing user and the display unit, and combines the extracted image to generate a combined image. The combined image is generated by extracting a display region image located at a front position of the viewing user at the viewpoint corresponding to the virtual viewpoint image from among the user viewpoint-corresponding virtual viewpoint images corresponding to individual viewing users.
In an example, an apparatus comprises a plurality of execution units; and logic, at least partially including hardware logic, to determine a sub-graph of a network that can be executed in a frequency domain and apply computations in the sub-graph in the frequency domain. Other embodiments are also disclosed and claimed.
A graphics processing system and method reduce and/or eliminate artifacts during animation by modifying skinning weights used for animating three-dimensionally imaged, compound objects having at least a first object and a second object. The graphics processing system and method identifies a first vertex of a first mesh of a first object and determines that it corresponds to a second vertex from a second mesh of a second object. The graphics processing system determines skinning weights of the second vertex and generates modified skinning weights. The graphics processing system can then animate the second object in some embodiments using the modified skinning weights.
A device may generate, based on receiving feeder content, a structured format of the feeder content. The device may generate, based on the structured format of the feeder content, one or more semantic mappings for the feeder content. The device may generate, based on the one or more semantic mappings for the feeder content, an electronic storyboard of the feeder content. The device may generate an extended reality rendered content feed based on the electronic storyboard of the feeder content. The device may provide the extended reality rendered content feed to an extended reality device.
An object is to easily and appropriately identify the orientation of imaging means at the time of image capturing. A control section of an imaging device or an image processing device acquires an image captured by an imaging section and performs image recognition processing of recognizing a photographic subject corresponding to a first orientation such as a horizontal imaging orientation or a vertical imaging orientation in the image so as to judge whether a predetermined photographic subject is present in the image. Then, based on the judgment result, the control section identifies whether the orientation of the imaging device or the imaging section at the time of image capturing is the first orientation or a second orientation.
Exemplary systems and methods perform post-processing operations on computer vision model detections of objects of interest in geospatial imagery to detect and assign attributes to the detected objects of interest. For example, an exemplary post-processing system correlates multiple detections, made by a computer vision model, of an object of interest depicted within a set of images of a geospatial location, determines, based on the correlated detections, an attribute of the object of interest depicted within the set of images of the geospatial location, and selects the attribute for inclusion in a dataset for the object of interest. Corresponding methods and systems are also disclosed.
Provided are a real time multi-object tracking apparatus and method which use global motion, including separating a background and multiple objects from a detected image, recognizing the multiple objects separated from the background; calculating global motion information of the recognized multiple objects, which is information oriented by the multiple objects, and correcting the recognized multiple objects using the calculated global motion information and tracking the multiple objects.
An information processing device includes a disparity information input unit configured to acquire disparity image data indicating a disparity image including a disparity; a V map generating unit configured to generate a V map indicating a frequency of the disparity for each of coordinates of the disparity image by voting the disparity at a position corresponding to the coordinate of each of pixels of the disparity image based on the disparity image data; a shape estimating unit configured to estimate a road surface shape based on the V map; a height table generating unit configured to generate a height table indicating a relationship between the disparity and a height of a road surface based on the estimated road surface shape; and a correcting unit configured to correct, based on rolling information on rolling of a stereo camera that acquires the disparity, information used to generate information indicating the road surface shape so as to cancel out an influence of the rolling.
A system for estimating depth using a monocular camera may include one or more processors, a monocular camera, and a memory device. The monocular camera and the memory device may be operably connected to the one or more processors. The memory device may include an image capture, an encoder-decoder module, a semantic information generating module, and a depth map generating module. The modules may configure the one or more processors to executed by one or more processors cause the one or more processors to obtain a captured image from the monocular camera, generate a synthesized image based on the captured image wherein the style transfer module was trained using a generative adversarial network, generate, a feature map based on the synthesized image, generate semantic information based on the feature map, and generate a depth map based on the feature map and the semantic information.
Embodiments herein provide methods and systems for providing selective disparity refinement. The embodiments include detecting objects of interest of type similar to a type of a point of interest in an image. Disparity values may be determined for the point of interest and the objects of interest in the captured image. Objects of interest may be selected with disparity values within a disparity value threshold range, wherein the disparity value threshold range is based on disparity value of the point of interest. The embodiments include performing a redistribution of disparity values of objects in the image with disparity values not within the disparity value threshold range. The embodiments include assigning a disparity value to the selected objects of interest based on the disparity value of the point of interest, to achieve selective disparity refinement.
A method and a device for evaluating image data of a vehicle camera, involves: a) recording a first image by the vehicle camera, b) recording a subsequent second image by the vehicle camera, c) extracting multiple correspondent features in the first and second images, d) assuming a motion of the vehicle camera (motion hypothesis) between the recordings of the first image and the second image, e) determining a reprojection error of an extracted feature, which indicates the difference between the flow measured from the feature extracted in the first and second images and the flow calculated from the motion hypothesis, and f) establishing outliers, wherein an extracted feature is established as an outlier if the reprojection error of this feature reaches or exceeds a threshold, wherein the threshold is not constant within an iteration that includes at least steps b) to g). This offers an improved detection and removal of outliers to estimate the motion of the vehicle camera.
Methods and apparatus for determining a trajectory of a axisymmetric object in 3-D physical space using a digital camera which records 2-D image data are described. In particular, based upon i) a characteristic length of the axisymmetric object, ii) a physical position of the camera determined from sensors associated with the camera (e.g., accelerometers) and iii) captured 2-D digital images from the camera including a time at which each image is generated relative to one another, a position, a velocity vector and an acceleration vector can be determined in three dimensional physical space for axisymmetric object objects as a function of time. In one embodiment, the method and apparatus can be applied to determine the trajectories of objects in games which utilize axisymmetric object objects, such as basketball, baseball, bowling, golf, soccer, rugby or football.
Systems and methods are provided for automatic segmentation of a vessel. A sequence of image slices containing a vessel is acquired. Features maps are generated for each of the image slices using a trained fully convolutional neural network. A trained bi-directional recurrent neural network generates a segmented image based on the feature maps.
The present invention proposes an apparatus and method for characterizing a tissue in a first region of a subject. The apparatus comprises a receiving unit (210) for receiving ultrasound data of the tissue in the first region and ultrasound data of a predetermined target reference tissue of said subject; a deriving unit (220) for deriving a subject-specific model of the target reference tissue on the basis of the ultrasound data of the target reference tissue; and a characterizing unit (230) for determining a match between tissue in the first region and the target reference tissue on the basis of the subject-specific model and ultrasound data of the tissue in the first region. Unlike conventional tissue characterization based on a large cohort of patient data, the proposed subject-specific model is personalized for the specific subject without any generalization, resulting in higher sensitivity and/or accuracy. Preferably, the subject-specific model of the target reference tissue is derived on the basis of both the ultrasound data of the target reference tissue and the ultrasound data of a background reference tissue of a different type than the target reference tissue.
A system and method are provided to automatically categorize biological and medical images. The new system and method can incorporate a machine learning classifier in which novel ideas are provided to guide the classifier to focus on regions of interest (ROI) within medical images for categorizing or classifying the images. The system and method can ignore regions when misleading structures exist. The detection and classification of one or more features of interest within a discriminative region of interest within an image are rendered invariant to differences in translation, orientation and/or scaling of the one or more features of interest within the medical image(s). The system and method allow a processor to more quickly, efficiently and accurately process and categorize medical images.
A method includes capturing a raw image from a semiconductor wafer, assigning a measurement box in the raw image, arranging a pair of indicators in the measurement box according to graphic data system (GDS) information of the semiconductor wafer, measuring a distance between the indicators, and performing a manufacturing activity based on the measured distance.
The technology described in this document can be embodied in a method that includes receiving during a first time period, information from a first sensor representing a target illuminated by a first illumination source radiating in a first wavelength range, and information from a second sensor representing the target illuminated by a second illumination source radiating in a second wavelength range. The method also includes receiving during a second time period, information from the first sensor representing the target illuminated by the second illumination source radiating in the first wavelength range, and information from the second sensor representing reflected light received from the target illuminated by the first illumination source radiating in the second wavelength range. The method also includes generating a representation of the image in which effects due to the first and second illumination sources are enhanced over effects due to ambient light sources.
Disclosed is a method for determining filter coefficients. The method includes: obtaining the coefficients of a target filter and calculating the response of the target filter; computing according to collected data and/or predetermined data in accordance with a first data pattern so as to have the response of a first filter approximate to the response of the target filter and thereby determine the coefficients of the first filter; and computing according to the collected data and/or the predetermined data in accordance with a second data pattern so as to have the response of a second filter approximate to the response of the target filter and thereby determine the coefficients of the second filter. Accordingly, the difference between the responses of the first filter and the second filter is insignificant and results in less negative influence; and the first and the second filters can replace the target filter to reduce cost.
Embodiments of the present disclosure relate to a sky editing system and related processes for sky editing. The sky editing system includes a composition detector to determine the composition of a target image. A sky search engine in the sky editing system is configured to find a reference image with similar composition with the target image. Subsequently, a sky editor replaces content of the sky in the target image with content of the sky in the reference image. As such, the sky editing system transforms the target image into a new image with a preferred sky background.
Systems and methods for image noise reduction are provided. The methods may include obtaining first image data, determining a restriction or a gradient of the first image data, determining a regularization parameter for the first image data based on the restriction or the gradient, generating second image data based on the regularization parameter and the first image data, and generating a regularized image based on the second image data.
Methods, apparatus, systems and articles of manufacture to prepare a set of equations for a successive over relaxation processor are disclosed. An example apparatus includes an identifier to identify a set of equations that corresponds to pixels of an input image. Example apparatus also include a partitioner to divide the set of equations into partitions that contain mutually independent subsets of the equations and a collector to collect the subsets of the set of equations into groups, based on the partitions, to be solved in parallel by the successive over relaxation processor.
A method is described that includes receiving, from a first device, input used to select a first object in a computer-generated environment. The first device has at least two degrees of freedom with which to control the selection of the first object. The method also includes removing, in response to the selection of the first object, at least two degrees of freedom previously available to a second device used to manipulating a second object in the computer-generated environment. The removed degrees of freedom correspond to the at least two degrees of freedom of the first device and specify an orientation of the second object relative to the selected first object. Additionally, the method includes receiving, from the second device, input including movements within the reduced degrees of freedom used to manipulate a position of the second object while maintaining the specified orientation relative to the selected first object.
An apparatus reconstructs a three dimensional shape of an object from a plurality of images captured from different viewpoints by visual hull. The apparatus stores, into a first memory provided for the apparatus, silhouette image data of the object extracted from the plurality of images, and determines a group of a plurality of epipolar lines having inclinations within a predetermined range in images designated as reference views among the plurality of images, based on positions of neighboring silhouette pixels in an image designated as a target view among the plurality of images. The apparatus further determines, based on the determined group and a capacity of a cache provided for the apparatus, a cache area to be used in a search for a line segment indicating a range where the object exists in each of the plurality of epipolar lines in the group.
Methods, systems, apparatus, and computer program products are provided. In an example embodiment, a method is provided comprising receiving input identifying load information corresponding to a load to be inserted into a transportation plan. The transportation plan comprises a plurality of transportation schedules, each schedule comprising a plurality of transportation movements. The method further comprises identifying an available movement network comprising portions of transportation schedules having open capacity, each portion of a transportation schedule having open capacity being a potential leg of a path from the origin location to the destination location; determining potential solutions for transporting the load from the origin location to the destination location by combining one or more legs to determine a path of open capacity movements from the origin location to at least part way to the destination location; and providing one or more potential solutions for display via a user interface.
Methods, systems, and computer programs are presented for a flood-recovery analysis tool. One method includes operations for generating a prediction of water depth in a geographical region based on weather data for the geographical region and topography data for the geographical region, and causing presentation of a flood inundation map showing the prediction of water depth in a user interface of a display device. The user interface includes an option for entering flood mitigation measures. Further, the method includes operations for receiving the flood mitigation measures via the user interface, updating the topography data to include the received flood mitigation measures, and generating an updated prediction of the water depth in the geographical region based on the updated topography data. An updated flood inundation map is presented in the user interface showing the updated prediction of the water depth and a geographical location of the flood mitigation measures.
An order information processing device includes: an input unit which receives input of one or more pieces of order information; and a processor which executes a function of: when an order information set is registered, the order information set including a plurality of pieces of the order information which are same as one another and are input together, segmenting the order information set to change or delete a part of the order information set.
A method and system for processing electronic offers comprising at least one processing device that submits an electronic offer for a first policy, receives a bid that is responsive to the offer and an acceptance of the bid, and executes a transaction workflow including an agreement with a buyer associated with the bid. In the agreement, the buyer receives the first policy and pays premiums to the first entity that keep the first policy in force, pays certain fees to a second entity, which second entity issues to the owner at least one second policy with a second benefit value based on the life of the insured, the second benefit value comprising a portion of the first benefit value, and pays or causes to be paid to the second entity at least a second benefit value based on the life of the insured.
A network of sensors is utilized to capture and relay data that is relevant to specific types of insurance coverage. Sensors included in the network can be deployed as specialized devices, or can be found in existing consumer products. Behavioral and environmental data collected from the sensor network is used to establish a feedback relationship between an insurance policy holder's behavior and insurance policy pricing. Various types of insurance products can benefit from behavioral and environmental data, including health insurance, dental insurance, disability insurance and automobile insurance. Collected data can be used for other purposes, such as initial risk assessment, risk monitoring, and prevention services.
A system and method for item replenishment comprise a subscription device that associates tags with items, a tag tracking device for collecting data on the tags associated with the items, and a management system that monitors changes in use of the items, including analyzing use patterns to determine when the items should be replenished, replaced, or upgraded.
A user information storage unit stores user information associating, for each user, an electronic mail address and at least one location information piece of the user with each other. A registration unit generates a code for each user using the location information and electronic mail address according to a predetermined rule. An invoice information storage unit stores invoice information including the electronic mail address of a first user included in the user information. When receiving an access request for accessing invoice information from a second user whose user information is stored in the user information storage unit, the registration unit determines whether the first code of the first user matches the second code of the second user, and if the first and second codes match, grants the second user access rights to access invoice information generated by the first user and stored in the invoice information storage unit.
Disclosed are systems and methods for managing queries on on-line advertisement data. The system includes a query engine device for receiving queries from and outputting query results to query client devices and a training engine for generating and adjusting a model for predicting an estimation of resource usage for execution of each received query based on each query's corresponding feature vector having values pertaining to the query and a system status. The query engine device is further configured to provide the estimation of resource usage for each query to the corresponding query client device and, in response, receive input from such corresponding query client device and specifying whether to proceed with the corresponding query. A database system receives input from each query's corresponding query client device as to whether to proceed with the query and, in response, initiates or inhibits execution of such query with respect to a database storage system.
A knowledge model is derived from many different data sources, including activities of a person's mobile devices and various media consumption habits. A graph may be built having various nodes representing concepts from the data sources and edges representing relationships between them. From the graph, various inferences may be made that can provide insight that could not otherwise be obtained. The knowledge model may be deployed as several services, including rich geolocation services, recommendation services, and other services. The services may be accessed through an application programming interface, which may be a paid service with various payment options.
Embodiments of the present disclosure may provide methods, systems, and computer-readable media configured to perform at least the following functions: specifying an advertising asset; receiving media content to be associated with the advertising asset; specifying at least one condition for transmitting the media content, wherein specifying the at least one condition comprises specifying at least one of the following: a first condition associated with at least one element of profile data corresponding with a device configured to receive the media content, a second condition associated with at least one action performed by the device, and a third condition associated with a device location; receiving a content captured by the device; detecting the advertising asset with the captured content; determining whether the at least one condition for transmitting the media content has been met; and transmitting the media content.
A method and system for presenting a promotional offer based on detected data. Data that is generated by at least one device detecting one or more physical actions performed by a person is obtained. The device is located in a same physical environment as the person. The data is analyzed to determine that a probability of an undesired action, by the person, is above a threshold value. Responsive to determining that the probability of the undesired action is above the threshold value, a promotional offer is presented to the person. The promotional offer lowers the probability of the undesired action by the person.
Embedding of digital incentive tokens within a digital image can occur cryptographically using a public key in some embodiments. An encrypted digital incentive token may be embedded within a digital image, including a variety of encrypted information. The digital image with the embedded digital incentive token may be sent to users via delivery mechanisms such as direct webpage embedding, email, text message, and social media sharing. An image recipient may be able to view the image and also take additional action including gaining access to the embedded digital incentive token. Digital incentive tokens can be embedded by altering image metadata so that the image itself is not changed in some embodiments, but data associated with the image is changed to identify the token. Pixel data can be altered to reflect a token for an image. Digital incentive tokens can also be tracked through different platforms to determine usage.
A churn prediction system includes at least one hardware processor, a memory including a historical sample set of subscriber data, and a churn prediction engine executing on the at least one hardware processor. The churn prediction engine is configured to identify the historical sample set, identify a set of attributes, automatically select a subset of attributes based on an information gain value, generate a decision tree by recursively generating nodes of the decision tree by computing an information gain value for each remaining attribute of the subset of attributes, identifying a highest attribute having the highest information gain value, and assigning the highest attribute to the node. The churn prediction engine is also configured to receive target data for a target subscriber, apply the target data to the decision tree, thereby generating a churn prediction for the target subscriber, and identify the target subscriber as a churn prediction.
A system and method for enabling identification of and engagement with, high-value participants within the venue of a live-event from data collected and saved at events for providing improved customer service, marketing of products and increasing ticket sales to events are disclosed. An on-site wireless captive portal technology is used to authenticate attendees to live-events, and, upon authentication, collect their personal preferences and social profile details in real-time. The information collected at the live event is used to update a historic database at a main server station. The data stored in the historic database is analyzed to identify high-value participants of live events and their preferences, to provide them improved customer service, and focused marketing and sales incentives at live-events, thereby improving the live event experience of each of these attendees, while improving ticket sales.
Modifying a number of opportunities in a customer relationship management (CRM) system includes obtaining, from a CRM system, a number of opportunities, the opportunities representing a complex record structure in the CRM system, in which each of the opportunities captures a number of fields of metadata, comparing the metadata associated with the opportunities with a number of archived opportunity templates to create a comparison, analyzing the comparison to identify a number of patterns for the opportunities, and modifying, based on the number of patterns for the opportunities, the opportunities to create at least one new opportunity.
Methods and devices for online payments are disclosed. Prior to accepting payment account information from a user for the payment transaction, a client terminal sends an interface listing command to a transaction server, requesting the transaction server to identify one or more acceptable input interfaces for receiving the payment account information. The transaction server responds to the interface listing command by a payment input instruction. The client terminal uses the payment input instructions to generate a payment information interface to present the one or more acceptable input interfaces for user selection. The user can choose how to input the payment information that best conforms to the user's expectations for security and convenience. The current method, device and system provide additional flexibility, improve efficiency, and facilitate online payment.
Measures, including methods, apparatus and computer software are provided for processing electronic tokens. An authorization request is received in relation to processing of an electronic token. An identifier for a user terminal associated with the electronic token, and an account, are determined on the basis of the authorization request. In some arrangements, a location query for the user terminal is performed on the basis of the determined identifier, whereby to determine a location of the user terminal on the basis of a proximity of the user terminal to one or more base stations in a cellular telecommunications network. In some arrangements, a challenge message is sent to the user terminal, to establish a confidence that the transacting user terminal is the designated user terminal. Processing of the electronic token in relation to the account is selectively authorized on the basis of the result of the location query or challenge response.
Methods, systems, and products charge a battery in a vehicle. A charging station and the vehicle negotiate charging parameters. When the vehicle receives electrical power from the charging station, the vehicle checks the electrical power for the parameters. Should the electrical power fail to exhibit the parameters, charging is terminated.
The present invention describes a Support System and Method for the Management of Beverages Bars in Points of Sale composed of a data manager, a message center, data control and acquisition modules, mobile device, fixed device, a database, that continually register the activity in the beverage preparation machines and beverages display containers to determine when they require attention informing, through the message center, the personnel that operate the points of sale of pending tasks to perform in order to have the displayed beverages fresh and prepared on time, reporting to the supervisor through mobile and/or fixed devices when said tasks haven't been attended to and when they were finally performed.The objective of this invention is to provide a tool that allows to increase the attention to the beverage preparation machines in points of sale where the freshness of beverages and the attention they require is crucial and the point of sale personnel have abundant activities to perform, as well as having a tool for the optimization of ingredient inventories, predictive maintenance alarms and the generation of statistical information to improve the attention to said products.
Integrating payment processing functionality into a third-party application via software development kit (SDK) instructions is described. In an example, a payment card reader can include reader instructions executable on the payment card reader to configure the payment card reader to read payment card data from a payment card and transmit the payment card data to a mobile device for processing by SDK instructions on the mobile device. The SDK instructions can be executable on the mobile device to configure the mobile device to process the payment card data from the payment card reader. The SDK instructions, which can be provided by a payment processor, can be configured to be integrated into a third-party payment application on the mobile device, wherein the third-party payment application is provided by an entity distinct from the payment processor.
A blockchain-based method is described which is related to transferring electronic currency from a payer to a payee. In some embodiments, a first process, a second process and a third process are performed. The first process includes receiving a processing request for a target transaction from a terminal of a payer, and transferring the processing request to a first blockchain node among a plurality of blockchain nodes. When a verification result indicates that the target transaction is valid, the method proceeds to performing the second and third processes. The second process includes transferring electronic currency from an electronic wallet of the payer to an electronic wallet of the payee. The third process includes recording data for the target transaction in a new block, and spreading the new block over the blockchain network. In some embodiments, the second process and the third process are performed in parallel.
A system for using digital twins for scalable, model-based machine predictive maintenance comprises a plurality of digital twins and a simulation platform. The plurality of digital twins correspond to plurality of remotely located physical machines. Each respective digital twin comprises: product nameplate data corresponding to a unique physical machine, one or more simulation models, and a database comprising run time log data collected from sensors associated with the unique physical machine. The simulation platform is configured to process simulation models corresponding to the plurality of digital twins using a plurality of multiprocessor computer systems.
A system for automatically tracking employee hours. The system includes a tracking component. The tracking component is configured to determine the current location of the employee, determine if the current location of the employee is within a designated location and track the time spent by the employee within the designated location. The system also includes an evaluation module. The evaluation module is configured to receive from the tracking component the time spent by the employee within the designated location and determine if the time spent by the employee within the designated location exceeds a predetermined threshold and or to be used for the purpose of billing or to monitor and improve coordination of patient care.
A method includes generating, by a processor, a Systems, Applications, Products (SAP) profile standardization data structure for secure SAP profile entry submission. A reporting data structure including records from a first SAP profile data structure and a second SAP profile data structure is generated for a visual line-by-line result of a comparison of the first SAP profile data structure with the second SAP profile data structure. The reporting data structure comprises a compare template data structure including the first SAP profile data structure and the second SAP profile data structure placed side-by-side and each indicating the visual line-by-line result of the comparing.
A system and method are disclosed for determining long-range staff planning. Embodiments include determining a baseline measurement of labor needs over a time period of one or more employees at one or more entities and modifying the baseline measurement of the labor needs over the time period based on one or more constraints that allow the one or more employees to work additional types of labor needs at the one or more entities. Embodiments further include determining working times and job assignments of the one or more employees based on one or more simulated employees that represent potential employees to the modified baseline measurement of the labor needs over the time period and storing the determined working times and job assignments in the database for the one or more employees at the one or more entities.
A demand response management system which may be implemented with demand response logic. The system may be used by utilities, independent system operators, intermediaries and others to manage operations of demand response programs relative to customers, clients, participants, and users of outputs from the utilities, independent system operators, and the like. Demand response logic of the demand response management system may provide demand signal propagation and generation from demand response events.
Systems and methods for monitoring a charging pattern to identify a customer. The system includes a memory that stores instructions for executing processes for monitoring a charging pattern to identify a customer. The system also includes a processor configured to execute the instructions. The instructions cause the processor to: monitor charging patterns of each user of a plurality of users of a shared vehicle to determine a preferred charging mode for each user; generate a user profile for each user of the plurality of users, the user profile indicating preferences for each respective user; identify a user operating the vehicle; transmit, to a third party vendor, a request for a resource based on the user profile of the user operating the vehicle; and transmit a charging schedule to the vehicle after receiving a response to the request for the resource.
A system and method are provided for improving product usage prior to refill of product dispensers in service areas that include a plurality of such dispensers. Via a sensor configured with each of the product dispensers and a control system in communication with the sensors, a product level or amount condition of product in each dispenser is detected. Based on the information from the sensors, a visual or audio message is generated and transmitted to the patron that encourages the patron to use a first product dispenser that has a greater product fill amount as compared to a second product dispenser in the same or a different service area.
A method, apparatus and program storage device for scheduling the performance of maintenance tasks to maintain a system environment is disclosed. A parameter for a computer system is monitored to detect a need to perform at least one maintenance task. At least one maintenance task is performed when the monitoring detects the need to perform at least one maintenance task or at least once within a predetermined period.
The present disclosure is for systems and methods for connecting offline machine learning training systems with online near-real time machine learning scoring systems. It is not trivial to connect an offline training environment with an online scoring environment. For example, offline training environments are usually static and contain large amounts of historical data that is needed for the initial training of models. Once trained, the model algorithms are then migrated into an online scoring environment for transactional or event based scoring. This migration effectively breaks the connection between the data in the offline environment and the model now running in the online environment. When new or shifting data occurs in the online environment, the static model running in the online environment goes unaltered to the changing inputs. The present disclosure solves the issues that are caused by the break in the offline and online environments.
Methods and Systems for automatic information extraction by performing self-learning crawling and rule-based data mining is provided. The method determines existence of crawl policy within input information and performs at least one of front-end crawling, assisted crawling and recursive crawling. Downloaded data set is pre-processed to remove noisy data and subjected to classification rules and decision tree based data mining to extract meaningful information. Performing crawling techniques leads to smaller relevant datasets pertaining to a specific domain from multi-dimensional datasets available in online and offline sources.
A method is provided for enabling a software user to obtain answers based on information retrieved from Big Data systems to complex questions, which comprises the steps of: providing a plurality of queries associated with different query families, the different query families comprise at least one family of simple queries and at least one query family of complex query family, and each of the families is associated with the following characterizing elements: information sources, entity type for which one or more features would be synthesized, attributes to be used as filters and attributes for calculating the new features; retrieving data from the respective information sources; processing the retrieved data to enable evaluating results of the queries associated with the at least one simple query families; calculating solutions to all queries and synthesizing features characterizing the answers, based on the calculated solutions.
A spatial linear propagation network (SLPN) system learns the affinity matrix for vision tasks. An affinity matrix is a generic matrix that defines the similarity of two points in space. The SLPN system is trained for a particular computer vision task and refines an input map (i.e., affinity matrix) that indicates pixels the share a particular property (e.g., color, object, texture, shape, etc.). Inputs to the SLPN system are input data (e.g., pixel values for an image) and the input map corresponding to the input data to be propagated. The input data is processed to produce task-specific affinity values (guidance data). The task-specific affinity values are applied to values in the input map, with at least two weighted values from each column contributing to a value in the refined map data for the adjacent column.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing inputs using a neural network system that includes a whitened neural network layer. One of the methods includes receiving an input activation generated by a layer before the whitened neural network layer in the sequence; processing the received activation in accordance with a set of whitening parameters to generate a whitened activation; processing the whitened activation in accordance with a set of layer parameters to generate an output activation; and providing the output activation as input to a neural network layer after the whitened neural network layer in the sequence.
Some embodiments of the invention provide an integrated circuit (IC) with a defect-tolerant neural network. The neural network has one or more redundant neurons in some embodiments. After the IC is manufactured, a defective neuron in the neural network can be detected through a test procedure and then replaced by a redundant neuron (i.e., the redundant neuron can be assigned the operation of the defective neuron). The routing fabric of the neural network can be reconfigured so that it re-routes signals around the discarded, defective neuron. In some embodiments, the reconfigured routing fabric does not provide any signal to or forward any signal from the discarded, defective neuron, and instead provides signals to and forwards signals from the redundant neuron that takes the defective neuron's position in the neural network. In some embodiments that implement a neural network by re-purposing (i.e., reconfiguring) one or more individual neurons to implement neurons of multiple stages of the neural network, the IC discards a defective neuron by removing it from the pool of neurons that it configures to perform the operation(s) of neurons in one or more stages of neurons, and assigning this defective neuron's configuration(s) (i.e., its machine-trained parameter set(s)) to a redundant neuron. In some of these embodiments, the IC would re-route around the defective neuron and route to the redundant neuron, by (1) supplying machine-trained parameters and input signals (e.g., previous stage neuron outputs) to the redundant neuron instead of supplying these parameters and signals to the defective neuron, and (2) storing the output(s) of the redundant neuron instead of storing the output(s) of the defective neuron.
Each energy value calculation circuit calculates an energy value, based on a sum total of values obtained by multiplying state values of a plurality of second neurons coupled with a first neuron by corresponding weighting values indicating coupling strengths, and updates the energy value, based on identification information of an updated neuron whose state is updated among the plurality of second neurons and a state value of the updated neuron. Each state transition determination circuit outputs, based on a second energy value and a noise value, a determination signal indicating a determination result of whether a change in a state value of the first neuron is possible. An updated neuron selection circuit selects, based on received determination signals, a first neuron a change in whose state value is possible and outputs identification information of the selected first neuron as identification information of the updated neuron.
A booster antenna (BA) for a smart card comprises a card antenna (CA) component extending around a periphery of a card body (CB), a coupler coil (CC) component at a location for an antenna module (AM), and an extension antenna (EA) component contributing to the inductance of the booster antenna (BA). At least a portion of the coupler coil (CC) component may have a sense which is opposite to a sense of at least a portion of the card antenna (CA) component. At least a portion of one of the components may be interleaved with (i) a portion of another component, or (ii) another portion of the same component. A capacitive extension (CE) may extend from at least one of the card antenna (CA), coupler coil (CC) and extension antenna (EA) components.