US11957067B2

A memory cell includes a selection transistor having a control gate and a first conduction terminal connected to a variable-resistance element. The memory cell is formed in a wafer comprising a semiconductor substrate covered with a first insulating layer, the insulating layer being covered with an active layer made of a semiconductor. The gate is formed on the active layer and has a lateral flank covered with a second insulating layer. The variable-resistance element includes a first layer covering a lateral flank of the active layer in a trench formed through the active layer along the lateral flank of the gate and reaching the first insulating layer, and a second layer made of a variable-resistance material.
US11957066B2

Embodiments of the present disclosure describe quantum circuit assemblies that include one or more filter modules integrated in a package with a quantum circuit component having at least one qubit device. Integration may be such that both the quantum circuit component and the filter module(s) are at least partially inside a chamber formed by a radiation shield structure that is configured to attenuate electromagnetic radiation incident on the quantum circuit component and the filter module(s). Placing filter modules under the protection provided by the radiation shield structure may boost coherence of the qubits. Some example filter modules may include filter(s) configured to convert electromagnetic radiation to heat and filter(s) configured to perform bandpass filtering. Modular blocks of in-line filters inside the shielded environment may allow to route signals to the quantum circuit component with reduced noise and speed up installation of a complete quantum computer.
US11957064B2

A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a spacer adjacent to the MTJ, a liner adjacent to the spacer, and a first metal interconnection on the MTJ. Preferably, the first metal interconnection includes protrusions adjacent to two sides of the MTJ and a bottom surface of the protrusions contact the liner directly.
US11957060B2

This invention relates to an operational element and a method for manufacturing the operational element that comprises magnetic shape memory alloy. in the method at least a part of the magnetic shape memory alloy is arranged as an active region that is responsive to a magnetic field and at least one other part of the magnetic shape memory alloy is arranged as an inactive region that is unresponsive to a magnetic field.
US11957058B2

A method of transducing electrical energy to sound is disclosed which includes providing a transducer, the transducer includes lead zirconate titanate (PZT) particles mixed with graphene nanoplatelets (GNPs) in a flexible substrate aligned in a first direction, forming a transducer subsystem, a first conductive protective electrode having a width and a length configured to provide a first electrical connectivity to an external circuit, and a second conductive protective electrode having the width and the length and configured to provide a second electrical connectivity to the external circuit, wherein the transducer subsystem is sandwiched between the first and second conductive protective electrodes, and providing an external circuit configured to provide an electrical signal to the first and second conductive protective electrodes to thereby transduce the electrical signal to sound.
US11957052B2

According to one embodiment, a thermoelectric material are provided. The thermoelectric material includes a sintered body formed of p-type and n-type thermoelectric materials for the thermoelectric conversion element. The thermoelectric materials have a MgAgAs type crystal structure as a main phase. An area ratio of internal defects of the thermoelectric materials for one thermoelectric conversion element is 10% or less in terms of a total area ratio of defective portions in a scanning surface according to ultrasonic flaw detection in a thickness direction of the thermoelectric material. No defect having a length of 800 μm or more is present at any vertex of chips of the thermoelectric materials.
US11957048B2

Organic photovoltaic cells (OPVs) and their compositions are described herein. one or more embodiments, the acceptor with an active layer of an OPV includes is a non-fullerene acceptor. Such non-fullerene acceptors may provide improved OPV performance characteristics such as improved power conversion efficiency, open circuit voltage, fill factor, short circuit current, and/or external quantum efficiency.
US11957046B2

An electroluminescent device includes a first electrode and a second electrode facing each other; an emission layer disposed between the first electrode and the second electrode and including a plurality of quantum dots and a first hole transporting material having a substituted or unsubstituted C4 to C20 alkyl group attached to a backbone structure; a hole transport layer disposed between the emission layer and the first electrode and including a second hole transporting material; and an electron transport layer disposed between the emission layer and the second electrode.
US11957043B2

A light-emitting device includes: a first electrode; a second electrode facing the first electrode; and an interlayer disposed between the first electrode and the second electrode and including an emission layer patterned into a red emission layer and a green emission layer for a corresponding sub-pixel, wherein the red emission layer includes a red dopant having a horizontal dipole moment, and the green emission layer comprises a green dopant having a horizontal dipole moment, and the horizontal dipole moment of the green dopant is greater than the horizontal dipole moment of the red dopant.
US11957040B2

The present disclosure relates to a display panel and a curved display device. The display panel includes a flexible substrate (100), including a first region (BB) and a second region (AA). The first region (BB) includes: a plurality of light emitting structures (110) with a first opening gap (200) formed between two adjacent light omitting structures (110); and a plurality of flexible bridging parts (120), with at least one flexible bridging part (120) connecting two adjacent light emitting structures (110).
US11957037B2

A method for manufacturing a light-emitting device comprises: performing first light irradiation; subsequent to the performing first application, that involves irradiating with light using a first photomask, from above the substrate, the position where the first solution is applied, and forming a first exposure region exposed by the first light irradiation in which the first ligand melts and the first solvent vaporizes, and a first non-exposure region at a position different from a position exposed by the first light irradiation, performing first cooling, subsequent to the performing first light irradiation, that involves lowering a temperature of the first quantum dot to a temperature equal to or lower than a melting point of the first ligand and solidifying the first ligand; and performing first removal, subsequent to the performing first cooling, that involves washing an upper layer relative to the substrate to remove the first solution in the first non-exposure region.
US11957033B2

Provided are a display panel, a manufacturing method thereof, and a display device. The display panel includes an alignment mark region arranged within a flat region of a peripheral region of the display panel. The peripheral region is a region of the display panel other than an active area of the display panel. An alignment mark pattern is arranged within the alignment mark region, and/or at least one film layer within the alignment mark region is hollowed out.
US11957022B2

A display panel includes a first base substrate, a plurality of light sources on the first base substrate, a second base substrate opposite to the first base substrate, a light conversion structure on the second base substrate, a plurality of extinction structures on a side of the light conversion structure facing the first base substrate, a first channel formed between any two adjacent extinction structures, a plurality of first optical structures on a side of the light conversion structure facing the first base substrate, wherein the plurality of first optical structures are respectively located in the first channels each between any two adjacent extinction structures, and a filler portion between the plurality of light sources and the plurality of first optical structures. The filler portion contains a material with a refractive index greater than that of a material of the first optical structure, and the extinction structure contains light-absorbing material.
US11957010B2

A display apparatus includes a first substrate including a plurality of pixels provided in a display portion, a second substrate coupled to the first substrate, and a routing portion disposed on an outer surface of the first substrate and an outer surface of the second substrate, wherein the first substrate includes a first pad part connected to the routing portion and the plurality of pixels and a gate driving circuit disposed in the display portion, the gate driving circuit including a shift register for supplying a scan signal to the plurality of pixels, and the first pad part includes a plurality of first gate pads provided in outermost pixels disposed at one edge portion of the first substrate among the plurality of pixels and connected to the gate driving circuit.
US11957007B2

An OLED display panel and an OLED display device are provided. The OLED display panel comprises: a substrate comprising a display area and a non-display area; a pixel driving circuit disposed on the display area, wherein the pixel driving circuit comprises a reset signal input end and a cathode signal input end; and a cathode signal trace arranged on the non-display area, wherein the cathode signal trace is electrically connected to both the reset signal input end and the cathode signal input end.
US11957005B2

A display device includes: a substrate; scan lines extending in a first direction, and arranged along a second direction crossing the first direction on the substrate; data lines extending in the second direction, and arranged along the first direction on the substrate; a display area including pixels connected to the scan lines and the data lines; and a non-display area around the display area, and including compensation capacitors connected to some scan lines from among the scan lines. A sum of a capacitance of q odd scan lines or q even scan lines that are adjacent to each other from among the scan lines increases in the second direction, where q is a positive integer.
US11956996B2

A display panel includes a substrate having a first area in which first pixels are disposed and a second area in which second pixels and a light-transmitting area disposed between the second pixels are disposed, and a polarizing plate disposed above the light-transmitting area and including a light-transmitting pattern having a light transmittance higher than that of the remaining area, wherein the substrate includes a high-transmission area having a higher light transmittance than the remaining portion in a position corresponding to the second area.
US11956993B2

An organic light emitting display device and a method for manufacturing the same are disclosed. The organic light emitting display device includes a substrate divided into an emission area and a non-emission area, an overcoat layer disposed on the substrate and including a plurality of micro lenses in the emission area, a first electrode disposed on the overcoat layer and disposed in the emission area, an organic emission layer disposed on the substrate and having at least one layer which is flatly formed in the emission area, and a second electrode disposed on the organic emission layer.
US11956990B2

A display panel includes: a substrate comprising a first area, a second area, and a third area between the first area and the second area; a stack structure in the second area and comprising a pixel electrode, an opposite electrode, and an intermediate layer between the pixel electrode and the opposite electrode; a groove in the third area and separating at least one organic material layer included in the intermediate layer; and at least one metal layer in the third area and comprising a first opening overlapping the groove, wherein the groove is defined in a multi-layered film including an organic layer and an inorganic layer on the organic layer, and the at least one metal layer is between the substrate and the multi-layered film.
US11956984B2

An organic EL element includes a pixel electrode, a light emitting function layer that is formed on the pixel electrode, an electron injection layer formed on the light emitting function layer, and a counter electrode that is formed on the electron injection layer and that has semi-transmissive reflectivity, in which the counter electrode contains a reductive material that reduces material of the electron injection layer and Ag with atomic ratio of 75% or more, and an adsorption layer is formed on the counter electrode.
US11956981B2

A light-emitting element having high emission efficiency is provided. The light-emitting element includes a first organic compound, a second organic compound, and a third organic compound. The first organic compound has a function of converting triplet excitation energy into light emission. The second organic compound is preferably a TADF material. The third organic compound is a fluorescent compound. Light emitted from the light-emitting element is obtained from the third organic compound. Triplet excitation energy in a light-emitting layer is transferred to the third organic compound by reverse intersystem crossing caused by the second organic compound or through the first organic compound.
US11956965B2

A memory device and an electronic system, the memory device including a substrate; a ground selection line on the substrate, a cutting portion cutting the ground selection line; a first insulation layer and a first word line stacked immediately above the ground selection line; and second insulation layers and second word lines alternately stacked on the first word line, wherein the first word line includes a first portion laterally offset from the cutting portion and a second portion overlying the cutting portion, the first portion of the first word line has a first thickness, and the second portion of the first word line has a second thickness less than the first thickness.
US11956964B2

A semiconductor memory device according to the present embodiment includes a semiconductor substrate, a structure including a plurality of insulating films and a plurality of conductive films alternately stacked on the semiconductor substrate, and a pillar penetrating the structure. The plurality of conductive films include a plurality of first conductive films and a second conductive film arranged closer to the semiconductor substrate than the plurality of first conductive films. The pillar has a first epitaxial growth layer doped with boron and carbon in a part in contact with the semiconductor substrate, and configured to functions as a part of a source side select gate transistor together with the second conductive film. The plurality of first conductive films configured to functions as a part of a plurality of non-volatile memory cells.
US11956960B2

A semiconductor device includes a gate stack with conductive layers and insulating layers that are stacked alternately with each other, a first channel pattern passing through the gate stack, a second channel pattern coupled to the first channel pattern, the second channel pattern protruding above a top surface of the gate stack, an insulating core formed in the first channel pattern, the insulating core extending into the second channel pattern, a gate liner with a first portion that surrounds a top surface of the gate stack and a second portion that surrounds a portion of a sidewall of the second channel pattern, and a barrier pattern coupled to the gate liner, the barrier pattern surrounding a remaining portion of the sidewall of the second channel pattern.
US11956959B2

A semiconductor memory device includes a semiconductor substrate including a diode formed in an upper layer portion of the semiconductor substrate, a first insulating film provided above the semiconductor substrate, a first conductive film provided above the first insulating film and coupled to the diode, a stacked body provided above the first conductive film, an insulator and an electrode film being stacked alternately in the stacked body, a semiconductor member piercing the stacked body and being connected to the first conductive film, and a charge storage member provided between the electrode film and the semiconductor member.
US11956955B2

A liner is formed laterally-outside of individual channel-material strings in one of first tiers and in one of second tiers. The liners are isotropically etched to form void-spaces in the one second tier above the one first tier. Individual of the void-spaces are laterally-between the individual channel-material strings and the second-tier material in the one second tier. Conductively-doped semiconductive material is formed against sidewalls of the channel material of the channel-material strings in the one first tier and that extends upwardly into the void-spaces in the one second tier. The conductively-doped semiconductive material is heated to diffuse conductivity-increasing dopants therein from the void-spaces laterally into the channel material laterally there-adjacent and upwardly into the channel material that is above the void-spaces.
US11956951B2

According to one embodiment, a semiconductor integrated circuit includes a first circuit that includes a level shift transistor, a transmission line through which the signal output from the first circuit propagates, a second circuit that is connected the transmission line to receive the signal propagating through the transmission line, and a third circuit that is connected to the transmission line. The first circuit is connected to a power supply line to which a first voltage is supplied, and outputs, to the transmission line, a signal having an amplitude lower than the first voltage by a threshold voltage of the level shift transistor. The third circuit allows a current to flow from the transmission line when a voltage of the transmission line exceeds a set voltage.
US11956948B2

A memory device includes a substrate, a first transistor and a second transistor, a first word line, a second word line, and a bit line. The first transistor and the second transistor are over the substrate and are electrically connected to each other, in which each of the first and second transistors includes first semiconductor layers and second semiconductor layers, a gate structure, and source/drain structures, in which the first semiconductor layers are in contact with the second semiconductor layers, and a width of the first semiconductor layers is narrower than a width of the second semiconductor layers. The first word line is electrically connected to the gate structure of the first transistor. The second word line is electrically connected to the gate structure of the second transistor. The bit line is electrically connected to a first one of the source/drain structures of the first transistor.
US11956947B2

An OTP memory cell is provided. The OTP memory cell includes: an antifuse transistor, wherein a gate terminal of the antifuse transistor is connected to a first word line having a first signal, and the antifuse transistor is selectable between a first state and a second state in response to the first signal; and a selection transistor connected between the antifuse transistor and a bit line, wherein a gate terminal of the selection transistor is connected to a second word line having a second signal, and the selection transistor is configured to provide access to the antifuse transistor in response to the second signal. A first terminal of the antifuse transistor is a vacancy terminal, and a second terminal of the antifuse transistor is connected to the selection transistor.
US11956939B2

A memory device includes a first field effect transistor (FET) stack on a first bottom source/drain region, which includes a first vertical transport field effect transistor (VTFET) device between a second VTFET device and the first source/drain region, and a second FET stack on a second bottom source/drain region, which includes a third VTFET device between a fourth VTFET device and the bottom source/drain region. The memory device includes a third FET stack on a third bottom source/drain region, which includes a fifth VTFET between a sixth VTFET and the third source/drain region, which is laterally adjacent to the first and second source/drain regions. The memory device includes a first electrical connection interconnecting a gate structure of the third VTFET with a gate structure of the fifth VTFET, and a second electrical connection interconnecting a gate structure of the second VTFET with a gate structure of the sixth VTFET.
US11956934B2

In an example, a conductive concrete structure disclosed. The conductive concrete can include a plurality of conductive side structures defining an interior of the conductive concrete structure and a plurality of conductive concrete partitions disposed within the interior of the conductive concrete structure. The plurality of conductive concrete partitions are arranged to define a labyrinth within the conductive concrete structure.
US11956927B2

A case is provided, including a shell, a fan frame, and a fan module. The shell is internally provided with a backplane and a motherboard, where the motherboard is connected to the backplane along a first axis, the backplane is connected with a plug connector, the plug connector includes a plug connector body and a plurality of connection terminals, and the connection terminals are located in the plug connector body. The fan frame bears the fan module, and the fan module includes a fan assembly and a matching connector. The matching connector is connected to the fan assembly, and the matching connector is connected to the plug connector along a second axis. The matching connector includes a matching connector body and a plurality of matching terminals, and the matching terminals are located in the matching connector body. The fan frame is fixed in the shell.
US11956921B1

A cooling system including a support structure and a cooling element is described. The cooling element has a central region and a perimeter. The cooling element is supported by the support structure at the central region. At least a portion of the perimeter is unpinned. The cooling element is configured to undergo vibrational motion when actuated to drive a fluid toward a heat-generating structure. Further, the cooling element has a first side distal from the heat-generating structure and a second side proximate to the heat-generating structure. The support structure supports the cooling element from one of the first side and the second side.
US11956919B2

A cold plate is provided and includes: a housing disposed with a chamber; a base combined with the housing to form a working space separated from the chamber but connected with the chamber through an interconnecting structure to allow a working medium to flow within the chamber and the working space; a heat transfer structure disposed on the inner side of the base; and a pump disposed within the working space to drive the working medium in the working space. As such, the cold plate can provide better heat dissipation performance.
US11956915B2

A switch-cabinet system comprises a base module with a base housing and at least one functional module with a functional housing. A functional connection element is arranged in the functional housing in the area of a first through-opening on a bottom side of the functional housing. A base connection element is arranged in the base housing in the area of a second through opening on a top side of the base housing. The bottom side of the functional housing rests against the top side of the base housing. The functional and base connection elements engage and form an interface. The system also includes a sealing insert having a frame with a functional section engaging the functional housing and a base section engaging the base housing. The functional section abuts an inner wall of the functional housing. The base section abuts a wall of the base housing defining the second through-opening.
US11956913B2

A system and method are provided for coordinating the installation and removal a motor control center subunit with the power connection and interruption thereof. A system of interlocks and indicators causes an operator to install a motor control center subunit into a motor control center, and connect supply and control power thereto, in a particular order. Embodiments of the invention may prevent actuation of line contacts of the bucket, and shield the line contacts, until the bucket is fully installed in the motor control center. Other embodiments also prevent circuit breaker closure until the line contacts are engaged with a bus of the motor control center.
US11956905B2

A solid state hard disk casing, including: an upper casing and a lower casing fastened to each other, wherein a first lower recess is provided on a side of an inner surface of the lower casing close to one long edge of the lower casing, to accommodate a first portion of one or multiple electrolytic capacitors; a first upper recess is provided on a side of an inner surface of the upper casing close to one long edge of the upper casing, and the first upper recess is opposite to the first lower recess, to accommodate a second portion of the electrolytic capacitor placed in the first lower recess; and a side of the inner surface of the lower casing close to the other long edge of the lower casing is configured to fix a circuit board connected to the electrolytic capacitor.
US11956902B2

A solder recovery device includes a recovery plate, a lifting and lowering device, and multiple connecting sections. The recovery plate recovers solder. The lifting and lowering device lifts up and lowers the recovery plate. The multiple connecting sections include a fixing portion provided on the recovery plate and configured to detachably attach the recovery plate to the lifting and lowering device and a fixed portion provided on the lifting and lowering device and to which the fixing portion is fixed, and are configured to restrain the recovery plate from moving in a predetermined direction relative to the lifting and lowering device when the fixing portion is fixed to the fixed portion. The multiple connecting sections have different restraining directions in which the recovery plate is restrained from moving relative to the lifting and lowering device.
US11956895B2

The disclosure relates to a printed circuit board having at least two current-conducting layer plies, wherein the current-conducting layer plies extend in an axial direction of the printed circuit board and are arranged in succession in a thickness direction of the printed circuit board. A component fastened by THT is arranged on one side of the printed circuit board. At least one connecting element extends through the printed circuit board through a passage opening in the thickness direction. The current-conducting layer ply is adjacent to the component fastened by THT reaches as far as the connecting element and the current-conducting layer ply that is remote from the component fastened by THT is at a distance from the connecting element.
US11956893B2

According to one embodiment, a flexible substrate includes an insulating base material including an island-shaped portion, a first portion having a band shape and connected to the island-shaped portion, and a second portion having a band shape and connected to the island-shaped portion, and a wiring layer provided on the insulating base material. The first portion includes a first curved portion and a first straight portion connecting the island-shaped portion and the first curved portion, and the second portion includes a second curved portion and a second straight portion connecting the island-shaped portion and the second curved portion.
US11956887B2

A board, including a first pad area, a second pad area, a first micro heater, a second micro heater, a first heater terminal pad, a second heater terminal pad, and a third heater terminal pad, is provided. The first pad area and the second pad area respectively include at least one pad. The first micro heater and the second micro heater are respectively disposed corresponding to the first pad area and the second pad area. The first heater terminal pad and the second heater terminal pad form a loop with the first micro heater by being electrically connected to an outside, so that the first micro heater generates heat. The second heater terminal pad and the third heater terminal pad form another loop with the second micro heater by being electrically connected to the outside, so that the second micro heater generates heat. A circuit board and a fixture are also provided.
US11956880B2

A system includes an RF signal source configured to output an RF signal at a first frequency, and a first controller configured to generate a first data signal encoding instructions at a second frequency. A first filter is coupled to the RF signal source. The first filter is a low pass filter having a cutoff frequency between the first frequency and the second frequency. The first filter is configured to couple to a first end of a cable. A second filter is coupled to the first controller. The second filter is a high pass filter having a cutoff frequency between the first frequency and the second frequency. The second filter is configured to couple to the first end of the cable. The system includes an impedance matching network configured to couple to a second end of the cable. A first electrode is coupled to the impedance matching network.
US11956878B2

Various embodiments of the present technology comprise a method and system for induction heating. The system may provide a first induction coil wrapped around a metal cylinder and a second induction coil wrapped around the metal cylinder. The first induction coil may carry a current in a first direction and the second induction coil may carry a current in an opposite, second direction. The currents may be generated in an alternating sequence.
US11956876B2

An LED based lighting device capable of Radio Frequency communication, said LED based lighting device comprising a driver board comprising a mains input connector, an LED output connector and an LED driver, wherein said LED driver is arranged for receiving a mains power supply, via said mains input connector, and for providing an LED current to an at least one LED, via said LED output connector, an LED board comprising an LED input connector, an antenna and said at least one LED, an interconnect cable connecting said driver board to said LED board via said LED output connector and said LED input connector, wherein said driver board further comprises an RF module arranged for generating an RF signal and for superimposing said generated RF signal on said LED current such that said RF signal is conveyed over said interconnect cable to said antenna.
US11956875B1

A power management and smart lighting system is provided that enables efficient distribution of DC power to various building features, including LED lighting. The power management system includes an intelligent power supply unit configured to convert AC power drawn from a building load center into a deadband DC waveform. The deadband DC power generated by the intelligent power supply unit is then transmitted over power-with-Ethernet cables to a plurality of distributed intelligent drivers, each configured to intelligently power one or more LED troffers. The intelligent drivers may be daisy-chained to one another by the power-with-Ethernet cables, enabling a power-ring architecture. To enable easy control of the drivers, intelligent sensors can be distributed throughout the topology and connected to the drivers (e.g., via power-with-Ethernet cables) to enable a wide array of lighting control options.
US11956874B2

A wrist-wearable electronic device comprising first and second light emitting elements, a sensor, and a processor. The processor is configured to transmit a first command to the first light emitting element in response to the wrist-wearable device reaching a forward position relative to a user based on data received from the sensor and transmit a second command to the second light emitting element in response to the wrist-wearable device reaching a rearward position relative to the user based on the data from the sensor.
US11956869B2

A display driver circuit for controlling a display panel having a plurality of light-emission diode (LED) strings includes a plurality of current regulators and a control circuit. Each of the plurality of current regulators is configured to control one of the plurality of LED strings. The control circuit, coupled to the plurality of current regulators, is configured to generate a plurality of pulses in a plurality of pulse width modulation (PWM) signals and output each of the plurality of PWM signals to a respective current regulator among the plurality of current regulators. Wherein, the plurality of pulses are scrambled.
US11956868B2

A system for obtaining a multispectral image of a scene includes a first light source, a second light source, at least one imaging sensor, and a controller. The first light source emits light in a first wavelength range. The second light source emits light in a second wavelength range. The at least one imaging sensor senses light in the first wavelength range reflected off of the scene during a first illumination sensing period and senses light in the second wavelength range reflected off of the scene during a second illumination sensing period. The controller is electrically coupled to the at least one imaging sensor. The controller interprets signals received from the at least one imaging sensor as imaging data, stores the imaging data, and analyzes the imaging data with regard to multiple dimensions. The first illumination sensing period and the second illumination sensing period are discrete time periods.
US11956867B2

System and method for providing at least an output current to one or more light emitting diodes. The system includes a control component configured to receive at least a demagnetization signal, a sensed signal and a reference signal and to generate a control signal based on at least information associated with the demagnetization signal, the sensed signal and the reference signal, and a logic and driving component configured to receive at least the control signal and output a drive signal to a switch based on at least information associated with the control signal. The switch is connected to a first diode terminal of a diode and a first inductor terminal of an inductor. The diode further includes a second diode terminal, and the inductor further includes a second inductor terminal.
US11956866B2

An electric heater (1, 1′) for heating a substance inside a tank (100), the electric heater (1, 1′) comprising: —at least one resistive wire (4) adapted to be connected to a source of electricity, said at least one resistive wire (4) being provided with a sheath (41) made of electrically insulating material; —at least a first thermally conductive sheet (5) made of metal fixed to the at least one resistive wire (4); —at least two protective layers (2, 3) made of polymer material, fixed to each other; wherein the at least one resistive wire (4) and the at least a first sheet (5) are arranged between the at least two protective layers (2, 3).
US11956859B2

Methods and an apparatus for providing an edge computing service to a UE in a mobile communication network and. The method comprises: receiving, from an AMF, a PDU session modification command including first information instructing modification of a PUD session for the MEC service and valid time of the PDU session; transmitting, to the AMF, a PDU session modification command NACK message including second information indicating a wait until transmission of an ACK, when relocation of an application context corresponding to the PDU session is possible within the valid time of the PDU session; transmitting, to an MEC system providing the service, an application context relocation request message; and transmitting, to the AMF, a PDU session modification command ACK in response to receiving an application context relocation complete message from the MEC system, wherein the PDU session modification command and the PDU session modification command NACK message are NAS messages.
US11956855B2

A system enables a home operator to establish an automated monitoring process which identifies outage events on competitor wireless networks (e.g., peer operators) operating in the same geographies as home operator. The home operator then is able to selectively offer, in near real-time, to open roaming to the peer operator, or implement roaming automatically based on predefined and mutually agreed upon rule sets. The monitoring process may observe non-customer attach request volumes in order to identify outage events on competitor wireless networks.
US11956842B2

Embodiments of this application relates to a multi-link communication setup method and a related apparatus. The method includes: a non-AP MLD sends an association request frame on a first link, to request multi-link setup. An AP MLD returns an association response frame on the first link, to notify whether multi-link setup succeeds. The AP MLD sets a second status code field of a multi-link element of the association response frame to a newly defined value, to indicate that a cause why a link is not accepted is that the first link is not accepted. This application is applied to a WLAN system that supports a next generation Wi-Fi protocol of 802.11ax, for example, 802.11be, Wi-Fi 7, or EHT, and other 802.11 series protocols; and for another example, a next generation protocol of 802.11be: Wi-Fi 8.
US11956839B2

The present disclosure relates to an information transmitting method and apparatus, and a terminal and a storage medium. The method includes: a first terminal receives target information sent by a second terminal on a target channel through a direct-connect communication interface for transmitting a V2X service; the first terminal obtains measurement information corresponding to the target information, wherein the measurement information comprises the measurement position and a measurement value; the measurement position is used to indicate the time-frequency position occupied by the target information, and the measurement value is used to indicate the channel quality of the target channel; and the first terminal sends the measurement information to the second terminal.
US11956827B2

A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for internet of things (IoT) are provided. The communication method and system includes intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A system and a method of beam failure recovery on Secondary cell are provided.
US11956825B2

An uplink transmission method performed by a terminal includes: receiving, from a base station, at least one DCI for allocating first uplink transmission and second uplink transmission; performing a first LBT procedure for the first uplink transmission, and performing the first uplink transmission when the first LBT procedure is successful; and performing a second LBT procedure for the second uplink transmission, and performing the second uplink transmission when the second LBT procedure is successful, wherein the first uplink transmission and the second uplink transmission are consecutively performed with a time interval longer than a predetermined time.
US11956823B2

Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for signaling parameters for peer-to-peer communications in a wireless network. One aspect provides a method for wireless communications at an access point (AP). The method generally includes: obtaining, from an access point (AP), a transmission opportunity (TXOP) sharing trigger indicating a duration in which a TXOP is shared by the wireless station and one or more other devices; relaying, to the one or more other devices, information identifying parameters for wireless communications between the wireless station and the one or more other devices; and during the TXOP, communicating with the one or more other devices based on the parameters for wireless communications between the wireless station and the one or more other devices.
US11956819B2

Various aspects include a method of providing, by a network to a UE device, a transmission grant. The method includes initiating a process to provide the transmission grant for a transmission within a particular time. The method includes verifying that there is no cancellation indication that overlaps the particular time. The method includes providing, based on the verification, the transmission grant to the UE device. The method includes determining whether there is no transmission that overlaps with a cancellation window associated with a monitoring occasion, and based on the determination, skipping the monitoring occasion. Also disclosed a system for providing a transmission grant to the UE device.
US11956814B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may generate a multiplexed message including first information with a first priority and second information with a second priority, wherein the first priority is higher than the second priority. The UE may transmit the multiplexed message using a particular cyclic shift of a particular cyclic shift set of a plurality of cyclic shift sets, wherein the particular cyclic shift set is based at least in part on the first information and the particular cyclic shift is based at least in part on the second information. Numerous other aspects are described.
US11956802B2

A method, which is performed by a terminal, for receiving a Physical Downlink Control Channel (PDCCH) in a wireless communication system comprises the steps of: receiving, from a base station, configuration information about a first control resource set (CORESET); receiving, from the base station, configuration information about a second CORESET; receiving, from the base station, a first PDCCH transmitted on the first CORESET; and receiving, from the base station, a second PDCCH transmitted on the second CORESET.
US11956797B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a first user equipment (UE) may receive configuration information for configuring a plurality of semi-persistent resources for a plurality of UEs, the plurality of semi-persistent resources including one or more semi-persistent resources configured for the first UE. The UE may receive an indication to activate the plurality of semi-persistent resources across the plurality of UEs. The UE may communicate, based at least in part on the indication, using the one or more semi-persistent resources. Numerous other aspects are described.
US11956795B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a forwarding node may receive, from a first wireless communication device and during a receipt occasion, an unscheduled communication for forwarding to a second wireless communication device or a control node. The forwarding node may transmit, to the second wireless communication device or the control node and based at least in part on receiving the unscheduled communication during the receipt occasion, an indication of receipt of the unscheduled communication. Numerous other aspects are provided.
US11956786B2

Methods, systems, and devices for wireless communication are described. A user equipment (UE) may identify uplink (UL) control information (UCI) to transmit during a subframe. The UE may then select a UL channel on which to transmit the UCI based on whether a shared data and control UL channel employs contention-based scheduling. For example, multiple UEs could contend for access to the same semi-persistently scheduled (SPS) physical UL shared channel (PUSCH). Each UE may utilize a different demodulation reference (DMRS) signal cyclic shift to identify their transmissions. In some cases, some UCI, such as channel state information (CSI), may be transmitted on a contention-based PUSCH, while other UCI, such as acknowledgement information, may be transmitted on a physical uplink control channel (PUCCH). In some cases, the channel selection may be based on a configuration received from a base station.
US11956779B2

Aspects relate to wireless communications utilizing cross carrier scheduling Methods and apparatus include generating at least one slot in a control channel from a scheduling cell, the at least one slot including a plurality of control channel segments such as PDCCH segments, which are arranged at respective times within the at least one slot. Each of the control channel segments includes control information such as DCIs corresponding to respective slots for a scheduled cell. Distributing the control channel information in segments or spans over time affords improved decoding timing in a UE in the scheduled cell.
US11956778B2

Apparatuses and methods for channel access responses in uplink transmissions. A method of operating a user equipment (UE) includes receiving, from a base station (BS), a channel access request (CARQ) over a downlink channel and generating a channel access response (CARP). The CARP includes a response to information indicated in the CARQ. The method further includes including the CARP in uplink control information (UCI), determining a set of time or frequency domain resources for transmitting the UCI, and transmitting the UCI based on the determined set of time or frequency domain resources.
US11956775B2

The present specification relates to a method, a device, and a system for transmitting a physical uplink control channel in a wireless communication system. The present specification discloses a terminal comprising: a communication module for receiving, from a base station, information on a PUCCH serving cell corresponding to a serving cell on which a PUCCH is to be transmitted, generating the PUCCH, and transmitting the generated PUCCH on the PUCCH serving cell; and a processor for configuring the PUCCH serving cell on the basis of the information on the PUCCH serving cell. The terminal can effectively transmit uplink control information.
US11956773B2

Provided are a method for performing wireless communication by a first device and an apparatus supporting same. The method may comprise: transmitting, to a second device through a physical sidelink control channel (PSCCH), a first sidelink control information (SCI) including information related to a physical sidelink feedback channel (PSFCH) overhead and a beta offset; and transmitting, to the second device through a physical sidelink shared channel (PSSCH) related to the PSCCH, a second SCI, wherein a symbol length related to the PSSCH is obtained based on the information related to the PSFCH overhead, and wherein a number of resource elements (REs) to which the second SCI is mapped is obtained based on the symbol length related to the PSSCH and the beta offset.
US11956766B2

A method comprises selecting a beam to be scheduled for a slot that is upcoming, and selecting a terminal device to be scheduled in the selected beam. Selection of the terminal device is based on the terminal device considering the selected beam as its best beam. Physical resource blocks are allocated to the terminal device, and a beam configuration to be used for the selected beam is chosen based in part on user traffic and load distribution. A switching event is triggered. The switching event comprises producing the chosen beam configuration by providing a beamforming command and using a control line controlling a switch network comprised in phase shifters to steer the beam. The phase shifters are comprised in a radio frequency front-end unit comprising a plurality of antenna columns. The phase shifters are placed in front of selected antenna sub-arrays comprised in the plurality of antenna columns.
US11956765B2

A method for receive (RX) beam switching is provided. The method may be performed by a user equipment (UE) (420). The method includes using a current RX beam (412) to receive a transmission from a network node (422). The method further includes selecting (706) a new RX beam (414) to replace the current RX beam (412). The method further includes, after selecting (706) the new RX beam (414), transmitting (708-710) a channel state information (CSI) report to the network node (422). The method further includes, after selecting (706) the new RX beam (414) and before transmitting (708-710) the CSI report, continuing to use the current RX beam (412) to receive transmissions from the network node (422). The method further includes, after transmitting (708-710) the CSI report to the network node (422), replacing (714) the current RX beam (412) with the new RX beam (414) such that the new RX beam (414) instead of the current RX beam (412) is used to receive transmissions from the network node.
US11956763B2

Methods and systems for allocating radio access network (RAN) spectrum resources among a plurality of mobile virtual network operators (MVNOs) of a network of base stations. The methods and systems include determining a slicing enforcement policy that assigns resource blocks (RBs) of frequency units and time slots of spectrum resources to each MVNO according to a slicing policy in which each MVNO is allocated an amount of the spectrum resources on at least one base station in a determined time span. The slicing enforcement policy minimizes overlap between each MVNO's set of RBs with another MVNO's set of RBs on a same base station, and interference between each MVNO's set of RBs with another MVNO's set of RBs on an interfering base station.
US11956762B2

Facilitating improved performance in advanced networks (e.g., 4G, 5G, and beyond) with multiple transmission points is provided herein. Operations of a system can comprise determining respective port numbers for respective ranks of a first transmission to a user equipment device. The operations also can comprise receiving an indication, from a second network device, of a first demodulation reference signal associated with a port number for a rank of a second transmission to the user equipment device from the second network device. Further, the operations can comprise facilitating a conveyance of the first transmission to the user equipment device. The first transmission can comprise a second demodulation reference signal on a different port number than the port number associated with the second transmission.
US11956761B2

A method for assigning channels based on an Internet of Things (IoT) system includes: assigning a first channel to a first gateway, wherein the first gateway is any one of a plurality of gateways; sending a broadcast instruction to the first gateway, wherein the broadcast instruction is configured to instruct the first gateway to send broadcast information on the first channel; acquiring a set of first monitoring information, wherein the set of first monitoring information includes at least one piece of first monitoring information, which includes the broadcast information monitored on the first channel, and the first monitoring information comes from neighboring gateways of the first gateway; determining, based on the set of first monitoring information, a second gateway from the neighboring gateways of the first gateway; and assigning a second channel different from the first channel to the second gateway.
US11956754B2

Disclosed in the present invention are a method for operating a terminal and a base station in a wireless communication system supporting a narrowband Internet of Things (NB-IoT), and an apparatus supporting same. According to one embodiment applicable to the present invention, a terminal determines a time interval for receiving an NRS in a non-anchor carrier that is used for paging purposes, and receives the NRS in the time interval. The time interval may be determined on the basis of a specific PO among a plurality of POs related to the terminal.
US11956739B2

A method of operating a network node may be provided. A message may be sent from a first portion of the network node for configuring a time difference between an absolute time reference in the network node and a system frame offset for a served cell of the network node. An acknowledgement message from a second portion of the network node may acknowledge inclusion of the time difference in cell configuration data for the served cell. A further method of operating a network node may be provided. A message may be sent form the network node to a neighboring network node providing a time difference between a network time reference and a system frame offset for a cell in. An acknowledgement message may be received from the neighboring network node acknowledging inclusion of the time difference in cell configuration data for the served cell.
US11956738B2

A UE performs a cell activation process in a wireless network. The UE calculates a first automatic gain control (AGC) setting based on downlink signals from a base station. The downlink signals include a coarse beam reference signal, a fine beam reference signal, and a conversion indication that indicates a power conversion between the coarse beam reference signal and the fine beam reference signal. The UE further calculates a second AGC setting based on the first AGC setting and the conversion indication. The UE performs a cell search using one of the first AGC setting and the second AGC setting, and performs fine time-frequency tracking using the other of the first AGC setting and the second AGC setting.
US11956735B2

Disclosed are a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security, and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. A power control method for uplink transmission in a wireless cellular communication system is disclosed.
US11956732B2

Apparatus, methods, and computer-readable media for autonomous physical uplink shared channel repetition cancellation for energy-limited devices are disclosed herein. A user equipment (UE) may transmit, to a base station, a plurality of uplink channel repetitions. The UE may determine that a device power level associated with the UE does not exceed a predetermined threshold that corresponds to a power requirement to transmit a number of uplink channel repetition instances in the plurality of uplink channel repetitions. The UE may determine to not transmit the number of uplink channel repetition instances based on the device power level falling below the predetermined threshold. The UE may modify the device power level through an energy harvesting operation. Thus, the power efficiency and reliability of uplink channel repetitions can be increased.
US11956729B2

A User Equipment 210 (UE) determines 215 a maximum UL/DL duty cycle to utilize for a connection with a base station 202 based on a content of a UE capabilities request 212 sent by the base station, where the maximum UL/DL duty cycle is typically is less than a most restrictive, possible UL/DL duty cycle of the UE, yet allows the UE to remain SAR compliant. The UE may determine 215 the maximum UL/DL duty cycle further based on, e.g., requested frequency bands, operational UE transceivers, carrier components, UE power class, stored power data, etc. The UE communicates 218 the maximum UL/DL duty cycle for the connection to the base station, thereby resulting in more efficient downlink data delivery during the connection as well as increasing cell site coverage and overall system efficiency. The UE may store a global parameter whose value is indicative of the maximum UL/DL duty cycle.
US11956728B2

Methods, systems, and devices for wireless communications are described. A user equipment (UE) supporting full duplex communications may determine that a set of downlink messages to be transmitted from a base station to the UE overlaps in time with a set of uplink messages to be transmitted from the UE. Accordingly, the UE may determine a downlink transmission power adjustment value for the set of downlink messages. In some examples, the base station may indicate the downlink transmission power adjustment value to the UE via radio resource control (RRC) signaling, a downlink control information (DCI) message, or both. The UE may transmit the set of uplink messages while simultaneously receiving the set of downlink messages with a transmission power that corresponds to the downlink transmission power adjustment value. Adjusting the transmission power for the set of downlink messages may reduce self-interference at the UE, the base station, or both.
US11956724B2

The present disclosure relates to transmitting and receiving a group wake-up signal (WUS) in conjunction with an ungrouped WUS. A base station may group one or more UEs in a UE group, while other UEs may not be assigned to a UE group. The configuration of WUS resources and WUS sequences for grouped UEs and other UEs is a challenge. The base station may transmit, to one or more UEs in the UE group, a resource allocation of a group WUS resource within a set of WUS resources associated with a paging occasion that is assigned to the one or more UEs in the UE group. A UE, after receiving the resource allocation, may determine a location of the group WUS resource within the set of WUS resources. The UE may monitor for a group WUS at the determined location in the resource allocation of the group WUS resource.
US11956721B2

This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for coordinating sleep modes between a wireless local area network (WLAN) access point (AP) and a cellular modem of an access point. In one aspect, the access point may obtain, from the cellular modem, information relating to a radio resource control (RRC) state transition or one or more power-saving events of the cellular modem and may select a power mode for the WLAN AP of the access device in accordance with the obtained information. In some implementations, selecting the power mode for the WLAN AP may include configuring the WLAN AP to either accept or reject a sleep mode request from a station (STA) served by the WLAN AP. As such, the access device may communicate with the STA using the WLAN AP in accordance with the accepted or rejected sleep mode request.
US11956719B2

An energy-efficient wireless sensor network (WSN) is disclosed. The WSN comprises one or more base stations, a plurality of branch nodes communicatively coupled to each of the one or more base stations, and a plurality of leaf nodes communicatively coupled to each of the branch nodes. The WSN is configured for optimising energy consumption associated with each of the following: transmitting sensor data from the leaf node to the branch node; encryption of data transmitted between the leaf node and the branch node; updating firmware of the branch node or of the leaf node, through over-the-air updates from a remote server; sending data packets through the WSN based on a plurality of predefined levels of a Quality-of-Service (QoS); and configuring radio duty cycle protocols at the base station or the branch node or both during transmission and reception of data packets from the leaf nodes.
US11956705B2

A system and method for providing an authentication state of a function execution device to a communication terminal is described. In some examples, the authentication state indicates whether authentication information is needed from the communication terminal before the communication terminal can request performance of one or more functions performable by the function execution device. In other examples, the communication terminal may provide to the communication terminal the authentication information irrespective of whether the function execution terminal has previously provided its authentication state to the communication terminal.
US11956702B2

A wireless communication network serves User Equipment (UEs) over a Third Generation Partnership Project (3GPP) Network Exposure Function (NEF). The wireless communication network comprises a non-3GPP Interworking Function (IWF) and the 3GPP NEF. The non-3GPP IWF receives NEF Application Programming Interface (API) calls that have UE data from the UEs over non-3GPP access nodes. The non-3GPP IWF transfers the NEF API calls that have the UE data to the 3GPP NEF. The 3GPP NEF receives the NEF API calls that have the UE data from the non-3GPP IWF. The 3GPP NEF exposes the UE data to an Application Functions (AF) in response to the NEF API calls.
US11956699B2

A monitoring device detection system may include a mounting assembly disposed onboard a vehicle system. The mounting assembly couples a vehicle signaling and monitoring device to the vehicle system. One or more sensors may obtain information related to one or more of the mounting assembly or the vehicle system. One or more processors may determine a state of the mounting assembly based on the information obtained by the one or more sensors.
US11956697B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a base station, an indication that indicates whether a multicast and broadcast service (MBS) physical downlink shared channel (PDSCH) scheduled by downlink control information (DCI) is associated with a second PDSCH processing capability, wherein the second PDSCH processing capability has a shorter duration than a first PDSCH processing capability. The UE may receive, from the base station, the MBS PDSCH scheduled by the DCI. The UE may transmit, to the base station and based at least in part on the indication, hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback in accordance with the first PDSCH processing capability or the second PDSCH processing capability. Numerous other aspects are described.
US11956694B2

A gateway device for associating the gateway device and tracking sensors as single a cargo unit: the gateway device being associable with a cargo unit, said gateway device comprising: means to detect position or movement, and short-range wireless communication means for sending out a beacon signal and connecting with nodes, characterized in that the gateway device is arranged to detect which nodes are still in short-range communications range when change of position or movement is detected and associating the nodes that are still in range with as being part of the same cargo unit as the gateway device. Corresponding arrangement and method are also presented.
US11956685B2

System, methods, and computer-readable media for switching a dynamic radio of a single RU between Radio Access Technology (RAT) protocols based on a Software-Defined RAN intelligent controller (SD-RIC). The SD-RIC efficiently assigning RAN resources by converting a radio access point to either 5G or Wi-Fi based on the load conditions and the number of users seen on the network, so that it appropriately servers the customer and end devices. To determine the load conditions may be based on active users on a particular cell, and then the resource utilization cue is a connection latency. A single radio unit includes a primary radio and a secondary radio, each being independently tuned. The primary radio is static while a secondary one can be influenced based on the conditions, turning into N-RU or Wi-Fi.
US11956682B2

A handover method and apparatus are disclosed. In some implementations, the method includes: determining a part of terminal devices to be handed over in a plurality of terminal devices in a staring area of a first beam; sending a first handover request message to a target satellite, where the first handover request message includes contexts of the part of terminal devices; and receiving a handover instruction sent by the target satellite based on the first handover request message, and sending the handover instruction to the part of terminal devices by using the first beam. The handover instruction includes handover parameters used for handing over the part of terminal devices. According to some implementations, the part of terminal devices in the plurality of terminal devices in the staring area may be handed over, so that a signaling storm can be avoided and communication performance can be improved.
US11956669B2

A first node (110; 210; 212; 310; 1000) for determining an indication of a maximum datagram size supported without fragmentation in communication between the first node (110; 210; 212; 310; 1000) and a second node (111; 211; 210; 220) in an Internet Protocol, IP, network (100; 201; 201-202; 300). The first node (110; 210; 212; 310; 1000): sends (301; 901), to the second node (111; 211; 210; 220), request messages in varying sized IP packets using an application layer protocol over UDP and which datagrams are configured not to be fragmented; receives (302; 902) response messages from the second node, each indicating a received request message that the response message is in response to, was received by the second node (111; 211; 210; 220); identifies (303; 903) a request message for which there is a change in receipt of response message compared to another request message of said varying sized IP packets; determines (304; 904), based on said identification, an indication of the maximum datagram size supported without fragmentation.
US11956663B2

This disclosure describes systems, methods, and devices related to traffic indications for multi-link devices (MLDs). A device may generate a first traffic indication map (TIM) with a first bitmap including a first indication that traffic is to be sent by a first access point (AP) device of the MLD to a first non-AP device of a second MLD using a first communication link. The device may generate a second TIM with a second bitmap including a second indication that no traffic is to be sent by a second AP device of the MLD to a second non-AP device of the second MLD using a second communication link. The device may send, using the first communication link, the beacon, the beacon including the first TIM and the second TIM. The device may send, using the first communication link, a data frame to the first non-AP device of the second MLD.
US11956645B2

A method of wireless communication by a base station detects a UE is in a high speed train scenario. The method also instructs the UE to enter a high speed train (HST) mode when the UE is detected to be in the high speed train scenario. The method further performs beam management in accordance with the HST mode. A UE (user equipment) for wireless communication detects when the UE is in high speed train scenario. The UE also reports the high speed train scenario to a base station and then receives instructions from the base station to enter a high speed train (HST) mode. The UE performs beam management in accordance with the HST mode.
US11956638B2

In an embodiment the method a includes performing, by an integrated circuit (IC) card hosted in a local equipment, authentication with a contactless subscriber device when the subscriber device is within a communication range of a contactless interface of the local equipment, receiving, by the IC card, an identifier (SID) identifying a software module from the subscriber device, the software module configured to enable a subscription profile for a mobile network operator, performing a checking operation at the IC card whether the SID matches a software module identifier stored in the IC card and selectively performing one of downloading the software module to the IC card, enabling the software module at the IC card or disabling the software module at the IC card as a result of performing the checking operation.
US11956636B2

A communication terminal (10) according to the present disclosure includes: a control unit (12) configured to, in a case of a movement from a communication area formed by the 5GS to a communication area formed by the EPS or a movement from a communication area formed by the EPS to a communication area formed by the 5GS, determine whether or not a communication system forming a communication area at a movement destination can satisfy requirements of services; and a communication unit (11) configured to, when it is determined that the communication system forming the communication area at the movement destination can satisfy the requirements of the services, send a connection request message to the communication system forming the communication area at the movement destination.
US11956634B2

The application discloses methods and corresponding systems and network devices and/or nodes for enabling user equipment belonging to a home network to access data communication services in a visited network of a wireless communication system. By way of example, there is provided a method that comprises the step of obtaining at least one cryptographic token originating from a network node of the home network of the user equipment and cryptographically signed by a private key associated with the home network, wherein the at least one cryptographic token represents means for accessing data communication services via user data transport functions of the visited network. The method also comprises cryptographically signing the obtained and signed token by a private key associated with the user equipment to generate a double-signed token, and sending the double-signed token to a network node of the visited network, which validates the double-signed token for enabling the user equipment to access data communication services via the user data transport functions of the visited network.
US11956632B2

Systems and methods are described for selectively providing data to service providers. Wireless signal characteristics may be transmitted over a wireless network by network equipment in a household, and a map of the household may be generated based on the determined wireless signal characteristics. An API request may be received from a service provider, and an authorization level of the service provider may be determined. Based on the authorization level of the service provider, at least one portion of the map and at least one of the wireless signal characteristics to transmit to the service provider may be identified, and the identified at least one portion of the map and at least one of the wireless signal characteristics may be transmitted to the service provider via the API.
US11956630B2

A control device comprising, a control section configured to control an authentication process of performing a process related to device authentication together with at least one communication device on a basis of information included in a signal received through wireless communication with the communication device, wherein the control section performs control in such a manner that a signal including authentication information that is information to be used for the authentication process is transmitted to the communication device through the wireless communication, the authentication information varying depending on signal types, which are types of roles of signals to be transmitted to the communication device in the authentication process.
US11956625B2

The present invention reduces security risks while improving convenience in a utilization control technique of a usage target object. A utilization control device (1) can communicate only via Near Field Communication, and is separated from a network. And in the utilization control device (1), a hole data including a public key is set. In a use permit notification device (2), a use permit and signature are registered for each user ID. The signature is generated by using a private key paired with the public key included in the hole data. The use permit notification device (2) sends the use permit and signature in connection with the ID read from an ID card (3) to the utilization control device (1) via the Near Field Communication. The utilization control device (1) verifies the signature received together with the use permit by using the public key included in the hole data, obtains and refers to the transaction information included in the use permit when the verification is successful, and unlocks an entrance (50) of the house (5) if the conditions specified by the transaction information are satisfied.
US11956614B2

A speaker device is provided. The speaker device includes a frame, and a vibration unit, a magnetic circuit unit, and air-permeable isolation member. The magnetic circuit unit includes a yoke fixed to the frame. The yoke and the frame are spaced to form a leakage port to enable leaking from a side surface of the speaker device. The sound-producing inner cavity communicates with the leakage port. The air-permeable isolation member completely covers the leakage port. The leakage port communicates with the outside through the leakage hole. Compared with the related art, the speaker device of the present disclosure has a yoke leakage structure, which can realize self-sealing and is conducive to assembling.
US11956613B2

Disclosed is a sound-producing device, comprising: a housing having an accommodating room where a magnetic circuit system is installed; a voice coil including a bobbin and a voice coil body; a conductive member having a first connecting part fixed to the voice coil, a second connecting part fixed to the housing, and an elastic part located between the two connecting parts; the conductive member is combined on the voice coil body, the magnetic circuit system is provided with an avoidance part corresponding to the conductive member; the voice coil is provided with an inner conduction structure, the housing is provided with an outer conduction structure that is in electrical conduction with an external circuit; and upon being electrically connected with the inner conduction structure, the first connecting part passes through the avoidance part and extends to the housing, and is electrically connected with the outer conduction structure.
US11956612B2

The present invention relates to a motor for an electrodynamic loudspeaker, comprising a magnetic circuit assembly arranged about a motor axis. The magnetic circuit assembly comprises: an outer magnet, a magnetically permeable top plate, a magnetically permeable bottom plate, a center pole piece and an air gap for receipt of a voice coil. The air gap is formed by an inner axially extending wall of the magnetically permeable top plate facing an axially extending peripheral wall section of the center pole piece to define a width, a bottom, a top and height of the air gap. The magnetic circuit assembly additionally comprises outwardly projecting magnetically permeable member arranged above the top of the air gap. The center pole piece comprises a magnetic member extending axially from at least the bottom of the air gap to a magnetically permeable bottom member or to the magnetically permeable bottom plate. The magnetic member exhibits a relative AC magnetic permeability smaller than 10, such as smaller than 5 or smaller than 2, such as about 1 which corresponds to the relative AC magnetic permeability of free air.
US11956610B2

The present disclosure discloses a conductive film for a sound generation device and the sound generation device, the conductive film comprises a conductive layer and base material layers provided at two sides thereof, the conductive layer comprises a first conductive layer on an inner side portion, a second conductive layer on a deformation portion and a third conductive layer on an outer side portion, two ends of the second conductive layer are respectively electrically connected to the first and third conductive layers, the first, second and third conductive layers are connected to form at least one conductive path, each of the first and third conductive layers is made of a metal sheet, Young's modulus of the second conductive layer is smaller than the metal sheet. The conductive film has conductivity, it can be used as a sound generation diaphragm and a supporting diaphragm.
US11956599B2

Presented herein are devices/apparatuses having indicator lights (visual indicators), such as light emitting diodes (LEDs), positioned underneath/below the outer surface of a housing of the device. However, the indicator lights positioned below the outer surface of the housing, sometimes referred to herein as “sub-surface” or “sub-housing” indicator lights, are optically coupled to the outer surface of the housing via one or more optical connectors (e.g., light guides, light pipes, light diffusers, etc.). As such, the light emitted by the sub-surface indicator lights is still visible at the outer surface of the device housing.
US11956586B2

An audio apparatus is described for communicating with a user device, the audio apparatus comprising: a sensor configured to sense a user input and to generate an input signal representing the user input; and electronic circuitry operable to receive the input signal. The electronic circuitry is configured to: process the input signal, and generate a control signal for controlling at least one switch based on the input signal.
US11956583B2

Disclosed is a headphone including a headband and two ear cups connected to opposite ends of the headband. Each of the ear cups includes a shell, a front cover, and a light sensor. The shell has an open end. The front cover covers the open end of the shell. The front cover is in a basin form and has a peripheral sidewall and a bottom wall. The light sensor is located on the peripheral sidewall of the front cover. The light sensor includes a light-emitting unit and a light detection unit. When a user wears the headphone, light emitted by the light-emitting unit irradiates a flat portion of a back surface of an ear of the user.
US11956578B2

A middle frame includes: a border antenna which is provided with a sound output hole, a first mounting site for arranging a circuit board which is connected with a feed point of the border antenna, and a second mounting site for arranging an audio assembly which is connected with the sound output hole through a sound output channel, the first mounting site is between the border antenna and the second mounting site.
US11956571B2

Disclosed herein is a web-based videoconference system that allows for video avatars to navigate within a virtual environment. Various methods for efficient modeling, rendering, and shading are disclosed herein.
US11956563B2

A method for identifying video signal source is provided. The method includes the following steps. A first identification code is assigned to a first transmitter device by a receiver control unit of a receiver device. A first video data is transmitted by the first transmitter device. The first video data and a first identification image corresponding to the first identification code are combined as a first combined video data by the receiver control unit. The first combined video data is outputted to a display device by the receiver control unit.
US11956557B1

A given pixel of a pixel array includes various operation modes with each of the operation modes having a different conversion gain for the charge received from the photodetector of the pixel. When the modes are used in conjunction with one another, the dynamic range of the pixel can be increased. A readout circuit coupled to a photodetector within a given pixel includes a transfer gate between the photodetector and a gain mode select block that includes capacitors of different sizes and one or more switches to control which capacitors are to receive the charge from the photodetector. Depending on the state(s) of the one or more switches, different operation modes with different conversion gains can be selected to increase the dynamic range of the pixel. The adaptability of the readout circuit can allow for a high dynamic range even in extreme temperature environments by lowering the dark current.
US11956546B2

A method for selecting spectator viewpoints in volumetric video presentations of live events includes receiving a plurality of video streams depicting an event occurring in a venue, wherein the plurality of video streams are provided to a processor by a plurality of cameras which are geographically distributed within the venue, identifying an initial position of a target that is present in the venue, based on an analysis of the plurality of video streams, compositing the plurality of video streams to produce a first volumetric video traversal of the live event that follows the target through the venue, predicting a future position of the target in the venue at a future point in time, based in part on a current position of the target, and sending an alert to a display device that is streaming a volumetric video presentation of the event, wherein the alert indicates the future position of the target.
US11956544B2

A camera includes a camera actuator having autofocus (AF) voice coil motor (VCM) with a lens carrier mounting attachment moveably mounted to a base, magnets mounted to the base, and an AF coil fixedly mounted to the lens carrier mounting attachment for producing forces for moving a lens carrier in a direction of an optical axis of a lens of the lens carrier. The magnets may include a pair of first magnets laterally spaced along a first side of the camera and a pair of second magnets laterally spaced along a second side of the camera opposite the first side. The optical image stabilization (OIS) VCM includes an image sensor carrier moveably mounted to the base, and OIS coils moveably mounted to the image sensor carrier within the magnetic fields of the magnets, for producing forces for moving the image sensor carrier in directions orthogonal to the optical axis.
US11956535B2

A method may include enabling operation of a time of flight (TOF) proximity sensor at an information handling system and initializing execution of a software service. The method may further include receiving, at the software service, an alert signal from the TOF proximity sensor indicating movement proximate to the information handling system. In response to receiving the alert signal, a camera at the information handling system may be configured to capture an image. The image may be analyzed by a vision system coupled to the camera to determine a gaze direction of a user at the information handling system. Operation of the information handling system may be configured based on the gaze direction.
US11956529B2

An electronic device including: a housing; a first camera having a first angle of view; a second camera having a second angle of view that is smaller than the first angle of view; a touchscreen display; and a processor. The processor is configured to: based on a photographing direction of the first camera and a photographing direction of the second camera being substantially the same, activate the first camera; display a first image acquired via the first camera on the display; acquire a second image by cropping the first image in accordance with the second angle of view, in response to reception of a first input event; display the second image on the display; activate the second camera in response to reception of a second input event; and display a third image acquired via the second camera on the display.
US11956528B2

A shooting method includes the following steps. A shooting page including a control region and a main display region is displayed, where the control region is used to display at least two effect controls, a more effect control, and a main shooting control, the at least two effect controls correspond to recommended effects according to a preset recommendation parameter; in response to a target slide operation in the main display region, the controls is moved along a sliding direction of the target slide operation, a target control is determined according to the target slide operation; in response to the target control being one effect control, a preview of a target effect corresponding to the target control is displayed on the shooting page, and capturing is performed using the target effect in response to a first trigger operation on the trigger position.
US11956527B2

Image processing can include storing a first image and a second image in response to a first command. The first image can be captured by a first camera and comprise first pixels and have a first field of view. The second image can be captured by a second camera and comprise second pixels and have a second field of view. A second command can be received and the first image can be edited based on the second command. The edited image can have a third field of view and comprise pixels based on the first pixels and the second pixels.
US11956522B2

An electronic component assembly having thermal pads with thermal vias coupling an image sensor and a camera board fab is provided for heat dissipation. The electronic component assembly can include: a circuit board having at least one thermal pad disposed on a top surface of the circuit board; and an image sensor disposed on the top surface of the circuit board, having at least one conductive pad disposed at at least one corner of the image sensor. The at least one thermal pad is coupled to the at least one conductive pad of the image sensor and the at least one thermal pad is formed with a plurality of first thermal vias penetrating the thermal pad and the circuit board for transfer of heat of the image sensor.
US11956511B2

An intelligent television system provides an operating system and an application framework for controlling a user interface to handle user input events from a handheld remote control. The remote control includes color keys that are configured for triggering different functions in different application panels displayed on the television.
US11956508B2

In some embodiments, a method receives a context for a user account and selects a plurality of collections for an interface. A collection includes one or more instances of content. The method analyzes a context for a user account to select a theme from a plurality of themes for a collection in the plurality of collections. The themes in the plurality of themes apply different display formats to the collection. The method sends an identifier for the theme and information for the collection to a client device being used by the user account to indicate to the interface the theme to use to display the collection with the plurality of collections.
US11956495B2

According to an embodiment, a source device for providing a screen sharing service with a sync device may include a display, a communication circuit configured to perform communication with the sync device, and a processor configured to receive a connection request for the screen sharing service from the sink device through the communication circuit, execute a home application for providing a home screen of the sink device according to the received connection request, display an execution screen of the home application on the display according to execution of the home application, and transmit image data corresponding to the displayed execution screen of the home application to the sink device through the communication circuit.
US11956494B2

Various arrangements for facilitating smart television content receivers in a local network are provided. In an example, a secondary television receiver receives audio data, converts the audio data into voice command data, and transmits the voice command data to a primary television receiver. In response, the primary television receiver transmits the voice command data to a voice processing server via the Internet, receives a command generated based on the voice command data, and transmits the command to the secondary television receiver. Based on the command, an operation of the secondary television receiver is controlled.
US11956493B2

The disclosure relates to modem and router modules for use with digital display systems, including televisions. A modem module is configurable to attach to a set-top box, a set-back box, directly to a digital display, or may even be integrated into display equipment. Router functions and ports can be integrated into the module to provide for networking of additional devices in proximity to the module and/or display, using either or both wired and wireless access technologies. Systems including the module convert power to the appropriate forms for delivery to the different devices, hardware, and components associated with the module. The modem and routing functions are configurable to provide separate security domains to isolate or direct traffic among the various networked devices.
US11956486B2

Example apparatus disclosed herein are to identify encoded information present in audio obtained for a time period. Disclosed example apparatus are also to generate a signature of the audio for comparison with signatures of reference media. Disclosed example apparatus are also to generate a first determination that a media presentation device was in an off state during a first portion of the time period based on a gain level applied by an automatic gain controller to collect the audio. Disclosed example apparatus are also to override the first determination that the media presentation device was in the off state during the first portion of the time period with a second determination that the media presentation device was in an on state during the first portion of the time period, the second determination based on at least one of the encoded information or the signature.
US11956485B2

To enable a set of media access control to be favorably performed on the reception side. A container having a predetermined format is transmitted, the container including a media stream. A predetermined number of pieces of media access information associated for the set of media access control, are sequentially inserted into a layer of the media stream or a layer of the container. For example, the media access information includes identification information for making a distinction from different media access information and identification information for making an association with the different media access information.
US11956462B2

Video processing methods and apparatuses for coding a current block comprise receiving input data of a current block, partitioning the current block into multiple sub-blocks, deriving sub-block MVs for the current block according to a sub-block motion compensation coding tool, constraining the sub-block MVs to form constrained sub-block MVs, and encoding or decoding the current block using the constrained sub-block MVs, and applying motion compensation to the current block using the constrained sub-block MVs to encode or decode the current block. The sub-block MVs may be constrained according to a size, width, or height of the current block or a sub-block, an inter prediction direction of one of control point MVs of the current block, the current block, or current sub-block, the control point MVs, or a combination of the above.
US11956456B2

A method of video encoding includes receiving a merge sharing region including a plurality of coding blocks, constructing a shared merge candidate list for the merge sharing region, and encoding a current inter coded coding block in the merge sharing region based on the shared merge candidate list. The method also includes determining whether to update a history-based motion vector prediction (HMVP) table with motion information of the current inter coded coding block based on whether the current inter coded coding block is inter coded with a merge/skip mode. The method further includes updating the HMVP table with the motion information of the current inter coded coding block when the HMVP table is determined to be updated with the motion information of the current inter coded coding block.
US11956448B2

Examples of video encoding methods and apparatus and video decoding methods and apparatus are described. An example method of processing video data includes determining, for a conversion between a video block of a video and a bitstream of the video, a gradient of a prediction vector at a sub-block level for the video block according to a rule, wherein the rule specifies to use a same gradient value is assigned for all samples within a sub-block of the video block; and performing the conversion based on the determining.
US11956440B2

An image coding method includes: writing, into a sequence parameter set, buffer description defining information for defining a plurality of buffer descriptions; writing, into the sequence parameter set, reference list description defining information for defining a plurality of reference list descriptions corresponding to the buffer descriptions; and writing, into a first header of each processing unit which is included in a coded bitstream, buffer description selecting information for specifying a selected buffer description.
US11956439B2

A method for visual media processing includes performing a conversion between a current video unit of a visual media data and a bitstream representation of the current video unit. The bitstream representation is configured according to a format rule. The format rule specifies a level of a video segment at which one or more syntax elements indicative of a scaling factor by which a chroma residual is scaled for coding the current video unit is selectively included in the bitstream representation.
US11956435B2

Techniques for context-adaptive binary arithmetic coding (CABAC) coding with a reduced number of context coded and/or bypass coded bins are provided. Rather than using only truncated unary binarization for the syntax element representing the delta quantization parameter and context coding all of the resulting bins as in the prior art, a different binarization is used and only part of the resulting bins are context coded, thus reducing the worst case number of context coded bins for this syntax element. Further, binarization techniques for the syntax element representing the remaining actual value of a transform coefficient are provided that restrict the maximum codeword length of this syntax element to 32 bits or less, thus reducing the number of bypass coded bins for this syntax element over the prior art.
US11956432B2

An example method of video processing includes determining, for a conversion between a block of a first sub-picture of a video and a bitstream representation of the video, whether to apply a deblocking process across an edge between the block and a neighboring block of a second sub-picture based on whether a loop filtering process is allowed across subpicture boundaries. The method also includes performing the conversion based on the determining.
US11956431B2

A method for processing a video includes performing a determination, by a processor, that a first video block is partitioned to include a first prediction portion that is non-rectangular and non-square; adding a first motion vector (MV) prediction candidate associated with the first prediction portion to a motion candidate list associated with the first video block, wherein the first MV prediction candidate is derived from a sub-block MV prediction candidate; and performing further processing of the first video block using the motion candidate list.
US11956428B2

The present invention discloses an image coding/decoding method and an apparatus for the method. More specifically, a method for filtering an image by a decoding apparatus comprises deriving boundaries of a block divided into quad-tree plus binary-tree structure; determining an edge among boundaries of the block to which de-blocking filtering is applied; determining a type of de-blocking filtering to be applied to the edge; and performing de-blocking filtering to a picture sample restored according to the de-blocking filtering type, wherein the edge or the type of de-blocking filtering is determined by considering width or height of the block.
US11956427B2

A method is disclosed for reconstructing a current block in units of sub-blocks included in the current block. The method includes: decoding transform coefficients in a transform block of the current block, sub-block information indicating a division form of the sub-blocks and transform type information indicating a transform type applied to the transform block from a bitstream; deriving a residual block of the current block from the transform coefficients on the basis of the transform type indicated by the transform type information and the sub-block information; and filtering boundaries of the sub-blocks in a reconstructed block of the current block derived on the basis of the residual block.
US11956419B2

Provided is a method of decoding a video according to an embodiment, the method including determining at least one processing block for splitting the video; determining an order of determining at least one largest coding unit in the at least one processing block; determining at least one largest coding unit on the basis of the determined order; and decoding the determined at least one largest coding unit, wherein the order is one of a plurality of orders for determining a largest coding unit.
US11956415B2

The occlusion is faithfully expressed even in the binocular vision in the AR display by a head mounted display apparatus or the like. A head mounted display apparatus 10 includes a lens, a lens, a camera, a camera, and a control processor. A CG image for a right eye is displayed on the lens. A CG image for a left eye is displayed on the lens. The camera captures an image for the right eye. The camera captures an image for the left eye. The control processor generates the CG image for the right eye in which occlusion at the time of seeing by the right eye is expressed and the CG image for the left eye in which occlusion at the time of seeing by the left eye is expressed, based on the images captured by the cameras and projects the generated CG image for the right eye and CG image for the left eye onto the lenses and. A center of a lens of the camera is provided at the same position as a center of the lens. A center of a lens of the camera is provided at the same position as a center of the lens.
US11956414B2

A wearable image manipulation system comprising a camera input system, an image projection system, where the image projection system is capable of being worn by a user, and a processor in communication with the camera input system and the image projection system such that the processor is capable of receiving an image from the camera input system, modifying the image to produce a modified image, and displaying the modified image on the image projection system. The camera input system may comprise a contact lens with a camera mounted thereon. Additionally or alternately, the system may be capable of tracking a user's eye movement to accurately capture where the user is looking with the camera input system.
US11956408B2

The information processing system obtains a plurality of images based on image capturing by a plurality of imaging devices; obtains viewpoint information for specifying a position of a virtual viewpoint and a view direction from the virtual viewpoint; and generates a plurality of virtual viewpoint contents each of which corresponds to one of a plurality of image formats based on the common plurality of obtained images and the obtained viewpoint information, and the plurality of image formats is image formats whose numbers of virtual viewpoints specified by the viewpoint information used for generation of the virtual viewpoint contents are different from one another.
US11956403B1

A system is disclosed. The system includes at least one physical memory device to store edge enhancement logic and one or more processors coupled with the at least one physical memory device to execute the edge enhancement logic to receive a plurality of pels in a continuous tone image (CTI), receive compensation data for pel forming elements associated with each of the plurality of pels, receive edge enhancement transfer functions, determine whether each of the plurality of pels is an edge pel, perform edge enhancement processing for each of the determined edge pels, including generating a final pel value for the pel based on the pel value for the pel, the edge enhancement transfer function associated with the pel, and the compensation data associated with the pel and perform compensation processing for each of the determined not edge pels, including generating a final pel value for the pel based on the pel value for the pel, and the compensation data associated with the pel.
US11956401B2

A management server includes a server communication unit connected to an office PC through a global network, an acquisition unit that acquires action information on a printer through the office PC connected to the server communication unit, a server storage unit that links a printer ID with an administrator ID and stores the printer ID and the administrator ID, and a calculation unit that calculates an amount of money paid to an administrator indicated by the administrator ID linked with the printer ID of the printer concerning the acquired action information based on the action information acquired by the acquisition unit.
US11956400B2

Disclosed embodiments may include a system for measuring document legibility. The system may automatically receive document image data from a user device. The system may then process the image data using optical character recognition to create language data containing a plurality of words. The system may then obtain an overall number by counting the plurality of words in the language data. The system may then identify and count the common words within the plurality of words by comparing the plurality of words to words in a database. A score may be obtained by dividing the common word number by the overall number. The score may then be compared to a legibility threshold. If the score is below the threshold, the system may determine the document is illegible. If the score is above the threshold, the system may determine the document is legible.
US11956395B2

An image-forming apparatus includes a detachable consumable; a printer that prints an image using the consumable; and a controller that determines whether control information that is set for the consumable and that is for control of the printer exists. The controller extracts, when it is determined that the control information corresponding to the consumable does not exist, image information from an image of a predetermined test pattern printed by the printer, and acquires the control information generated based on the extracted image information.
US11956386B2

An emergency report can be made to a plurality of emergency services. Provided is a communication control device 2 housing a subscriber terminal 1, and the communication control device 2 includes: a call control unit 21 that connects an emergency call made from the subscriber terminal 1 to an emergency-call reception switchboard 5; and an outgoing/incoming call inhibition unit 22 that inhibits outgoing/incoming calls from/to the subscriber terminal 1 in a prescribed period, when the emergency call is disconnected by the subscriber terminal 1. The outgoing/incoming call inhibition unit 22: when a call is made from the subscriber terminal 1 in the prescribed period, determines whether the call is an emergency call or a general call; in a case of an emergency call, cancels inhibition for outgoing/incoming calls from/to the subscriber terminal 1 and connects the call by using the call control unit 21; and in a case of a general call, does not connect the call.
US11956384B2

The present application describes providing an attestation level to a received communication. The attestation level may be used to communicate a level of security to a network or a called party that receives the communication. The attestation level associated with the communication may indicate to a destination network and/or recipient that the phone number associated with the communication is secure and/or the telephone number has not been spoofed.
US11956376B2

A memory system includes a plurality of memory cells at intersections between a plurality of word lines and a plurality of bit lines, and a plurality of bit line sense amplifiers connected to the plurality of bit lines, the plurality of bit line sense amplifiers configured to write data to or read data from the plurality of memory cells through the plurality of bit lines, a redundancy bit line sense amplifier among the plurality of bit line sense amplifiers configured to generate a physically unclonable function (PUF) key including a unique random digital value.
US11956354B2

A system for enhanced internet of things digital certificate security is provided. The system includes a computer device. The computer device is programmed to store, in a database, a plurality of statuses associated with a plurality of digital certificates. The computer device is also programmed to receive, from a first computer device, a status update for the first digital certificate. The computer device is further programmed to update the first status based on the status update. Subsequently to updating the first status, the computer device is programmed to receive a request for a connection from the first device. Subsequently to updating the first status, the computer device is also programmed to deny the request for a connection based on the first status.
US11956353B2

Provided with a technology of a machine learning using a convolutional neural network depending on practical calculation cost and security level desired by a user. A machine learning device includes: a data acquisition unit configured to acquire an image data; and a machine learning calculation unit configured to execute a calculation based on the image data using a convolutional neural network, wherein the convolutional neural network comprises a plurality of layers, the machine learning calculation unit includes: an encryption processing unit configured to execute the calculation by a homomorphic encryption in an encryption execution area; a plaintext processing unit configured to execute the calculation in a plaintext encryption area; and a reception unit configured to receive a layer designation information for designating an N-th layer which is an intermediate layer between an input layer and an output layer of the convolutional neural network, the encryption processing unit is configured to execute the calculation from the input layer to the N-th layer, and the plaintext processing unit is configured to execute the calculation from the (N+1)-th layer to the output layer.
US11956352B2

Time randomizing information protocol language encryption, provides systems, methods, computer programs and algorithms for encrypting communications. Provided by software in devices or firmware in networking hardware cooperates between at least two systems. Ciphers are randomly timed and replaced after a random period rendering eavesdropper decryption efforts ineffective and/or uneconomic. Ciphers may be based on common seed data sets, or on pointers to an array containing seed data. These seed data values, or pointers to them may be used in communications in shared transient languages. Languages may include number bases from binary on upwards, and characters used in human or machine languages. One implementation may convert human speech to text, then encrypt and transmit it, for decryption and conversion to synthetic speech in secure battlefield communications, or secure identity protected communications as may suit intelligence agencies. Applications, including non-human machine communications may run beneath conventional encryption to enhance security.
US11956351B1

A first node of a network includes a quantum receiver, a classical transceiver, and an initial-key generator that cooperate with a second node of the network to receive an initial key via the quantum receiver. The first node includes a key-series generator that (i) decrypts, with the initial key, a first encrypted key of a series of encrypted keys to generate a first unencrypted key of a respective series of unencrypted keys and (ii) decrypts each subsequent encrypted key of the series of encrypted keys with a preceding unencrypted key of the series of unencrypted keys to generate a subsequent unencrypted key of the series of unencrypted keys. The first node includes one or both of a decryptor and an encryptor. The decryptor decrypts encrypted data using a last unencrypted key of the series of unencrypted keys. The encryptor encrypts unencrypted data using the last unencrypted key.
US11956344B2

A communication apparatus is provided and receives a communication packet, acquires a timestamp of a reception of the communication packet, analyzes a type of the received communication packet, transfers the received communication packet to a predetermined memory based on information indicating an analyzed type of the communication packet, and associates the analyzed type of the communication packet with the acquired timestamp.
US11956343B2

A method for reception of a signal by a subscriber of a real-time network. The signal includes a signal clock having a signal clock frequency and the subscriber includes a counter, which has a counter clock with a counter clock frequency and which maps a local time of the subscriber. The method includes sampling the signal with a reception clock of a reception counter of the subscriber, the reception clock being derived from the counter clock, whereby the reception counter maps the local time of the subscriber, adapting a phase position of the reception clock to a phase position of the signal clock when said reception clock is derived from the counter clock, and sampling the signal at a reception clock frequency of the reception counter.
US11956336B2

A method includes generating quality of service requirement information which includes packet loss rate indication information. The packet loss rate indication information includes an acceptable maximum packet loss rate and a reference number of service data packets. The reference number of service data packets indicates a reference measurement number for counting the packet loss rate. The method also includes sending the quality of service requirement information.
US11956332B2

System and methods that improve the use of network functions on edge data networks are disclosed. A mechanism that supports edge-assisted UE context and trigger collection is described herein, where a UE can actively send its context information and/or any trigger (e.g. a request for a network function/service to be deployed in edge data networks, etc.) to an edge enabler server, which processes the received context and triggers from its UEs. The edge enabler server may also forward UE context and triggers to 5G core network (5GC) upon receiving a solicitation request from the 5GC, or if the 5GC has already made a subscription for getting notification on UE context and triggers. A network repository function is provided as a new network function collect, store, and manage edge data network information.
US11956328B1

In some implementations, a user plane (UP) device may receive a control packet indicating a logout associated with a subscriber session. The UP device may store an indication of the logout associated with the subscriber session. The UP device may determine, after storing the indication, that the logout associated with the subscriber session has not been completed within a subscriber logout period. The UP device may transmit an error indication indicating that the logout has not been completed within the subscriber logout period. In some implementations, a control plane (CP) device may receive the error indication indicating that the logout associated with the subscriber session has not been completed. The CP device may process the logout based at least in part on receiving the error indication. The CP device may transmit, based on processing the logout, a logout notification associated with the logout.
US11956323B2

This application relates to embodiments for providing a content stream to a device from a content server based on a protocol that is established between the device and an account server. The account server can initiate a session with the device and provide the device with a list of channels available for a user account associated with the device. When a channel is selected at the device, conditional access information can be provided from the account server to the device, which can thereafter relay the conditional access information to the content server. The content server can use the conditional access information to verify that the device has the appropriate permission to receive streaming content. In this way, because the conditional access information originates at the account server, permission to access streaming content can be managed by correspondence between the account server and the device, rather than the content server.
US11956310B2

A method and system for providing information management of data from hosted services receives information management policies for a hosted account of a hosted service, requests data associated with the hosted account from the hosted service, receives data associated with the hosted account from the hosted service, and provides a preview version of the received data to a computing device. In some examples, the system indexes the received data to associate the received data with a user of an information management system, and/or provides index information related to the received data to the computing device.
US11956309B1

A method for intermediary client reconnection to a preferred server in a high availability server cluster. The method includes monitoring a persistent connection of a logical connection to a preferred server to identify an unavailability of the preferred server, establishing a temporary persistent connection for the logical connection to an available server to replace an unavailable preferred server, prompting attempts to reconnect to the preferred server at intervals, and providing a connection switching pool and simultaneously re-establishing a persistent connection with the preferred server for the logical connection using the connection switching pool while terminating the temporary persistent connection to the available server. The connection switching pool and a main connection pool used by the persistent connection allow for simultaneously maintaining two connections to different servers in a same server cluster for the logical connection.
US11956307B1

A distributed task offloading and computing resources management method based on energy harvesting is provided, including: establishing a task local computing model and an edge cloud computing model; establishing a device maximum benefit objective function based on the perturbation Lyapunov optimization algorithm and a mobile edge computing server maximum benefit objective function; pre-selecting, by the device based on a pre-screening criteria, a mobile edge computing server for task offloading; calculating an optimal task size strategy for performing task offloading by the device to the selected mobile edge computing server by using a Lagrange multiplier algorithm and a KKT condition; obtaining an optimal quotation strategy of the mobile edge computing server for the device in each of time slots; and obtaining a solution of the optimal task size strategy meeting a Stackelberg equilibrium and a solution of the optimal dynamic quotation strategy meeting the Stackelberg equilibrium as a resource allocation strategy.
US11956305B2

System and methods are described for receiving a request from a client application to obtain data from a server; collecting a list of tasks to be performed by the server to process the request to obtain the data; performing tasks from the list of tasks by the server until an elapsed time to perform the list of tasks exceeds a first threshold and a size of a payload storing the data exceeds a second threshold; preparing the payload; and sending the payload to the client application.
US11956302B1

The present disclosure describes a device, computer-readable medium, and method for an IPv4-to-IPv6 redirect to enable use of application function-specific user endpoint identifiers (AF-specific UEIds). In one example, a method performed by a processing system includes receiving, from an application function of a communications network, a redirected request for an AF-specific UEId that is unique to a user endpoint device and the application function, where the redirected request includes an IPv6 address associated with the user endpoint device, querying a binding support function of the communications network for a subscription permanent identifier associated with the IPv6 address associated with the user endpoint device, querying an application function-specific management function for an AF-specific UEId associated with the subscription permanent identifier and an identifier of the application function, and forwarding the AF-specific UEId associated with the subscription permanent identifier and the identifier of the application function to the application function.
US11956297B2

Disclosed are embodiments for providing batch performance using a stream processor. In one embodiment, a method is disclosed comprising receiving, at a stream processor, an event, the stream processor including a plurality of processing stages; generating, by the stream processor, an augmented event based on the event, the augmented event including at least one additional field not appearing in the event, the additional field generated by an operation selected from the group consisting of a join or dimensional annotation operation; and emitting, by the stream processor, the augmented event to downstream consumer.
US11956293B1

Systems and methods for the selection of a network interface/CDN pair from among multiple network interface/CDN pairs are provided. In an embodiment, a method includes retrieving information about sets of CDNs accessible via different network interfaces of a device. A plurality of network interface/CDN pairs are then identified, and performance metrics for each pair are measured. A best pair is selected, and is used to retrieve the next segments of a requested content item.
US11956282B2

Systems and methods for facilitating shared access-right evaluation using linked communication channels are provided. A first communication can be received over a first communication link from a first user device, and a second communication can be received over a second communication link from a second user device. The first and second communications can include requests for the assignment of access rights. Map data can be generated and transmitted to each of the first and second user devices. Each user device can display a visual representation of access-right data. Further, a communication session can be facilitated between the first user device and the second user device. The communication session can be presented on the visual representation for each user device so that the first user and the second user can collaboratively evaluate access rights.
US11956281B2

A method is provided. The method includes generating, by a 5th generation media streaming (5GMS) application provider, an edge configuration resource including at least one edge enabler client (EEC) capability specification, transmitting, by the 5GMS application provider, a request for provisioning an edge application server (EAS) to operate as a 5GMS application server (AS), the request including the edge configuration resource, and selecting, by the 5GMS application provider, the EAS to operate as the 5GMS AS based on the EAS being capable of performing the at least one EEC capability specification included in the edge configuration resource.
US11956279B2

A method and a computer program product and an apparatus for securing communication in heterogeneous networks that include devices with different protection levels. The method comprises monitoring, by a security agent installed on a device, communication between the device and external devices. The method comprises determining a level of in-device protection for each device based on available protection thereof. The method further comprises employing, by the security agent, an associated security policy for communications originating from the device, based on the level of in-device protection; such as resources utilized for employing security policies for communications originating from devices are correlated with the protection levels thereof. The method may further comprise enabling sharing security workload between device having trusted security agents to improve performance efficiency thereof.
US11956273B2

Systems, methods, and computer-readable media for discovering trustworthy devices through attestation and authenticating devices through mutual attestation. A relying node in a network environment can receive attestation information from an attester node in the network environment as part of a unidirectional push of information from the attester node according to a unidirectional link layer communication scheme. A trustworthiness of the attester node can be verified by identifying a level of trust of the attester node from the attestation information. Further, network service access of the attester node through the relying node in the network environment can be controlled based on the level of trust of the attester node identified from the attestation information.
US11956272B2

Aspects of the disclosure relate to identifying legitimate websites and removing false positives from domain discovery analysis. Based on a list of known legitimate domains, a computing platform may generate a baseline dataset of feature vectors corresponding to the known legitimate domains. Subsequently, the computing platform may receive information identifying a first domain for analysis and may execute one or more machine learning algorithms to compare the first domain to the baseline dataset. Based on execution of the one or more machine learning algorithms, the computing platform may generate first domain classification information indicating that the first domain is a legitimate domain. In response to determining that the first domain is a legitimate domain, the computing platform may send one or more commands directing a domain identification system to remove the first domain from a list of indeterminate domains maintained by the domain identification system.
US11956263B1

Evaluating computers, devices, or endpoints on a network, such as a large network of computers in an enterprise environment. Detecting computers, devices, or endpoints that may present a security risk to the network or may be compromised in some way. Generating network traffic that, in some cases, should be ignored or should prompt specific, known responses. Detecting endpoint(s) that respond to such network traffic in an anomalous way, or otherwise attempt to perform certain operations based on such network traffic.
US11956260B2

Systems and methods are disclosed to implement a cyberattack detection system that monitors a computer network for lateral movement. In embodiments, the system uses network data from a computer network to build a baseline of connection behaviors for the network. Connection graphs are generated from new network data that indicate groups of nodes that made connections with one another during a last time interval. The graphs are analyzed for connection behavior anomalies and ranked to determine a subset of graphs with suspected lateral movement. Graphs with suspected lateral movement may be further analyzed to determine a set of possible attack paths in the lateral movements. The suspected attack paths are reported to network administrators via a notification interface. Advantageously, the disclosed system is able to detect potential lateral movements in localized portions of a network by monitoring for connection behavior anomalies in network data gathered from the network.
US11956246B2

Techniques are described herein for performing authentication, and also “eager” or “lazy” fetch of data, for restricted webpages based on the restricted webpages being associated with an authentication tier in an AASD registry. Inclusion of a restricted webpage in the AASD registry enables AASD-based authentication for the webpage. According to embodiments, information for a restricted webpage included in the AASD registry includes one or more of the following for the webpage: an identifier, an authentication level, allowed fields, eager fetch fields, one or more sources for one or more fields, etc. When information for a webpage is included in the AASD registry, that information is used to perform eager fetch for one or more fields of the webpage that are not associated with authentication requirements indicated in the AASD registry information, or whose authentication requirements are already fulfilled by the requesting client.
US11956243B2

Apparatus, systems, and methods are disclosed that operate to receiving an authentication request at a server associated with an authenticating entity from a requesting party responsive to a request being provided to the requesting party by a client terminal associated with an unauthenticated individual purporting to be an individual account owner previously authenticated with the authenticating entity. A token, from the client terminal associated with the unauthenticated individual is received, and the token includes information associated with the unauthenticated individual and a user permission authorizing the authenticating entity to share a selected portion of the information with a plurality of selected requesting parties. The server associated with the authenticating entity authenticates the unauthenticated individual as the individual account owner based on, inter alia, matching the token to a pre-registered identity uniquely associated with the individual account owner. Additional apparatus, systems, and methods are disclosed.
US11956232B2

A multi-tenant authentication system facilitates packaging and installing of integrations for authentication services of system tenants. The integrations include cloud resources of one or more cloud services. In order to package an integration, the multi-tenant authentication system retrieves resource manifests for cloud resources from corresponding cloud services. The multi-tenant authentication system generates the resource manifests to describe the cloud resource and any dependencies of the cloud resource, and also generates a package manifest including instructions for using the resource manifests to install the corresponding integration. The multi-tenant authentication system further facilitates installation of integration packages for tenants of the multi-tenant authentication system. The multi-tenant authentication system communicates with cloud services associated with resource manifests to install corresponding cloud resources to consistently replicate integrations for different tenants.
US11956226B2

Methods and systems for performing operations comprising: receiving, by a server from a client device, a request to access a data object comprising one or more medical records, the request comprising authentication information; determining, by the server, that the authentication information is valid; in response to determining that the authentication information is valid, transferring, by the server, the data object to a temporary storage location; transmitting a first portion of the data object to the client device from the temporary storage location; and deleting the first portion of the data object from the temporary storage location after the first portion of the data object has been transmitted to the client device.
US11956217B2

One example may include forwarding a request sent outside a VPN server, via a client device, to access a second communication network detected by the client device, and the client device is communicating with the VPN server over a first communication network, responsive to receiving a captive portal, forwarding, via the client device, authentication information to obtain access to the second communication network, and the authentication information is not forwarded to the VPN server, and receiving data, by the client device, from a remote server over a bonded connection including a first connection provided by the first communication network bonded with a second connection provided by the second communication network to form the bonded connection.
US11956216B2

A security system for individually-owned electronic devices includes a network operations center with an enrollment system, device management system, network layer security system, personal information monitoring system, detection and response system, and monitoring and alert system. An individually-owned electronic device communicates with the network operations center in order to receive and install a configuration file and a security application, as well as to configure a virtual private network connection. These components operate independently and collectively to identify and address security threats to the individually-owned electronic devices.
US11956206B2

A method of communicating with two or more slaves is provided. The method includes receiving a command packet with an interface, wherein the command packet is sent by a master over a master-slave bus and associating a slave address of the command packet with one of two or more slaves communicatively coupled to the interface.
US11956205B1

Various example implementations are directed to circuits, apparatuses, and methods for providing virtual computing services. According to an example embodiment, an apparatus includes a computing server configured to provide a respective group of virtual servers for each of a plurality of accounts. Each of the accounts has a respective set of domain names and a respective settings file. The apparatus also includes a domain name server (DNS). The DNS is to dynamically map a respective set of domain names for each account to network addresses of the respective group of virtual servers, provided for the account. The DNS performs the mapping according to a mapping function indicated in the respective settings file of the account. The respective settings file of a first account accounts includes a mapping function that is different from a mapping function included in the respective settings file of a second account.
US11956198B2

In some aspects, the techniques described herein relate to a method including: receiving, by a computing device, a message corresponding to a user inbox and to be added to the user inbox; applying, by the computing device, prior to adding the message to the user inbox, a message classification model to content of the message to determine one or more classifications corresponding to the message; determining, by the computing device, that the message is an important message based on whether one or more of the classifications is one of a set of predetermined classifications; adding, by the computing device, metadata to the message, the added metadata indicating that the message is an important message; and transmitting, to the user inbox, by the computing device, the message and the added metadata.
US11956197B2

An email solution defined by three panels, referred to as the left/first panel, the middle/second panel and the right/third panel when viewed on a display screen from a user perspective scanning or viewing left to right across a display screen. The left/first panel illustrates primary emails, promo & robots, special folders, contacts, and contact groups. A middle/second panel shows all conversation emails related to the item selected in left/first panel. A right/third panel shows a message thread defined as an ordered set of related emails, related to the email selected in the middle panel. The right/third panel shows both received and sent emails like the middle panel. A main horizontal header and toolbar provides selectable buttons for creating a new email, sorting the middle/second panels list of emails by one or more characteristics.
US11956189B2

Systems and methods for visual cue based messaging. A visual cue module can provide visual cue data indicative of a visual cue assigned for a contact or a group of contacts from a contact list. A messenger module can output on a display a messenger application GUI. The messenger application GUI includes a message field, a message window with a message thread between a user and the contact or the group of contacts, and a virtual keyboard. The messenger module can output the messenger application GUI with a visual cue graphical element representative of the visual cue to provide a visual indication of the contact or the group of contacts on the display to the user based on the visual cue data. The visual cue can be associated with the messaging field, the message thread, or at least one virtual key of the virtual keyboard.
US11956187B2

A company may implement automated workflows for convenience of users or to reduce support costs. For example, allowing a user to change an address using an automated workflow may be faster or less expensive than with a human agent. In some instances, a first communications session may be started between a first user and a second user. During the first communications session, one or more communications may be processed to select an intent of the first user and a value of an information item communicated by the first user. An automated workflow may be selected to continue assisting the first user, and the first user may be transferred to a second communications session with the automated workflow. The automated workflow may be initialized with the value of the information item that was provided during the first communications session so that the first user does not need to repeat information.
US11956183B2

This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for indication of asymmetric default operating frequencies (DOFs) for bidirectional communications. In one aspect, a first device may report to the second device that the first device is using either a same DOF for communications in different transmission directions or different DOFs for the different transmission directions. Based on the reported DOF(s), the second device may use beam correspondence-based beam relationships on the different transmission directions if the DOFs are the same and resource block allocations for the communications in both transmission directions are closely matched in frequencies. Alternatively, if the DOFs are different for the different transmission directions, the second device may adjust either a codebook parameter or may use an appropriate antenna panel. Additionally, or alternatively, the second device may direct the first device to use respective antenna subarrays with similar DOFs.
US11956176B2

The disclosure relates to a 5th Generation (5G) or 6th Generation (6G) communication system for supporting a higher data transmission rate. A method of operating an Integrated Access and Backhaul (IAB) donor node in a wireless communication system is provided. The method includes transmitting Frequency Division Multiplexing (FDM)-related information or Spatial Division Multiplexing (SDM)-related information to an IAB node, receiving necessary information from the IAB node, and transmitting or receiving backhaul data with respect to the IAB node by applying the FDM or the SMD, based on the FDM-related information or the SMD-related information.
US11956170B2

A method for measuring a reference signal, a method for configuring a reference signal resource, and a device are provided. The method for measuring a reference signal includes: determining a first set of reference signal resources for channel measurement and a second set of reference signal resources for interference measurement; performing measurement on a reference signal carried by at least one second reference signal resource in the second set of reference signal resources, to obtain interference corresponding to a first reference signal resource in the first set of reference signal resources, where during measurement on the reference signal carried by the second reference signal resource, if the second reference signal resource overlaps a third reference signal resource in the first set of reference signal resources, a position for measuring the reference signal carried by the second reference signal resource is a resource position corresponding to the third reference signal resource.
US11956163B1

Systems and methods described herein may provide a system that enables the dynamic assignment of network resources between multiple workloads executing on a network. A computing device may receive workload information relating to a plurality of workloads executing within a network. The computing device may use the workload information to determine engagement and dependency predictions for the plurality of workloads and resource predictions for the plurality of workloads. Based on the workload information and the engagement and dependency predictions, the computing device may determine workload priority predictions for the plurality of workloads. The computing device may assign, based on the resource predictions and workload priority predictions, network resources of the network to the plurality of workloads.
US11956151B2

A transmission control protocol (TCP) flow control method is provided, which comprises: sending a data packet from a packet processor to a receiver and storing a copy of the data packet; receiving a current ACK packet with a current packet number; determining whether the current packet number is identical to a last packet number and whether a last substitute ACK packet generated by the input ACK filter exists; and performing steps respectively corresponding to different results of this determination to avoid TCP congestion control timely. A TCP flow control device performing the method is also disclosed.
US11956147B2

A data transmission method, apparatus, and device, and a computer storage medium are provided. The method includes: obtaining an application packet of a target application; transmitting the application packet to a first routing device by using a network data channel, and transmitting, by using the first routing device, the application packet to a proxy server; meanwhile, transmitting the same application packet to a second routing device by using a short-range wireless data channel different from the network data channel, and transmitting, by using the second routing device, the application packet to the proxy server. The proxy server performs, a deduplication mechanism on the application packet and transmit the application packet to an application server corresponding to the target application.
US11956145B1

A flow identifier is described for packet sequences through a secure tunnel of an SD-WAN and an error message for recovering the flow. A method includes receiving a sequence of packets, facilitating a first secure tunnel between a first hub and a second hub, assigning a first flow identifier to the sequence of packets, encapsulating a first start packet, the wrapper including the first flow identifier, sending the encapsulated first start packet to the second hub through the first secure tunnel, receiving an error message from the second hub, the error message including the first flow identifier and an error code, facilitating a second secure tunnel, assigning a second flow identifier, encapsulating a second start packet, the wrapper including the second flow identifier, and sending the encapsulated second start packet through the second secure tunnel.
US11956141B2

Techniques are described in which a centralized controller, such as a software defined networking (SDN) controller, constructs a service chain that includes a physical network function (PNF) between a bare metal server (BMS) and a virtual execution element (e.g., virtual machine or container), or in some instances a remote BMS, or vice-versa. In accordance with the techniques disclosed herein, the controller may construct an inter-network service chain that includes PNFs, or a combination of PNFs and virtualized network functions (VNFs). The controller may construct an inter-network service chain to steer traffic between a BMS and a virtual execution element or remote BMS through an inter-network service chain using Virtual Extensible Local Area Network (VXLAN) as an underlying transport technology through the service chain.
US11956138B1

An embodiment establishes a knowledge base based at least in part on sensor data received from a network. The embodiment generates a predicted performance parameter for a designated entity of the network using a first machine learning algorithm. The embodiment compares the predicted performance parameter to an actual performance parameter and determines whether the actual performance parameter exceeds a threshold difference from the predicted performance parameter. The embodiment generates, responsive to determining that the threshold difference is exceeded, incentive data using a second machine learning algorithm, where the incentive data is representative of an action selected by the second machine learning algorithm using an iterative optimization process, and where the iterative optimization process comprises performing the action and determining that the actual performance parameter approaches the threshold value in response to the action.
US11956137B1

An instrumentation analysis system processes data streams received from servers executing instrumented software. The system determines a set of servers that satisfy a given criteria, for example, a set of servers with high resource utilization. The set of servers may be determined by the system based on triggers or specified by a user. The system analyzes properties of servers to determine a property that characterizes the set of servers. The property characterizing the servers is provided to users via a user interface or alerts for further analysis, for example, to analyze the cause of high resource utilization.
US11956136B2

Systems and methods for selectively generating a telemetry report to calculate a flow or bit rate are disclosed. The methods include calculating a hash value of a packet, using it as a key to query a bloom filter, and obtaining a packet count. If the packet count reaches a trigger value, a telemetry report is generated and sent, along with the ingress timestamp, hash value, and the packet count, to the collector for calculating the flow rate (or bit rate). The collector compares the packet count and ingress timestamp of the packet of the first telemetry report with a second telemetry report, both reports being generated at various trigger values, and calculates the flow rate. If a hash collision is detected, the calculations are voided and an update to the hash function is suggested.
US11956135B2

Embodiments described herein provide a system for facilitating dynamic content distribution in an enterprise environment. During operation, the system determines a set of logical groups based on a set of grouping criteria. A respective logical group can include one or more devices managed by a controller and a network that provides connections among the one or more devices. The system categorizes the set of logical groups based on exogenous information associated with a respective logical group and determines a corresponding condition of measurement for a respective category of links in the enterprise environment. The system then schedules a link for measurement based on the condition of measurement and the categorization of the set of logical groups.
US11956131B2

Described are examples for providing end-to-end intent definition of network functions for network slice management. Intents are defined for each level of network constituent including slices, slice subnets, and management functions. A system of intent based network slice management includes a network slice management function (NSMF) configured to receive a service profile from a communication service management function (CSMF) and derive an intent for each desired network slice subnet for a network slice subnet management function (NSSMF). The NSSMF is configured to derive requirements for a plurality of network functions (NFs) and provide an intent defining the requirements of a respective NF to a network function management function (NFMF). The NFMF is configured to receive the intent for the respective NF via an intent-based interface for management of NFs and derive a network resource model (NRM) for the respective NF based on the intent.
US11956126B1

In one embodiment, an illustrative method herein may comprise: determining, by a network controller, physical network topology of a data center network; collecting, by the network controller, virtual machine related network topology of the data center network from a virtual machine manager for the data center network; collecting, by the network controller, virtual ethernet flow mapping information of the data center network from a blade system management software for the data center network; collecting, by the network controller, container workload information of the data center network from a container orchestrator for the data center network; and generating, by the network controller, an integrated correlated visualization mapping of containers and associated network attachment points in the data center network based on the physical network topology, the virtual machine related network topology, the virtual ethernet flow mapping information, and the container workload information.
US11956125B2

There is provided a method for network management performed by a first entity (10), which is configured to manage network slices in a network. The method is performed in response to a first request to set up a first network slice. The method comprises identifying (102) one or more network nodes in the network and/or one or more second network slices to support the first network slice. For each identified network node, an update to an attribute of the identified network node is initiated (104) to add a unique identifier of the first network slice to the attribute of the identified network node. For each identified second network slice, an update to an attribute of the identified second network slice is initiated (106) to add the unique identifier of the first network slice to the attribute of the identified second network slice.
US11956121B1

A method, a network device, and a non-transitory computer-readable storage medium are described in relation to an edge cloud management service. The edge cloud management service may automate the provisioning, maintenance, supervision across multi-vendor network devices in a private/enterprise environment. Further, the edge cloud management service may provide abstraction and normalization services across multi-vendor components and enable KPI monitoring, location data, edge discovery metrics, end-to-end latency computation across various cloud service provider technologies.
US11956119B2

A method of joining a first device and a second device with a network, the method comprising: joining a first device with the network and subsequently joining a second device with the network, where a priority level for joining with the network associated with the first device is higher than the priority level for joining with the network associated with the second device.
US11956117B1

Aspects of the disclosure are directed to monitoring, alerting, and/or root causing network problems based on current network behavior and network events at any instant in time using a network behavior model. The network behavior model can learn and be updated with network states and events to correlate network problems and determine root causes of the network problems for alerting and/or automatic correction.
US11956105B2

Embodiments of the present disclosure relate to a method, an apparatus and a computer readable storage medium for generating soft-decision information for a receiver. In example embodiments, a method is provided. The method includes receiving, at a first device, a signal from a second device, the signal corresponding to a group of symbols transmitted from the second device; determining, by performing Lattice Reduction linear detection on the signal, a first group of estimated symbols for the group of symbols; determining, by performing iterative interference cancellation on the first group of estimated symbols, a second group of estimated symbols for the group of symbols; and generating, based on the second group of estimated symbols, soft-decision information about the group of symbols for use by a decoder at the first device. Embodiments of the present disclosure can improve the receiver performance with reduced complexity.
US11956104B2

Millimeter-wave (mmWave) and sub-mmWave technology, apparatuses, and methods that relate to transceivers and receivers for wireless communications are described. The various aspects include an apparatus of a communication device including one or more antennas configured to receive an RF signal and an ADC system. The ADC system includes a 1-bit ADC configured to receive the RF signal, and an ADC controller circuitry configured to measure a number of positive samples in the received RF signal for a plurality of thresholds of the 1-bit ADC, estimate receive signal power associated with the received RF signal based on the measured number of positive samples, determine a direct current (DC) offset in the received RF signal using the estimated received signal power, and adjust the received RF signal based on the determined DC offset.
US11956102B2

A method, an apparatus and a device for simultaneously sampling multiples signals and a medium are provided. The method includes: modulating multiple target input signals with CDM, to obtain a single target analog signal; performing ΔΣ modulation on the single target analog signal to obtain a target digital bit stream; demodulating the target digital bit stream to obtain a target demodulated bit stream; and filtering the target demodulated bit stream to obtain multiple target output signals. With the method, the hardware overhead for simultaneous sampling of multiple-channel signals is reduced while ensuring accuracy. Accordingly, the apparatus and the device, and the medium have the above beneficial effects.
US11956101B2

A network-synchronization device may include a match filter. The match filter may be configured to generate events for synchronizing operation of elements of a network at least partially responsive to timing frames generated at a network switch. The events for synchronizing operation of the elements may include a first event generated at least partially responsive to first information associated with a first element and a second event generated at least partially responsive to second information associated with a second element. Related systems and methods are also disclosed.
US11956100B1

According to one embodiment, a network device may be adapted to operate within a virtual private cloud where network address translation (NAT) is performed through virtual machines and each network address translation is handled differently by a different NAT control logic unit. The network device features one or more hardware processors, and a memory that stores at least a plurality of network address translation (NAT) control logic unit and demultiplexer logic. The demuliplexer logic, when executed, receives an incoming message and, based at least in part on information within the incoming message, determines a selected NAT control logic unit to receive at least a portion of the information within the incoming message. The selected NAT control logic unit handles address translation for routing of a message based on the incoming message to a public network.
US11956095B2

The present invention relates to a method for configuring a second home automation device (D2) by means of replacing a first home automation device (D1), the method comprising the following steps: recording (ERU1) at least one set of configuration data or instructions (cfg1) associated with a unique identifier of a first home automation device (D1); receiving (ERU9) a configuration request from a second home automation device (D2); determining (ERU10) an association between the second home automation device (D2) on the one hand and the first home automation device (D1) on the other hand; determining (ERU11) at least one set of configuration data or instructions (cfg2) associated with the second home automation device (D2); sending (ERU12) at least one configuration message (MCfg) comprising the at least one set of configuration data or instructions (cfg2) to the second home automation device (D2).
US11956082B2

Aspects presented herein may enhance a HARQ feedback operation to improve data retransmissions by using tri-state HARQ feedback, and may enable a UE to construct a codebook for tri-state HARQ feedback. In one aspect, a UE determines whether tri-state HARQ feedback or bi-state HARQ feedback is configured based on a DL carrier. The UE generates HARQ feedback for at least one of a received PDCCH or a received PDSCH on the DL carrier based on the determination whether the DL carrier is configured with the tri-state HARQ feedback. The UE transmits the generated HARQ feedback.
US11956081B2

Disclosed are two methods, the first method comprising receiving a plurality of data packets, producing a coded data packet by coding together at least two data packets, wherein at least one of the at least two data packets is comprised in the received plurality of data packets or in a coding buffer, transmitting the at least two data packets to a first subset of legs, transmitting the coded data packets to a second subset of legs, and determining if the at least two data packets are to be duplicated based on, at least partly, one or more of the following: a notification, a condition, or a first indication. The second disclosed method comprises receiving a data packet and an indication of a coding function and parameters used for coding two or more data packets, determining if the received data packet is a coded data packet and if it is, determine if one or more internal buffers comprise a minimum set of data packets for generating the coded data packet, using sequence numbers assigned to each data packet, and if the one or more internal buffers comprise the minimum set of data packets, retrieve the minimum set of data packets from the one or more internal buffers, and decoding the coded data packet using the minimum set of data packets and the coding function and parameters indicated by the indication received.
US11956080B2

In a wireless local area network (WLAN) system, a transmission STA can transmit a PPDU via a 320 MHz channel, and a Medium Access Control (MAC) signal may be generated for the PPDU. The MAC signal may include puncturing pattern information and channel center frequency segment (CCFS) information for a 320 MHz band. The CCFS information may include a first CCFS field related to channel center frequency (CCF) information of a primary 160 MHz channel, and a second CCFS field related to CCF information of a 320 MHz channel.
US11956074B2

This disclosure provides systems, methods and apparatuses for identifying physical downlink control channel (PDCCH) parameters, such as a PDCCH blind decode limit and a PDCCH control channel element limit, for implementations where a user equipment (UE) is configured with two or more cell groups. The techniques described herein permit the UE or a base station to determine the quantity of cell groups that is to be considered when determining the PDCCH parameters, permit the UE to indicate PDCCH capability values across multiple frequency ranges, and permit the base station to schedule a quantity of PDCCHs for the UE that results in a quantity of blind decodes that exceeds a PDCCH blind decode limit or a quantity of control channel elements that exceeds a PDCCH control channel element limit.
US11956071B2

An example method includes receiving a message from a sending service and addressed to a destination service. The message is sent to the destination service using a synchronous message modality responsive to a communication history parameter for the destination service indicating a synchronous message type. The message is sent to the destination service using an asynchronous message modality responsive to the communication history parameter indicating an asynchronous message type. A reply is received from the destination service and the reply is sent to the sending service. The synchronous message modality comprises waiting for a reply to be received from the destination service for a predetermined time interval. The asynchronous message modality comprises storing identification data associated with the message in a correlation data store, receiving the reply from the destination service, and determining whether the reply is associated with the message based on the identification data.
US11956059B2

A communication system may include an access point (AP), a user equipment (UE), and a communication path between the AP and the UE having a series of reconfigurable intelligent surfaces (RIS's). Each RIS may have a first beam pointing to a previous node and a second beam pointing to a next node in the communication path. Beams of routing RIS's and a beam from an end user RIS towards a last routing RIS may be set during calibration. The UE may perform beam discovery with the end user RIS. The UE and the AP may convey wireless data via reflections off each of the RIS's in the communication path. The beam of the end user RIS may be updated to track the UE device while the other the beams remain fixed. The beams may be calibrated using retroreflection and beam variation for each pair of RIS's up the communication path.
US11956056B2

A wireless device receives one or more messages comprising configuration parameters for a cell group. The cell group comprises: a first secondary cell configured with one or more beam failure recovery (BFR) parameters; and one or more second cells configured to use the first secondary cell for a BFR procedure. A deactivation timer of the first secondary cell is restarted in response to receiving a physical downlink control channel indicating an uplink grant or a downlink assignment for any secondary cell, other than the first secondary cell, in the cell group.
US11956050B2

There is disclosed a method of operating a radio node in a wireless communication network. The method includes obtaining delay characteristic information for a set of wireless devices, the delay characteristic information for each of the set of wireless devices pertaining to one or more signaling beams of a set of signaling beams, and communicating with subgroups of wireless devices of the set of wireless devices using signaling beams selected from the set of signaling beams based on the delay characteristic information. For each subgroup, a different selected signaling beam is used for communicating. The disclosure also pertains to related devices and methods.
US11956043B2

A method of reporting, by a terminal, channel state information (CSI) includes: receiving first configuration information related to a channel state information (CSI) report of a first bandwidth part (BWP) from a first base station and second configuration information related to a CSI report of a second BWP from a second base station, in which the first BWP is composed of a plurality of first subbands including at least one first subband for the CSI report, and the second BWP is composed of a plurality of second subbands including at least one second subband for the CSI report; based on that the at least one first subband and the at least one second subband partially or entirely overlap, obtaining a first CSI for overlapping at least one subband; and reporting the first CSI to the first base station and the second base station.
US11956041B2

Aspects of the subject disclosure may include, for example, a system comprising a distributed unit (DU) configured to generate sounding reference signal (SRS)-based beams, and a remote unit (RU) communicatively coupled with the DU over a fronthaul, wherein the RU is configured to generate demodulation reference signal (DMRS)-based beams and perform digital beamforming for an uplink using the DMRS-based beams in combination with the SRS-based beams. Other embodiments are disclosed.
US11956037B2

According to an example aspect of the present invention, there is provided a method, including receiving, by a wireless device of a first wireless network, a control request frame from a second access node of a second wireless network, the control request frame including at least a number of nulls for the wireless device. The wireless device selects a subset of antenna elements, wherein the number of antenna elements is in accordance with the number of nulls for the wireless device, and the antenna elements are selected based on reception powers of antenna elements of at least a frame from a first access node of the first wireless network and/or the second access node of the second wireless network. The wireless device transmits a control response frame with the selected antenna elements, and a data frame to the first access node with the selected antenna elements.
US11956033B2

The present disclosure provides a method and a device in a User Equipment (UE) and a base station for multi-antenna transmission. A first node operates first downlink information. The first field of the first downlink information is used for determining a first radio resource, and the second field of the first downlink information is used for determining a second radio resource. The first radio resource is reserved for a first-type reference signal, and the second radio resource is reserved for a second-type reference signal. A target receiver of the first-type reference signal comprises the first node, a transmitter of the second-type reference signal is the first node. A measurement on the first-type reference signal is used for generating the second-type reference signal. The first node is a UE and the operating action is receiving; or the first node is a base station and the operating action is transmitting.
US11956024B2

Provided is a data-coding apparatus that includes: a data-input line for receiving input data; a data scrambler having light sources coupled to the data-input line and modulated in accordance with the input data, and light sensors that receive light from the light sources; and at least one light-sensing processor coupled to the light sources and configured so as to selectively isolate light signals received from individual ones of the light sources based on at least one control signal input into such data scrambler. The light-sensing processor is dynamically controlled by the control signal(s) so as to rearrange words within the input data according to patterns that change in real time.
US11956018B2

A quantizer includes: a clipper configured to clip a portion exceeding a quantization range of a sample value sampled at a predetermined rate; and a noise shaper configured to determine a plurality of candidates for a quantization level based on the clipped sample value, and outputs, as a quantization value, a value obtained by adding a minimum noise in which a noise in a low-frequency region is minimum among noises generated in each candidate to the sample value before clipping.
US11956016B2

A hybrid sensing-communication system includes a multicore optical fiber that includes first and second cores, a first communication device optically coupled to a first end of the first core of the multicore optical fiber, a second communication device optically coupled to a second end of the first core of the multicore optical fiber, a first sensing device optically coupled to a first end of the second core of the multicore optical fiber, and a second sensing device optically coupled to a second end of the second core of the multicore optical fiber. The first and second communication devices exclusively exchange communication data along the first core, the first and second sensing devices exclusively exchange sensing data along the second core, and the communication data is different from the sensing data.
US11956005B2

An apparatus supporting multi-radio coexistence is provided. The apparatus is configured to support coexistence between multiple transceiver circuits configured to communicate radio frequency (RF) signals in a shared RF medium. In examples discussed herein, one transceiver circuit asserts a medium access request via a standard-defined coexistence interface for communicating an RF signal in the shared RF medium. The transceiver circuit may be configured to assert or de-assert the medium access request in response to a variety of trigger events. Depending on whether the medium access request is granted, the transceiver circuit may start communicating the RF signal in the shared RF medium in different modes. As such, it may be possible to reduce medium access delay for the transceiver circuit requesting to access the shared RF medium, while protecting the transceiver circuit currently occupying the shared RF medium from undue interruption and interference.
US11955997B2

An antenna module includes a multilayer board, a radio frequency (RF) chip, and a active device array. The multilayer board includes an antenna that transmits and receives electromagnetic waves through a top surface of the multilayer board. The RF chip, on a bottom surface of the multilayer board, is connected to the antenna and processes an RF signal. The active device array, on the bottom surface of the multilayer board, includes active devices, a first input pin and a first output pin. The first input pin and the first output pin are respectively connected to electrodes of an active device of the active devices. The multilayer board includes a first pattern for a first signal to be provided from the RF chip to the first input pin, and a second pattern for a second signal to be provided from the first output pin to the RF chip.
US11955995B2

A lossless data compressor of an aspect includes a first lossless data compressor circuitry coupled to receive input data. The first lossless data compressor circuitry is to apply a first lossless data compression approach to compress the input data to generate intermediate compressed data. The apparatus also includes a second lossless data compressor circuitry coupled with the first lossless data compressor circuitry to receive the intermediate compressed data. The second lossless data compressor circuitry is to apply a second lossless data compression approach to compress at least some of the intermediate compressed data to generate compressed data. The second lossless data compression approach different than the first lossless data compression approach. Lossless data decompressors are also disclosed, as are methods of lossless data compression and decompression.
US11955994B2

A first value of a first data element in a first set of data elements is obtained, the first set of data elements being based on a first time sample of a signal. A second value of a second data element in a second set of data elements is obtained, the second set of data elements being based on a second, later time sample of the signal. A measure of similarity is derived between the first value and the second value. Based on the derived measure, a quantisation parameter useable in performing quantisation on data based on the first time sample of the signal is determined. Output data is generated using the quantisation parameter.
US11955979B2

An electronic device may include wireless circuitry having mixer circuitry configured to receive oscillator signals from a partial-fractional phase-locked loop (PLL). The partial-fractional PLL may include a phase frequency detector, a charge pump, a loop filter, and a frequency divider connected in a loop. To implement the partial-fractional capability of the PLL, the frequency divider may receive a bitstream from a first order sigma delta modulator and a finite impulse response filter. The first order sigma delta modulator may output a periodic non-randomized output. The finite impulse response filter may increase the frequency of toggling of the periodic non-randomized output. Configured and operated in this way, the partial-fractional PLL can exhibit reduced phase noise.
US11955978B1

Methods and apparatuses for voltage comparators are described. In one example, a circuit for a voltage comparator includes a first transistor, a second transistor for receiving a first input voltage at a second transistor gate terminal, and a third transistor for receiving a second input voltage at a third transistor gate terminal. The second transistor and the third transistor are connected to the first transistor at a first node. A fourth transistor is connected to the second transistor at a second node, and a fifth transistor is connected to the third transistor at a third node. One or more capacitors are connected between the third node and a fourth node, where the fourth node includes the second transistor gate terminal. One or more capacitors are connected between the second node and a fifth node, where the fifth node includes the third transistor gate terminal. In one example operation, the one or more capacitors provide regenerative gain.
US11955975B2

A routing integrated circuit element is disclosed. The routing integrated circuit element is connected between a first and a second electronic module and includes a body, a first, and a second buffer element. A first side of the body is connected to the first electronic module. A second side is connected to the second electronic module and located on a different side from the first side. The distance between the second side and the second electronic module is shorter than the distance between the second side and the first electronic module. The first buffer element transmits an electronic signal from the first side to the second side. The second buffer element transmits the electronic signal from the second side to the first side, wherein the transmission directions of the electronic signals transmitted by the first buffer element and the second buffer element are opposite.
US11955973B1

A system and method for a logic device is disclosed. A first nanotrack along a first axis and a second nanotrack along a second axis perpendicular to the first axis are disposed over a substrate. The second nanotrack is disposed over the first nanotrack in a overlap portion. An input value is defined about a first end of the first nanotrack and the second nanotrack by nucleating a skyrmion, wherein a presence of the skyrmion defines a first value and absence of the skyrmion defines a second value. The nucleated skyrmion moves towards the second end of the nanotracks when a charge current is passed through the first nanotrack and the second nanotrack along the second axis. The presence of the skyrmion sensed at the second end of the nanotrack indicates an output value of the first value.
US11955964B2

A circuit includes a first switch assembly having a first input node and a first output node, and a second switch assembly having a second input node and a second output node. The circuit further includes a third switch assembly an operational amplifier, and a buffer. The third switch assembly has a third input node and a third output node. The third input node is coupled to the second output node, and the third output node is coupled to the first output node. The buffer has a buffer input and a buffer output. The buffer input is coupled to an input stage of the operational amplifier. The buffer output is coupled to the third switch assembly.
US11955958B2

An electronic power switch drive module for a power semiconductor unit, comprising a gate drive and a current transducer mounted on one or more circuit boards, the gate drive comprising at least one circuit portion for controlling at least one transistor of a power semiconductor module of said power semiconductor unit, the current transducer configured to be coupled to an output of the power semiconductor module for measuring an output current of the power semiconductor module, said at least one circuit portion connected to an output potential of the output current to be measured. The current transducer comprises at least one magnetic field sensor, the current transducer being connected to said at least one circuit portion of the gate drive at said output potential in a non-isolated manner.
US11955957B2

In accordance with an embodiment, a circuit for driving an electronic switch includes a control circuit configured to trigger a switch-on and a switch-off of the electronic switch in accordance with an input signal, wherein the control circuit is further configured to trigger the switch-off of the electronic switch in response to an under-voltage signal signaling an under-voltage state; and an under-voltage detection circuit configured to signal the under-voltage state when a supply voltage received at a supply node is below an under-voltage threshold value, wherein the under-voltage threshold value depends on a load current passing through the electronic switch.
US11955953B2

The invention relates to a protection for a semi-conductor switch against over voltages. A capacitive element is provided on an inlet connection of the semi-conductor switch. The load amount, which flows into said capacitive element, is integrated in order to trigger a protection function when a threshold value is exceeded.
US11955944B2

A low-pass filter includes first to third inductors and a capacitor. A first inductor-forming conductor layer constituting at least a part of each of the first and second inductors and a second inductor-forming conductor layer including first and second portions constituting first and second inductor portions of the third inductor are connected by a plurality of first through holes. The first portion and a capacitor-forming conductor layer constituting a part of the capacitor are connected by a plurality of second through holes. The second portion and the capacitor-forming conductor layer are connected by a plurality of third through holes.
US11955943B1

A semiconductor device includes an on-die resistor circuit comprising an on-die resistor, a calibration circuit configured to perform a calibration operation on the on-die resistor, and a calibration control circuit configured to control the calibration operation of the calibration circuit. The calibration circuit includes a current generating circuit configured to supply a calibration current to the on-die resistor and a comparing circuit configured to compare the magnitude of a first input signal that is generated by the calibration current and the on-die resistor with a magnitude of a second input signal that is generated by the calibration current and an external resistor.
US11955937B2

An amplification device includes a pulse signal acquisition part, a dummy signal generation part, a combination part, an amplifier and a separation part. The pulse signal acquisition part acquires a desired signal that is a pulse signal to be amplified. The dummy signal generation part generates a dummy signal. The combination part adds the dummy signal before and after the desired signal and outputs a composite signal. The amplifier amplifies the composite signal and outputs an amplified composite signal. The separation part extracts an amplified desired signal that is a signal resulting from amplification of the desired signal, from the amplified composite signal and outputs the amplified desired signal. Power of the composite signal is power that makes the amplification part operate nonlinearly.
US11955934B2

A system and method are disclosed for a superconducting traveling-wave parametric amplifier (TWPA) with improved control and performance. In a preferred embodiment, the amplifier comprises an integrated array of symmetric rf-SQUIDs in a transmission line structure. A device was fabricated using niobium superconducting integrated circuits, and confirmed predicted performance, with a maximum gain up to 17 dB and a bandwidth of 4 GHz. A similar device can be applied as a low-noise, low-dissipation microwave amplifier for output from a superconducting quantum computer, or as a preamplifier, switch, or frequency converter for a sensitive microwave receiver, or as an output amplifier for a frequency-multiplexed superconducting detector array.
US11955927B2

A panel cleaning system is provided which includes an inflatable wiper and a nozzle. In one aspect, the panel cleaning system includes pressurized air, linear actuators, and a panel-cleaning inflatable wiper wherein the pressurized air and the panel-cleaning wiper are configured to clean PV panels. A further aspect includes an inflatable wiper, a heater configured to heat pressurized air before the air flows out of nozzles and multiple air-driven pistons.
US11955923B2

A solar tracker including at least one pair of piers configured to be secured in the ground and defining a span between the pair, a bearing supported on the pier, and a torque tube supported in the bearing such that the bearing enables rotation of the torque tube, the torque tube including a double wall thickness area, wherein the double wall thickness area limits deflection of the torque tube along the span.
US11955907B2

A rotating electrical machine control system (100) whose control target is an alternating-current rotating electrical machine (80) including M coil sets (8) includes M inverters (50) each including a plurality of switching elements (5) and connected to a direct-current power supply (41) and one of the coil sets (8) to convert electric power between a direct current and alternating currents of N phases; M current sensors (6) each provided for each coil set (8) to detect an alternating current of each phase flowing through the coil set (8); and an inverter control device (30) that generates switching control signals (S) for controlling the plurality of switching elements (5). The inverter control device (30) performs current feedback control of the rotating electrical machine (80) using all detection values for each of N phases obtained by the M current sensors (6), to generate the switching control signals (S) common to the M inverters (50).
US11955904B2

In first power transmission in which power is transmitted from a first DC power source to a second DC power source, a control circuit performs on/off drive control of a positive electrode-side switching element and a negative electrode-side switching element in a first bridge circuit and a second bridge circuit and stops on/off drive of a positive electrode-side switching element and a negative electrode-side switching element in a third bridge. For a positive electrode-side switching element and a negative electrode-side switching element of a fourth bridge circuit, when a first power transmission amount by the first power transmission is greater than a predetermined first reference value, the control circuit performs on/off drive control, whereas when the first power transmission amount is smaller than the first reference value, the control circuit stops on/off drive.
US11955901B2

A switching device is provided. The apparatus includes a switching circuit and a noise filter. The switching circuit is capable of switching a connection destination of a first power conversion circuit other than a second power conversion circuit among the plurality of power conversion circuits between a phase corresponding to the first power conversion circuit and a certain phase of the external power supply. The second power conversion circuit corresponds to the certain phase of the external power supply. In the noise filter, a capacitor is provided on a side of the multiple-phase AC supply of the switching circuit.
US11955900B2

A bi-directional switch for an inductive machine is described. The bi-directional switch may include a first power semiconductor transistor with a first source, a first drain, and a first gate. The bi-directional switch may further include a second power semiconductor transistor with a second source, a second drain, and a second gate. The bi-directional switch may include the second source connected to the first source. The bi-directional switch may include a soft-starter device including a control circuit configurable to provide a first control signal to the first power semiconductor transistor and a second control signal to the second power semiconductor transistor.
US11955898B2

A charging and discharging device includes a transformer consisting of a primary winding and multiple secondary windings including at least a first secondary winding and a second secondary winding; multiple ports electrically connected to the primary winding and the multiple secondary windings of the transformer, respectively, wherein the multiple ports at least include a first port electrically connected to the primary winding via a first conversion circuit; a second port electrically connected to the first secondary winding via a second conversion circuit; and a third port electrically connected to the second secondary winding via a third conversion circuit; and a first controllable switch connected between the first conversion circuit and the primary winding.
US11955895B2

A flyback converter control architecture is provided in which primary-only feedback techniques are used to ensure smooth startup and detection of fault conditions. During steady-state operation, secondary-side regulation is employed. In addition, current limits are monitored during steady-state operation using primary-only feedback techniques to obviate the need for a secondary-side current sense resistor.
US11955892B2

A system that includes a first transistor to provide a drive voltage to a coupled inductor is disclosed. The coupled inductor can receive the drive voltage and generate a voltage output. A second transistor can receive a switching voltage generated from the voltage output to isolate a load positionable downhole in a wellbore from a voltage source.
US11955889B2

A buck voltage regulator device comprises a coupled inductor, a high-side switch electrically connected between an electrical energy source and a primary winding of the coupled inductor, a first low-side switch electrically connected between the primary winding and a ground node, a second low-side switch electrically connected between an auxiliary winding of the coupled inductor and the ground node, a first output node electrically connected to the primary winding, a second output node electrically connected to the auxiliary winding, a first output storage capacitor electrically connected to the primary winding between the first output node and the ground node, and a second output storage capacitor electrically connected to the auxiliary winding and between the second output node and the ground node.
US11955888B2

As inputs of a controller of a direct current (DC)-DC converter are sampled for a predetermined time and thus two-dimensional state information in which one axis is an input physical quantity and the other axis is a time is generated, the two-dimensional state information is processed by a convolutional neural network to determine and output one of a plurality of control signals. An artificial intelligence control part may operate in accordance with a plurality of operation conditions or dynamically determined operation conditions by applying different artificial intelligence engines according to operation modes.
US11955878B2

The upper arm drive circuit for controlling the drive of an upper arm switching element of the power conversion device includes: an upper arm gate voltage output wiring connected to a gate of the upper arm switching element; a first upper arm drive circuit reference potential wiring; an upper arm gate voltage reference potential wiring connected to an inverter output of the power conversion device; and a control circuit of upper arm drive circuit reference potential wiring potential for controlling the potential of the first upper arm drive circuit reference potential wiring to a potential lower than a reference potential when a potential of the inverter output is equal to a predefined potential that is lower than the reference potential or lower. The first upper arm drive circuit reference potential wiring is connected to the reference potential via the control circuit of upper arm drive circuit reference potential wiring potential.
US11955874B2

An electric powered work machine includes an inverter circuit, a power-source-side switching element, a power-source-side resistor, at least one circuit-side resistor, and a fault determiner. The power-source-side switching element is arranged between a direct-current power source and the inverter circuit. The power-source-side resistor is connected in parallel to the power-source-side switching element. The circuit-side resistor is connected to the inverter circuit in such a state that electrical conduction is possible between a positive side and a negative side of the direct-current power source in the inverter circuit in a case where semiconductor switching elements in the inverter circuit are all OFF. The fault determiner determines whether the switching elements are short-circuited based on a voltage at a connection point between the power-source-side switching element and the inverter circuit.
US11955872B2

A drive device includes: a drive unit including a rotary electric machine and a drive unit case that houses the rotary electric machine; a control unit including a control device configured to control the rotary electric machine; and a connection unit including a connection line that electrically connects the rotary electric machine and the control device. The control unit is disposed at a position facing the outer peripheral surface of the drive unit case. A space portion is provided between the outer peripheral surface of the drive unit case and the control unit. The connection unit is provided such that the connection line electrically connects the rotary electric machine and the control device through the space portion.
US11955860B2

The present invention may provide a motor including a shaft, a rotor coupled to the shaft, a stator disposed outside the rotor, and a bus bar disposed on the stator, wherein the bus bar includes a terminal connected to a coil of the stator, the terminal includes a first terminal and a second terminal which are separated from each other in a circuit manner, the first terminal includes a first neutral terminal and a plurality of first phase terminals, the second terminal includes a second neutral terminal and a plurality of second phase terminals, first curvature centers of the plurality of first phase terminals are disposed to be different, second curvature centers of the plurality of second phase terminals are disposed to be different, a position of a curvature center of the first neutral terminal is the same as a position of a curvature center of the second neutral terminal.
US11955851B2

An electric machine includes a stator core defining slots and a first hairpin assembly installed in the stator core. The first hairpin assembly includes first and second same hairpins, each having first and second ends and separately coated to have first and second outer coating surfaces, respectively. The hairpin assembly is in first and second ones of the slots such that the first and second outer surfaces are touching. A weld material joins the first ends and another weld material joins the second ends.
US11955842B2

A permanent magnet machine includes a machine housing having an inner surface that extends between a first housing end and a second housing end along a central longitudinal axis. The permanent magnet machine also includes a stator disposed within the machine housing, the stator having a stator core having an exterior surface extending between a first face and a second face along the central longitudinal axis, wherein the exterior surface defines a discontinuous region that is arranged to minimize points of contact between the inner surface and the exterior surface. The discontinuous region is at least partially defined by at least one of a first perturbation and a second perturbation that is circumferentially spaced apart from the first perturbation.
US11955833B2

According to aspects of the disclosure, an uninterruptible power supply is provided comprising an input configured to be coupled to, and receive input power from, a circuit breaker, an output configured to be coupled to, and provide output power to, at least one load, an energy-storage-device interface configured to be coupled to, and receive back-up power from, an energy-storage device, and at least one controller configured to determine whether a current through the circuit breaker meets at least one over-current criterion, and control, responsive to determining that the current through the circuit breaker meets the at least one over-current criterion, the uninterruptible power supply to provide the output power to the load, the output power being derived from the input power and the back-up power.
US11955828B2

The present disclosure relates to a battery management apparatus and method, and more particularly, to a battery management apparatus and method using non-destructive resistance analysis for analyzing the change of resistance of a battery cell. According to an embodiment of the present disclosure, even if the EIS (Electrochemical Impedance Spectroscopy) analysis is not used, the resistance change rate of the battery cell may be calculated non-destructively using the QV curve and the Q-dV/dQ curve of the battery cell.
US11955826B2

Electronic devices include: a first electronic device capable of being always supplied with power; and a second electronic device capable of being supplied with the power through an operation by an occupant. Each of power supply hubs is located near the first electronic device, and connected to a battery or another one of the power supply hubs by one of main power supply lines. Each of the first and second electronic devices is connected to nearby one of the power supply hubs. Each of zone ECUs outputs a control signal to one of power supply ICs so as to distribute, to the first and second electronic devices, the power supplied to one of the power supply hubs by one of the main power supply lines.
US11955824B2

Systems, methods, and articles for a portable power case are disclosed. The portable power case is comprised of at least one battery and at least one PCB. The portable power case has at least two access ports, at least two leads, or at least one access port and at least one lead and at least one USB port. The portable power case is operable to supply power to an amplifier, a radio, a wearable battery, a mobile phone, and a tablet. The portable power case is operable to be charged using solar panels, vehicle batteries, AC adapters, non-rechargeable batteries, and generators. The portable power case provides for modularity that allows the user to disassemble and selectively remove the batteries installed within the portable power case housing.
US11955817B1

A system for wireless power transmission, preferably including one or more power transmitters, detectors, and/or processing modules, and optionally including one or more power receivers and/or auxiliary sensors. A method for field detection, preferably including transmitting power, receiving latent scattering signals, analyzing the scattering signals, and/or acting based on the analysis.
US11955796B2

An output circuit included in an integrated circuit may employ multiple protection circuits to protect driver devices from damage during an electrostatic discharge event. One protection circuit clamps a signal port to a ground supply node upon detection of the electrostatic discharge event. Another protection circuit increases the voltage level of a control terminal to one of the driver devices during the electrostatic discharge event to reduce the voltage across the driver device and prevent damage to the device.
US11955795B2

A storage compartment is provided. The device includes a housing unit with a door. The housing unit is designed to be concealed within a wall. The housing unit is secured to the wall by a plurality of fasteners. The door is pivotally connected to the housing unit via a plurality of hinges. The door provides access to an interior volume of the housing unit. The door includes more than one spring-loaded latch that secures the door to the housing unit. A plurality of electrical outlets is disposed on the interior walls of the housing unit. A recessed area of the housing unit provides a storage area for electrical cords, surge protectors, and other items. The door includes an aperture that allows for electrical cords within the storage area to be accessed when the door is closed.
US11955791B2

A short-circuit detector includes: a first Rogowski coil configured to generate a first detection signal in accordance with a current that flows through a first arm due to a short circuit in a load; a second Rogowski coil configured to generate a second detection signal in accordance with a current that flows through the first arm due to a short circuit in the first arm or a second arm; a load short-circuit detection circuit configured to detect the short circuit in the load, based on the first detection signal; an arm short-circuit detection circuit configured to detect the short circuit in the first arm or the second arm, based on the second detection signal; and a short-circuit detection circuit configured to detect a short-circuit, based on: an output signal output from the load short-circuit detection circuit; and an output signal output from the arm short-circuit detection circuit.
US11955786B2

Provided is an electrical junction box that has a novel structure capable of stably preventing water from intruding into a case while simplifying the operation for connecting the electrical junction box and an external apparatus. An electrical junction box includes a circuit structure that includes a connection terminal for connection to an external apparatus, a case that has an insertion hole and houses the circuit structure, a relay terminal that is connected to the connection terminal, and includes an external connection portion that is inserted into the insertion hole and is exposed to the outside of the case, and a sealing member that is compressed between opposing surfaces of the insertion hole and the relay terminal and seals the insertion hole.
US11955785B2

A resin structure includes first and second resin bodies including first and second wall portions and first and second engagement portions, respectively. One of the first engagement portions engages with one of the second engagement portions and form a first engaging part. Another one of the first engagement portions engages with another one of the second engagement portions and form a second engaging part. The first engaging part is positioned on a further front side than the second engaging part in an attaching direction of the second resin body to the first resin body. When the second resin body is rotated toward the first resin body with the first engaging part as a center of rotation and with the one of the first engagement portions being engaged with the one of the second engagement portions, the first wall portion is prevented from interfering with the second wall portion.
US11955781B2

A draw out circuit breaker has a reduced partial discharge in insulation surrounding a primary stab bus. A circular disk plate on one end of the bus includes tapped inserts located at a radial separation distance from the bus. An insulator sleeve surrounding the bus is formed to encapsulate the tapped inserts. Raised embosses on the circular disk plate separate the end portion of the insulator sleeve by a gap distance from the inward facing surface of the disk plate. The increased gap distance reduces formation of a triple point region between the surface of the disk plate and the insulator sleeve, thereby reducing occurrence of partial discharges in the insulator sleeve near the gap.
US11955775B2

A quantum cascade laser includes light-emitting quantum well layers configured to emit infrared laser light by an intersubband transition; and injection quantum well layers configured to relax carrier energy. The light-emitting quantum well layers and the injection quantum well layers are stacked alternately. The injection quantum well layers relax the energy of carriers injected from the light-emitting quantum well layers, respectively. The light-emitting quantum well layers and the injection quantum well layers including barrier layers. At least one barrier layer includes first and second regions of a first ternary compound semiconductor, and a binary compound semiconductor thin film. The binary compound semiconductor thin film is provided between the first and second regions. The first ternary compound semiconductor includes Group III atoms and a Group V atom. The binary compound semiconductor thin film includes one Group III atom of the first ternary compound semiconductor and the Group V atom.
US11955762B2

A laser pulse energy amplification device and method, and a femtosecond laser are provided. The laser pulse energy amplification device includes a pulse amplifier and a pulse shaper that are connected in sequence. The pulse amplifier is connected to an output port of a seed laser source and is connected to the pulse shaper that outputs a femtosecond laser pulse. The seed laser source is configured to generate and input a seed laser pulse to the pulse amplifier. The pulse amplifier is configured to introduce a nonlinear phase shift into the seed laser pulse, perform energy amplification and spectral stretching, and output an energy-amplified laser pulse with a nonlinear phase to the pulse shaper. The pulse shaper is configured to measure a shape and/or the nonlinear phase of the energy-amplified laser pulse, and shape the energy-amplified laser pulse according to the shape and/or the nonlinear phase.
US11955754B2

In examples of the disclosure, a device may be couple an electrical load to a power source. The device may have a first coupling configured to couple to the power source and a second coupling configured to couple to the electrical load. The device may have a plurality of strands electrically disposed between the first coupling and the second coupling. Each of the plurality of strands may have a coating having a resistivity greater than 1.8×10−8 Ω-m and less than 1 Ω-m and a center conductor wrapped, at least in part, by the coating.
US11955741B2

The present invention discloses a buckle connector connecting a main board and a sub-board. The buckle connector includes a first connecting portion and a second connecting portion. The first connecting portion mainly provides a first coupling member and the second connecting portion mainly provides a second coupling member. The first connecting portion and the second connecting portion are disposed on the same plane by coupling the first coupling member and the second coupling member when the first connecting portion moves to the second connecting portion in one direction.
US11955734B2

A slotted patch antenna used to generate polarized radio frequency fields in media having high permittivity. The slotted patch antenna may include a plurality of conductor layers, each being electrically coupled through a capacitive layer. The layers may contain pluralities of slots that form pluralities of conductor segments. The feed conductors carrying radio frequency signals may be capacitively coupled to intermediate conductors. The slotted patch antenna may include tuning conductor segments and slots. The slotted patch antenna may include conductor segments and slots that control current paths, internal field distributions, transmitted field distributions, and direction of transmission.
US11955733B2

The present invention provides a new wideband mm-wave end-fire magneto-electric dipole antenna with excellent beam-scanning radiation patterns and reasonably low side lobes and low cross polarizations. The antenna comprises: an asymmetrical substrate integrated coaxial line feed comprising: a first substrate having a first substrate thickness; a second substrate placed on the first substrate and having a second substrate thickness different from the first substrate thickness; a conductive signal line deposited on an upper surface of the first substrate; and two rows of waveguiding vias positioned along and at both sides of the signal line respectively; a Γ-shaped probe adopted to excite the antenna; a pair of shorted planar parallel plates serving as magnetic dipole and two pair of vertical conductive vias serving as electric dipole; and a folded vertical reflector consisting of conductive vias and strips is added to reduce the back radiation and to improve the gain of antenna.
US11955731B2

An electronic device includes a housing including a first plate and a second plate; and a first antenna structure. The first antenna structure includes a board disposed between the first plate and the second plate. The board includes a first surface facing the first plate, a second surface facing the second plate, a plurality of insulating layers stacked on top of each other between the first surface and the second surface, a first conductive layer disposed on the first surface, a second conductive layer disposed on the second surface, a plurality of strips disposed between the plurality of insulating layers, and a plurality of vias connecting at least one or more of the first conductive layer, the second conductive layer, or the plurality of strips to each other and disposed in the plurality of insulating layers. The electronic device further includes a first conductive structure, a second conductive structure, a third conductive structure, and a fourth conductive structure formed as part of the plurality of strips and the plurality of vias; and a wireless communication circuit electrically connected to at least one of the vias and configured to transmit or receive at least one signal having a frequency of 3 GHz to 100 GHz.
US11955730B2

An antenna module comprises: a first radiation patch having a first opening; a second radiation patch spaced apart above the first radiation patch and smaller than the first radiation patch and having a second opening; a coupling patch spaced apart above the second radiation patch and smaller than the second radiation patch; and an electricity feeding path penetrating through the first opening and the second opening so as to be connected to the coupling patch, wherein the center of the first opening and the center of the second opening are displaced laterally. As one antenna module can operate in different frequency bands, the number of antennas can be reduced.
US11955729B2

Embodiments of an antenna system and a method for operating an antenna are disclosed. In an embodiment, an antenna system includes a first ferrite element, a second ferrite element, a first coil wrapped around the first ferrite element, a second coil wrapped around the second ferrite element, a first antenna interface electrically coupled to the first coil, a second antenna interface electrically coupled to the second coil, and a conductor network connected between the first coil, the second coil, the first antenna interface, and the second antenna interface.
US11955727B2

Systems and methods are provided for a digital beamformed phased array feed. The system may include a radome configured to allow electromagnetic waves to propagate; a multi-band software defined antenna array tile; a power and clock management subsystem configured to manage power and time of operation; a thermal management subsystem configured to dissipate heat generated by the multi-band software defined antenna array tile; and an enclosure assembly. The multi-band software defined antenna array tile may include a plurality of coupled dipole array antenna elements; a plurality of frequency converters; and a plurality of digital beamformers.
US11955726B2

An antenna device includes a dielectric layer disposed on a ground plane; a first patch antenna pattern disposed on the dielectric layer; first and second feed vias feeding an RF signal to the first patch antenna pattern; a first feed pattern connected to the first feed via, and coupled to the first patch antenna pattern; and a second feed pattern connected to the second feed via and coupled to the first patch antenna pattern. The first patch antenna pattern includes a first edge in parallel with a first direction, and a second edge in parallel with a second direction. The first feed pattern is disposed near the second edge, the second feed pattern is disposed near the first edge, and a first width of the first feed pattern measured in a second direction is different from a second width of the second feed pattern measured in the first direction.
US11955725B2

An antenna structure includes a metal plate and a spiral radiator. The metal plate is provided with a first surface and a second surface that are disposed oppositely. An accommodating groove is formed in the metal plate and adjacent to the first surface. The spiral radiator is mounted in the accommodating groove and insulated from the metal plate, and the spiral radiator is provided with a feed end used to be connected to a feed source.
US11955720B2

A beam adjustment assembly includes a phase shifter and a connecting plate. The phase shifter includes a circuit board and main dielectric slabs configured to shift a phase. The circuit board is provided with a first strip and a second strip that are spaced. The first strip and the second strip are configured to respectively connect to radiating elements of an antenna. The connecting plate is slidably assembled on the circuit board and is configured to control an electrical connection between the first strip and the second strip. When sliding, the main dielectric slab can push the connecting plate to slide to control a quantity of radiating elements in the antenna system. The sliding of the main dielectric slab in the phase shifter is used as a driving mechanism of the connecting plate.
US11955717B2

A radio frequency system package may include waveguides and loading blocks. The loading blocks may include dielectric material having a high dielectric constant between 13 and 20. Additionally, the loading blocks may be made of mold, epoxy, or the like material, and the loading blocks may fit into a region cut out of the waveguides. Moreover, the loading blocks may lower the cut-off frequency for wireless communication otherwise provided by the waveguides without the loading blocks (e.g., 28 GHz). In particular, the loading blocks may facilitate communication in low mmWave frequencies, such as 24 GHz.
US11955714B2

An antenna diameter adjustment method for adjusting an antenna diameter by changing a distance between a part of each of a plurality of reflectors at which the radio signal is reflected, the plurality of reflectors each being configured to reflect radio signals emitted from a plurality of radiators from a center of a circle along a radial direction thereof and to radiate the radio signal toward an opposite antenna apparatus, and the center of the circle along the radial direction of the circle.
US11955709B2

An antenna package according to an embodiment of the present disclosure includes an antenna device including an antenna unit, a first circuit board including a first core layer having a first surface and a second surface opposite to each other, a signal wiring extending on the first surface of the first core layer to be electrically connected to the antenna unit, and a first via structure penetrating through the first core layer, and a first connector mounted on the second surface of the first core layer, the first connector including a first terminal electrically connected to the antenna unit and the first via structure.
US11955703B2

The antenna includes a first antenna unit and a second antenna unit. The first antenna unit and the second antenna unit are disposed on the same surface of a substrate. The first antenna unit includes a first primary radiation unit and a first secondary radiation unit, and the second antenna unit includes a second primary radiation unit and a second secondary radiation unit. A gap exists between the first primary radiation unit and the second primary radiation unit. The first secondary radiation unit is connected to one end of the first primary radiation unit that is away from the second primary radiation unit, the second secondary radiation unit is connected to one end of the second primary radiation unit that is away from the first primary radiation unit, and the first secondary radiation unit and the second secondary radiation unit are located on the same side of the substrate.
US11955700B1

Cellular base station antenna concealments, such as palm and tree concealments, utilize artificial branches with nonmetallic (e.g., polymeric) interfaces to avoid loose metal-to-metal connections to mitigate the generation of passive intermodulation (PIM) interference by the branches. Representative embodiments include “palm concealments” with low-PIM artificial palm fronds, and “tree concealments” with low-PIM artificial tree branches. That is, “low-PIM fronds” and “low-PIM tree branches” are two representative examples of “low-PIM branches” illustrating representative embodiments of the invention. The low-PIM palm frond includes a nonmetallic (e.g., polymeric) sleeve positioned between a metal frond shaft and a metal frond receiver. A first example of the low-PIM tree branch includes nonmetallic (e.g., polymeric) fastener isolators positioned between metal fasteners and a metal tree branch receiver. A second example of the low-PIM tree branch includes a nonmetallic (e.g., polymeric) sleeve positioned between the metal tree branch receiver and a tree branch shaft.
US11955699B2

An electronic device is provided. The electronic device includes a housing including a side member, a support member, a display, an antenna module including one or more patch antennas, a printed circuit board (PCB), a wireless communication circuit disposed on the PCB, a first conductive member, a first connector, a second connector, and a protrusion extending from the first end of the first conductive member toward an interior of the housing, and electrically connected to the first conductive member. The antenna module is disposed at locations corresponding to a first opening defined by the first conductive member, the support member, the first connector, and the second connector, and a second opening defined by the first conductive member, the support member, the first connector, and the protrusion, and the wireless communication circuit is electrically connected to the protrusion and the antenna module.
US11955698B2

A device comprises a package substrate and a ball grid array (BGA). The package substrate encapsulates an integrated circuit (IC) die and comprises a signal launch configured to emit or receive a signal on a surface of the package substrate. The BGA is affixed to the surface and comprises a set of grounded solder balls arranged as a boundary around the signal launch. The device may further comprise a printed circuit board (PCB) substrate having a waveguide interface side opposite a secondary waveguide side and a through-hole cavity that extends from the waveguide interface side to the secondary waveguide side, perpendicular to a plane of the PCB substrate. The BGA couples the package substrate to the waveguide interface side such that the surface of the package substrate faces the through-hole cavity and the signal launch and through-hole cavity are substantially aligned.
US11955695B2

An antenna module includes: a middle frame, wherein a bezel of the middle frame is provided with an opening for providing a functional module, the bezel is formed with a first conductive strip on one side of the opening, and the bezel is formed with a second conductive strip on the other side of the opening, wherein the first conductive strip and/or the second conductive strip is/are connected to a feed line, to be used as an antenna radiator for transmitting and receiving radio signals. The first conductive strip and the second conductive strip are formed by the bezel at the opening for providing the functional module, to transmit and receive the radio signals, such that the bezel at the opening can be multiplexed to transmit and receive the radio signals in a case that space is limited.
US11955678B2

Methods to improve redox flow battery performance with improved CE, reduced electrolyte solution crossover, and simplified solution refreshing process have been developed. The methods include controlling the pre-charging degree and conditions to allow high quality metal plating (ductile and uniform), for example, Fe(O), on the negative electrode. Control of the pre-charging conditions can be combined with increasing the concentration of metal ions compared to existing systems, while maintaining the same concentration in both the negative and positive electrolytes, or increasing the concentration of metal ions in the negative electrolyte so that the negative electrolyte has a higher concentration of metal ions than the positive electrolyte.
US11955673B1

Systems and methods for real-time continuous monitoring of fuel cell membrane degradation are provided. At least one microsensor can be used as an inline sensor integrated at the cathode exhaust and/or the anode exhaust of a fuel cell, such as a proton exchange membrane fuel cell (PEMFC)). The microsensor can monitor the PEMFC degradation status by sensing the emission of fluoride.
US11955666B2

A battery system includes an enclosure having opposed first and second major walls, a perimetral wall connecting the first and second major walls along respective perimeters thereof, and an interior defined by the first and second major walls and the perimetral wall, wherein the enclosure is configured for containing an anode assembly, a cathode assembly and an electrolyte within the interior. A longitudinal embossment is formed in the perimetral wall extending outward from the interior and extending along opposed adjacent portions of the first and second perimeters. A wall port is defined in the perimetral wall in fluid communication with the interior, wherein the wall port is configured for permitting flow of the electrolyte therethrough into and out of the interior. First and second electrodes extend through the perimetral wall and are configured for electrical connection with the anode assembly and cathode assembly, respectively.
US11955665B2

A secondary battery may include: an electrode assembly in which first and second electrode sheets are stacked and wound with a separation sheet interposed therebetween, wherein a first electrode tab protrudes in the first electrode sheet, and a second electrode tab protrudes in the second electrode sheet; a battery can to accommodate the electrode assembly therein; and a connection part above or below the electrode assembly and facing the electrode assembly, wherein the connection part has a first area made of an electrically conductive gel material; and a second area attached to the first area and made of an electrically insulating material, wherein the second area forms at least a portion of a top surface of the connection part, and at least a portion of the first electrode tab or the second electrode tab is inserted into the first area of the connection part.
US11955649B2

The present disclosure relates to a cover plate assembly for a lithium ion battery and a lithium ion battery. The cover plate assembly includes a cover plate body, provided at a middle portion thereof with a through hole which extends to form a tube body, and the tube body protrudes from at least one surface of the cover plate body; a pressure relief portion, wherein the pressure relief portion is located in the tube body and is in sealed communication with the tube body, the pressure relief portion is ring-shaped and is configured to crack and split from the cover plate body in response to deformation of the cover plate body; and a central conductor, embraced by the pressure relief portion and runs through the pressure relief portion along the axial direction. The cover plate assembly features excellent safety performance and small space occupation.
US11955648B2

A pouch-type battery case includes a cup portion, which accommodates therein an electrode assembly formed by stacking an electrode and a separator, and a plurality of die edges connecting an outer wall of the cup portion to a side extending from the outer wall. The die edges include a first region, which is rounded at a first radius (r1) of curvature and at which an electrode tab extending from the electrode is positioned, and a second region which is other than the first region and rounded at one or more second radii (r2, r3, r4) of curvature less than or equal to the first radius (r1) of curvature. The second region is divided into an inner region and an outer region with respect to the first region, and the radius (r2) of curvature in the inner region differs from the radii (r3, r4) of curvature in the outer region.
US11955646B2

A supported catalyst includes: (1) a catalyst support; and (2) deposits of a catalyst covering the catalyst support, wherein the deposits have an average thickness of about 2 nm or less, and the deposits are spaced apart from one another.
US11955644B2

A power storage cell comprises an electrode assembly, a collector plate that has the first electrode sheet connected thereto, and a laminate film, wherein the collector plate has a peripheral edge portion including an inner side located closer to the electrode assembly and an outer side located on a side opposite to the electrode assembly with respect to the inner side, the collector plate is provided with a welding portion and an adhesive portion, and when a direction from the inner side toward the outer side is defined as a first direction and a direction intersecting the first direction is defined as a second direction, the welding portion and the adhesive portion are aligned in the second direction.
US11955643B2

Provided is a current collector with an easily adhesive layer including an easily adhesive layer that is provided on at least one surface of a current collector, in which the easily adhesive layer includes a polymer having a solubility of 1 g/100 g or higher in toluene at 25° C. Provided are also an electrode, an all-solid state secondary battery, an electronic apparatus, and an electric vehicle that include the current collector with an easily adhesive layer, and methods of manufacturing the current collector with an easily adhesive layer, the electrode, and the all-solid state secondary battery.
US11955635B1

A single crystal multi-element positive electrode material and a preparation method therefor, and a lithium ion battery. The ratio of the length of the longest diagonal line to the length of the shortest diagonal line of the single crystal particles of the single crystal multi-element positive electrode material measured by an SEM is roundness R, and R≥1; and D10, D50 and D90 of the single crystal particles of the single crystal multi-element positive electrode material satisfy: K90=(D90−D10)/D50, and the product of K90 and R is 1.20-1.40. The single crystal multi-element positive electrode material is more round and regular in morphology, the single crystal particles have uniform size, less agglomeration and less adhesion. The material has the characteristics of high compaction density, good rate capability and excellent cycle performance.
US11955634B2

A particle structure of cathode material and a preparation method thereof is provided. Firstly, a precursor for forming a core is provided. The precursor includes at least nickel, cobalt and manganese. Secondly, a metal salt and a lithium ion compound are provided. The metal salt includes at least potassium, aluminum and sulfur. After that, the metal salt, the lithium ion compound and the precursor are mixed, and a mixture is formed. Finally, the mixture is subjected to a heat treatment step, and a cathode material particle structure is formed to include the core, a first coating layer coated on the core and a second coating layer coated on the first coating layer. The core includes potassium, aluminum and a Li-M-O based material. The first coating layer includes potassium and aluminum, and a potassium content of the first coating layer is higher than a potassium content of the core. The second coating layer includes sulfur.
US11955629B2

The present invention relates to a positive electrode active material having improved capacity characteristic and life cycle characteristic, and a method of preparing the same, and specifically, to a positive electrode active material for a lithium secondary battery, wherein the positive electrode active material comprises a compound represented by Formula 1 above and allowing reversible intercalation/deintercalation of lithium, and from a crystal structure analysis of the positive electrode active material by a Rietveld method in which space group R-3m is used in a crystal structure model on the basis of an X-ray diffraction analysis, the thickness of MO slab is 2.1275 Å or less, the thickness of inter slab is 2.59 Å or greater, and the cation mixing ratio between Li and Ni is 0.5% or less, and a method of preparing the same.
US11955628B2

[Problem] To improve productivity of guest-free silicon clathrates [Solution] A method of producing a guest-free silicon clathrate includes a synthesizing step of performing a heat treatment on a mixture containing Si as a material serving as a host and a material serving as a guest to synthesize a silicon clathrate compound; and a guest removing step of irradiating the silicon clathrate compound contained in a container with an electromagnetic wave to remove the guest while suctioning gas inside the container.
US11955613B2

Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.
US11955610B2

A method to categorize a battery with respect to its further handling suitability, wherein safety-relevant and lifetime-relevant operating variables are registered for at least one battery cell of the battery in operation of the battery. By a two-operation evaluation of at least one of the operating variables and/or of a computed variable derived therefrom, a categorization variable is determined. A safety variable is derived and compared to an assigned threshold value, and in response to the threshold value or one of the possibly multiple threshold values having fallen below, a failure prognosis is prepared by the lifetime-relevant operating variables. The categorization variable is determined based on the failure prognosis.
US11955596B2

A solid electrolyte that includes a lithium ion conductive material having a garnet-type structure, a lithium ion conductive material having a LISICON-type structure, and a compound containing Li and B.
US11955592B2

Provided is an electricity storage device having a high volumetric energy density and high reliability. The electricity storage device includes: an electrode assembly including first and second electrode plates and a separator interposed therebetween; an exterior housing that houses the electrode assembly; a lid that covers an opening of the exterior housing; and electrode terminals that are electrically connected to the electrode assembly and partially protrude from the lid to the outside. The lid has a liquid injection hole for injecting an electrolytic solution into the exterior housing. A tubular member extending from the lid toward the electrode assembly is provided between the outer surface of the lid and the electrode assembly so as to surround an opening of the liquid injection hole. A covering member connected to the tubular member and interposed between the liquid injection hole and the electrode assembly is provided.
US11955588B2

In one embodiment, the optoelectronic semiconductor device comprises a semiconductor layer sequence and an electrical via. The semiconductor layer sequence includes an active zone for generating radiation and a contact layer for electrical contacting. The active zone lies in a plane perpendicular to a main growth direction of the semiconductor layer sequence and is located between a first semiconductor region and a second semiconductor region. The contact layer is located within the second semiconductor region. The via extends through the contact layer and preferably ends within the second semiconductor region. A contact surface between the via and the contact layer encloses a contact angle of at least 20° and at most 60° with respect to the plane.
US11955583B2

A micro-light emitting diode (uLED) device comprises: a mesa comprising: a plurality of semiconductor layers including an n-type layer, an active layer, and a p-type layer; a p-contact layer contacting the p-type layer; a cathode contacting the first sidewall of the n-type layer; a first region of dielectric material that insulates the p-contact layer, the active layer, and a first sidewall of the p-type layer from the cathode; an anode contacting the top surface of the p-contact layer; and a second region of dielectric material that insulates the active layer, a second sidewall of the p-type layer, and the second sidewall of the n-type layer from the anode. The top surface of the p-contact layer has a different planar orientation compared to the first and second sidewalls of the n-type layer. Methods of making and using the uLED devices are also provided.
US11955578B2

Provided are an optoelectronic apparatus including an on-chip optoelectronic diode capable of receiving and emitting light, and a method of manufacturing the same.
US11955574B2

A multi-level photovoltaic cell comprises a substrate layer and a plurality of photovoltaic cells positioned above the substrate layer. Each photovoltaic cell has a top contact layer and a bottom contact layer connected in series such that the top contact layer of the first photovoltaic cell is connected to the bottom contact layer of a next photovoltaic cell until the last photovoltaic cell is connected. A different voltage is output between the substrate layer and the top contact layer of each photovoltaic cell. Another multi-level photovoltaic cell comprises a substrate layer and a plurality of photovoltaic cells stacked vertically above the substrate layer. Each photovoltaic cell comprises an active layer separated from the next photovoltaic cell by an etch stop layer until a last photovoltaic cell is reached. A different voltage is output between the substrate layer and the active layer of each photovoltaic cell.
US11955569B2

Provided is a photovoltaic module, including a first intermediate busbar having a first lead-out terminal provided at an end thereof; a second intermediate busbar having a second lead-out terminal provided at an end thereof; and a first jumper wire arranged on a first isolation bar; the first lead-out terminal and the second lead-out terminal are located on two opposite sides of the first jumper wire, and the first lead-out terminal and the second lead-out terminal abut against two opposite side surfaces of the first isolation bar or overlap a top surface of the first isolation bar. Compared with the related art, the first isolation bar where the first jumper wire is located is clamped or pressed by the first lead-out terminal and the second lead-out terminal, to prevent short circuit or shielding of the cell caused by free movement of the first jumper wire, the first and second intermediate busbars.
US11955566B2

An electronic device for storing, controlling and manipulating electron or hole spin based semiconductor qubits, the device including an electrically insulating layer and on a front face of the insulating layer, a trapping structure for electrons or holes which includes: a channel portion including at least one layer portion of semiconductor material, as well as a plurality of gates distributed for trapping at least one electron or hole in the channel portion, and on the back side of the insulating layer, an electrical track extending parallel to the insulating layer, for generating an oscillating magnetic field acting on the at least one electron or hole trapped in the trapping structure.
US11955563B2

The present disclosure provides a thin film transistor, a manufacturing method of the thin film transistor, and a liquid crystal display. The thin film transistor includes a substrate; an active region arranged above the substrate; a channel region arranged in a center of the active region; source and drain regions arranged on two sides of the channel region; a gate dielectric layer arranged above the channel region; a reflective coating arranged above the gate dielectric layer; a gate metal arranged above the reflective coating; an interlayer dielectric layer covering the gate metal, the active region, and the substrate; and a source/drain metal layer passing through the interlayer dielectric layer and electrically connecting with a surface of the source and drain regions.
US11955561B2

A disclosed transistor structure includes a gate electrode, an active layer, a source electrode, a drain electrode, an insulating layer separating the gate electrode from the active layer, and a carrier modification device that reduces short channel effects by reducing carrier concentration variations in the active layer. The carrier modification device may include a capping layer in contact with the active layer that acts to increase a carrier concentration in the active layer. Alternatively, the carrier modification device may include a first injection layer in contact with the source electrode and the active layer separating the source electrode from the active layer, and a second injection layer in contact with the drain electrode and the active layer separating the drain electrode from the active layer. The first and second injection layers may act to reduce a carrier concentration within the active layer near the source electrode and the drain electrode.
US11955558B2

One conductor region of a crystalline silicon semiconductor layer in a first transistor is electrically connected to one conductor region of an oxide semiconductor layer in a second transistor through a first contact hole and a second contact hole communicating with each other.
US11955556B2

A semiconductor device includes channels, a gate structure, and a source/drain layer. The channels are stacked in a vertical direction. Each channel extends in a first direction. The gate structure extends in a second direction. The gate structure covers the channels. The source/drain layer is connected to each of opposite sidewalls in the first direction of the channels on the substrate, and includes a doped semiconductor material. The source/drain layer includes first and second epitaxial layers having first and second impurity concentrations, respectively. The first epitaxial layer covers a lower surface and opposite sidewalls in the first direction of the second epitaxial layer. A portion of each of opposite sidewalls in the first direction of the gate structure protrudes in the first direction from opposite sidewalls in the first direction of the channels to partially penetrate through the first epitaxial layer but not to contact the second epitaxial layer.
US11955554B2

A method of fabrication of a multi-gate semiconductor device that includes providing a fin having a plurality of a first type of epitaxial layers and a plurality of a second type of epitaxial layers. The plurality of the second type of epitaxial layers is oxidized in the source/drain region. A first portion of a first layer of the second type of epitaxial layers is removed in a channel region of the fin to form an opening between a first layer of the first type of epitaxial layer and a second layer of the first type of epitaxial layer. A portion of a gate structure is then formed in the opening.
US11955552B2

A semiconductor device structure includes a source/drain feature comprising a first surface, a second surface opposing the first surface, and a sidewall connecting the first surface to the second surface. The structure also includes a dielectric layer having a continuous surface in contact with the entire second surface of the source/drain feature, a semiconductor layer having a first surface, a second surface opposing the first surface, and a sidewall connecting the first surface to the second surface, wherein the sidewall of the semiconductor layer is in contact with the sidewall of the source/drain feature. The structure also includes a gate dielectric layer in contact with the continuous surface of the dielectric layer and the second surface of the semiconductor layer, and a gate electrode layer surrounding a portion of the semiconductor layer.
US11955539B2

A device comprising a gate pad, a source pad and a passive actuator arranged to form a reversible mechanical and electrical connection between the gate pad and the source pad only if the temperature in the passive actuator exceeds a threshold value.
US11955538B2

A semiconductor device that can be miniaturized or highly integrated is provided. The semiconductor device includes a first conductor, a second conductor over the first conductor, a first insulator covering the second conductor, a first oxide over the first insulator, and a second oxide over the first oxide, an opening overlapping with at least part of the first conductor is provided in the first oxide and the first insulator, and the second oxide is electrically connected to the first conductor through the opening.
US11955534B2

Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first plurality of conductive interconnect lines in and spaced apart by a first ILD layer, wherein individual ones of the first plurality of conductive interconnect lines comprise a first conductive barrier material along sidewalls and a bottom of a first conductive fill material. A second plurality of conductive interconnect lines is in and spaced apart by a second ILD layer above the first ILD layer, wherein individual ones of the second plurality of conductive interconnect lines comprise a second conductive barrier material along sidewalls and a bottom of a second conductive fill material, wherein the second conductive fill material is different in composition from the first conductive fill material.
US11955526B2

An apparatus comprising a substrate and a thin gate oxide nanosheet device located on the substrate, having a first plurality of nanosheet layers, wherein each of the first plurality of nanosheet layers has a first thickness located at the center of the nanosheet. A thick gate oxide nanosheet device located on the substrate, having a second plurality of nanosheet layers, wherein each of the second plurality of nanosheet layers has a second thickness and wherein the first thickness is less than the second thickness.
US11955525B2

A semiconductor device includes a substrate, a gate trench in the substrate, a gate insulating film in the gate trench, a titanium nitride (TiN)-lower gate electrode film on the gate insulating film, the titanium nitride (TiN)-lower gate electrode film including a top surface, a first side surface, and a second side surface opposite the first side surface, a polysilicon-upper gate electrode film on the titanium nitride (TiN)-lower gate electrode film, and a gate capping film on the polysilicon-upper gate electrode film. A center portion of the top surface of the titanium nitride (TiN)-lower gate electrode film overlaps a center portion of the polysilicon-upper gate electrode film in a direction that is perpendicular to a top surface of the substrate, and each of the first side surface and the second side surface of the titanium nitride (TiN)-lower gate electrode film is connected to the gate insulating film.
US11955524B2

The present application discloses a semi-floating gate device. A floating gate structure covers a selected area of a first well region and is used to form a conductive channel. The floating gate structure further covers a surface of a lightly doped drain region, and a floating gate material layer and the lightly doped drain region contact at a dielectric layer window to form a PN structure. A source region is self-aligned with a first side surface of the floating gate structure. A first control gate is superposed on a top of the floating gate structure. A second control gate is disposed on a surface of the lightly doped drain region between the drain region and a second side surface of the floating gate structure. The first control gate and the second control gate are isolated by an inter-gate dielectric layer.
US11955522B2

A semiconductor structure is provided. The semiconductor structure includes a substrate, a buffer layer, a barrier layer, a dielectric layer, a source structure, and a drain structure. The buffer layer is disposed on the substrate. The barrier layer is disposed on the buffer layer. The dielectric layer is disposed on the barrier layer. The passivation layer is disposed on the dielectric layer. The source structure and the drain structure are disposed on the passivation layer.
US11955521B1

A method for manufacturing a display panel comprising light emitting device including micro LEDs includes providing multiple donor wafers having a surface region and forming an epitaxial material overlying the surface region. The epitaxial material includes an n-type region, an active region comprising at least one light emitting layer overlying the n-type region, and a p-type region overlying the active layer region. The multiple donor wafers are configured to emit different color emissions. The epitaxial material on the multiple donor wafers is patterned to form a plurality of dice, characterized by a first pitch between a pair of dice less than a design width. At least some of the dice are selectively transferred from the multiple donor wafers to a common carrier wafer such that the carrier wafer is configured with different color emitting LEDs. The different color LEDs could comprise red-green-blue LEDs to form a RGB display panel.
US11955515B2

A semiconductor device with dual side source/drain (S/D) contact structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a superlattice structure on the fin structure, forming first and second S/D regions within the superlattice structure, forming a gate structure between the first and second S/D regions, forming first and second contact structures on first surfaces of the first and second S/D regions, and forming a third contact structure, on a second surface of the first S/D region, with a work function metal (WFM) silicide layer and a dual metal liner. The second surface is opposite to the first surface of the first S/D region and the WFM silicide layer has a work function value closer to a conduction band energy than a valence band energy of a material of the first S/D region.
US11955511B2

A semiconductor structure and a method for manufacturing the semiconductor structure are provided. The method for manufacturing the semiconductor structure includes: providing a substrate, in which the substrate includes an array area and a peripheral area adjacent to each other, and the array area includes a buffer area connected to the peripheral area; forming a first dielectric layer, a first supporting layer, a second dielectric layer, a second supporting layer and a third dielectric layer, which are successively stacked onto one another, on the substrate, forming a groove-type lower electrode, which at least penetrates through the third dielectric layer and the second supporting layer, in the buffer area; removing the third dielectric layer through a wet etching process; and etching the second supporting layer in the peripheral area after removing the third dielectric layer.
US11955510B2

A capacitor structure includes at least one first layer and at least one second layer that are alternately stacked. The at least one first layer includes first electrodes and second electrodes alternately arranged in a first direction, and the at least one second layer includes third electrodes and fourth electrodes alternately arranged in a second direction intersecting the first direction, the third electrodes and the fourth electrodes being electrically connected to the first electrodes and the second electrodes. Each of the first electrodes and the second electrodes includes a base portion and branch portions protruding from the base portion, and the third electrodes and the fourth electrodes are arranged side by side to correspond to the branch portions.
US11955501B2

The present disclosure describes a method for the formation of mirror micro-structures on radiation-sensing regions of image sensor devices. The method includes forming an opening within a front side surface of a substrate; forming a conformal implant layer on bottom and sidewall surfaces of the opening; growing a first epitaxial layer on the bottom and the sidewall surfaces of the opening; depositing a second epitaxial layer on the first epitaxial layer to fill the opening, where the second epitaxial layer forms a radiation-sensing region. The method further includes depositing a stack on exposed surfaces of the second epitaxial layer, where the stack includes alternating pairs of a high-refractive index material layer and a low-refractive index material layer.
US11955498B2

An image pickup apparatus includes an image pickup member including an image pickup device, a stacked device in which a plurality of semiconductor devices are stacked, a wiring board having a first principal surface and a second principal surface, the wiring board including a central section having a substrate thicker than the image pickup device, an intermediate section that is extended from the central section and is bent, and a terminal section that is extended from the intermediate section, the image pickup member being bonded to the first principal surface of the central section, the stacked device being bonded to the second principal surface of the central section, and a plurality of signal cables bonded to the terminal section.
US11955481B2

A microelectronic device includes a PNP transistor and NPN transistor arranged vertically in a P-type doped semiconductor substrate. The PNP and NPN transistors are manufactured by: forming an N+ doped isolating well for the PNP transistor in the semiconductor substrate; forming a P+ doped region in the N+ doped isolating well; epitaxially growing a first semiconductor layer on the semiconductor substrate; forming an N+ doped well for the NPN transistor, where at least part of the N+ doped well extends into the first semiconductor layer; then epitaxially growing a second semiconductor layer on the first semiconductor layer; forming a P doped region forming the collector of the PNP transistor in the second semiconductor layer and in electrical contact with the P+ doped region; and forming an N doped region forming the collector of the NPN transistor in the second semiconductor layer and in electrical contact with the N+ doped well.
US11955478B2

Power semiconductor devices in GaN technology include an integrated auxiliary (double) gate terminal and a pulldown network to achieve a normally-off (E-Mode) GaN transistor with threshold voltage higher than 2V, low gate leakage current and enhanced switching performance. The high threshold voltage GaN transistor has a high-voltage active GaN device and a low-voltage auxiliary GaN device wherein the high-voltage GaN device has the gate connected to the source of the integrated auxiliary low-voltage GaN transistor and the drain being the external high-voltage drain terminal and the source being the external source terminal, while the low-voltage auxiliary GaN transistor has the gate (first auxiliary electrode) connected to the drain (second auxiliary electrode) functioning as an external gate terminal. A pull-down network for the switching-off of the high threshold voltage GaN transistor may be formed by additional auxiliary low-voltage GaN transistors and resistive elements connected with the low-voltage auxiliary GaN transistor.
US11955477B2

A semiconductor device according to the embodiment includes: a transistor region including a first trench, a first gate electrode provided in the first trench, a second trench, a second gate electrode provided in the second trench, a third trench, and a third gate electrode provided in the third trench; a diode region including a fifth trench and a conductive layer provided in the fifth trench; a boundary region including a fourth trench and a fourth gate electrode provided in the fourth trench, the boundary region being provided between the transistor region and the diode region; a first electrode pad electrically connected to the first gate electrode; a second electrode pad electrically connected to the second gate electrode; and a third electrode pad electrically connected to the third gate electrode and the fourth gate electrode.
US11955475B2

A resistor including a device isolation layer is described that includes a first active region and a second active region, a buried insulating layer, and an N well region. The N well region surrounds the first active region, the second active region, the device isolation layer and the buried insulating layer. A first doped region and a second doped region are disposed on the first active region and the second active region. The first doped region and the second doped region are in contact with the N well region and include n type impurities.
US11955460B2

In accordance with some embodiments, a package-on-package (PoP) structure includes a first semiconductor package having a first side and a second side opposing the first side, a second semiconductor package having a first side and a second side opposing the first side, and a plurality of inter-package connector coupled between the first side of the first semiconductor package and the first side of the second semiconductor package. The PoP structure further includes a first molding material on the second side of the first semiconductor package. The second side of the second semiconductor package is substantially free of the first molding material.
US11955454B2

A method and apparatus for wafer bonding. The method includes that, a first position parameter of a first alignment mark on a first wafer is determined by using a optical beam; a second position parameter of a second alignment mark on a second wafer is determined with the optical beam, the optical beam has a property of transmitting through a wafer; a relative position between the first wafer and the second wafer is adjusted with the optical beam according to the first position parameter and the second position parameter until the relative position between the first alignment mark and the second alignment mark satisfies a predetermined bonding condition; and the first wafer is bonded to the second wafer.
US11955453B2

An electronic device includes a substrate, a plurality of micro semiconductor structure, a plurality of conductive members, and a non-conductive portion. The substrate has a first surface and a second surface opposite to each other. The micro semiconductor structures are distributed on the first surface of the substrate. The conductive members electrically connect the micro semiconductor structures to the substrate. Each conductive member is defined by an electrode of one of the micro semiconductor structures and a corresponding conductive pad on the substrate. The non-conductive portion is arranged on the first surface of the substrate. The non-conductive portion includes one or more non-conductive members, and the one or more non-conductive members are attached to the corresponding one or more conductive members of the one or more micro conductive structures.
US11955450B2

A method for producing a semiconductor arrangement includes: forming a first metallization layer on a first side of a dielectric insulation layer, the first metallization layer having at least two sections, each section being separated from a neighboring section by a recess; arranging a semiconductor body on one of the sections of the first metallization layer; and forming at least one indentation between a first side of the semiconductor body and a closest edge of the respective section of the first metallization layer. A distance between the first side and the closest edge of the section of the first metallization layer is between 0.5 mm and 5 mm.
US11955445B2

Representative techniques and devices including process steps may be employed to mitigate the potential for delamination of bonded microelectronic substrates due to metal expansion at a bonding interface. For example, a metal pad having a larger diameter or surface area (e.g., oversized for the application) may be used when a contact pad is positioned over a TSV in one or both substrates.
US11955434B2

Embodiments of the invention include molded modules and methods for forming molded modules. According to an embodiment the molded modules may be integrated into an electrical package. Electrical packages according to embodiments of the invention may include a die with a redistribution layer formed on at least one surface. The molded module may be mounted to the die. According to an embodiment, the molded module may include a mold layer and a plurality of components encapsulated within the mold layer. Terminals from each of the components may be substantially coplanar with a surface of the mold layer in order to allow the terminals to be electrically coupled to the redistribution layer on the die. Additional embodiments of the invention may include one or more through mold vias formed in the mold layer to provide power delivery and/or one or more faraday cages around components.
US11955427B2

An electrical fuse matrix includes a plurality of anti-fuse structures, a plurality of top metal plates, and a plurality of bottom metal plates. The anti-fuse structures are arranged in a matrix, and each of the anti-fuse structure includes a top conductive structure, a bottom conductive structure, and a dielectric film disposed between the top conductive structure and the bottom conductive structure. The anti-fuse structure has an hourglass shape. The top metal plates are disposed on the top conductive structures. The bottom metal plates are disposed on the bottom conductive structures.
US11955426B2

A microelectronics package comprising a substrate, the substrate comprising a dielectric and at least first and second conductor level within the dielectric, where the first and second conductor levels are separated by at least one dielectric layer. The microelectronics package comprises an inductor structure that comprises a magnetic core. The magnetic core is at least partially embedded within the dielectric. The inductor structure comprises a first trace in the first conductor level, a second trace in the second conductor level, and a via interconnect connecting the first and second traces. The first trace and the second trace extend at least partially within the magnetic core.
US11955421B2

An integrated circuit includes a plurality of transistors and an interlevel dielectric layer formed over the transistors. The interlevel dielectric layer includes a first region and a second region with a higher dielectric constant than the first region. The difference in dielectric constant is produced by curing the first region shielding the second region from the curing. Metal signal lines are formed in the first region. Metal-on-metal capacitors are formed in the second region.
US11955416B2

A semiconductor structure is provided. The semiconductor structure comprises a substrate, a via, a liner layer, a barrier layer, and a conductor. The via penetrates through the substrate. The liner layer is formed on a sidewall of the via. The barrier layer is formed on the liner layer. The barrier layer comprises a conductive 2D material. The conductor fills a remaining space of the via.
US11955414B2

A semiconductor module includes a conductive substrate, a semiconductor element, a control terminal, and a sealing resin. The conductive substrate has an obverse surface and a reverse surface that are spaced apart from each other in a thickness direction. The semiconductor element is electrically bonded to the obverse surface and has a switching function. The control terminal is configured to control the semiconductor element. The sealing resin has a resin obverse surface and a resin reverse surface, and covers the conductive substrate, the semiconductor element, and a part of the control terminal. The control terminal protrudes from the resin obverse surface, and extends along the thickness direction.
US11955411B2

The semiconductor device includes a semiconductor element, a first lead, and a second lead. The semiconductor element has an element obverse surface and an element reverse surface spaced apart from each other in a thickness direction. The semiconductor element includes an electron transit layer disposed between the element obverse surface and the element reverse surface and formed of a nitride semiconductor, a first electrode disposed on the element obverse surface, and a second electrode disposed on the element reverse surface and electrically connected to the first electrode. The semiconductor element is mounted on the first lead, and the second electrode is joined to the first lead. The second lead is electrically connected to the first electrode. The semiconductor element is a transistor. The second lead is spaced apart from the first lead and is configured such that a main current to be subjected to switching flows therethrough.
US11955402B2

A power semiconductor component is specified, having a power semiconductor device arranged within a housing, wherein a heat sink is exposed on a first surface of the housing; a wiring substrate which receives the housing with the power semiconductor device and which has a first main surface and a second main surface. A heat dissipation region with increased thermal conductivity is arranged on the second main surface. The housing is arranged on the wiring substrate in such a way that the heat sink is connected to the heat dissipation region via a solder layer. A number of spacers which are arranged between the heat sink and the heat dissipation region are embedded in the solder layer. Furthermore, a method for producing a power semiconductor component is specified.
US11955400B2

A heat distribution device comprising a main body, a recessed cavity positioned within the main body, the recessed cavity having an interior surface, a peripheral wall extending around and defining the interior surface, and a central point within the recessed cavity. A plurality of ribs may extend away from the interior surface of the recessed cavity. The plurality of ribs may be concentrically arranged around the central point and define a plurality of channels therebetween. Each of the plurality of ribs may have a top surface that slopes toward or away from the central point. The plurality of ribs may be arranged so that the top surfaces of the plurality of ribs collectively form a collective sloped surface within the heat distribution device.
US11955395B2

A semiconductor device and method of including peripheral devices into a package is disclosed. In one example, a peripheral device includes a passive device such as a capacitor or an inductor. Examples are shown that include a peripheral device that is substantially the same thickness as a die or a die assembly. Examples are further shown that use this configuration in a fan out process to form semiconductor devices.
US11955388B2

A thermal processing system for performing thermal processing can include a workpiece support plate configured to support a workpiece and heat source(s) configured to heat the workpiece. The thermal processing system can include window(s) having transparent region(s) that are transparent to electromagnetic radiation within a measurement wavelength range and opaque region(s) that are opaque to electromagnetic radiation within a portion of the measurement wavelength range. A temperature measurement system can include a plurality of infrared emitters configured to emit infrared radiation and a plurality of infrared sensors configured to measure infrared radiation within the measurement wavelength range where the transparent region(s) are at least partially within a field of view the infrared sensors. A controller can be configured to perform operations including obtaining transmittance and reflectance measurements associated with the workpiece and determining, based on the measurements, a temperature of the workpiece less than about 600° C.
US11955387B2

A method of fabricating a semiconductor device is disclosed. The method may include forming a parent pattern, forming an upper thin film on the parent pattern, forming a child pattern on the upper thin film, measuring a diffraction light from the parent and child patterns to obtain an intensity difference curve of the diffraction light versus its wavelength, and performing an overlay measurement process on the parent and child patterns using the diffraction light, which has the same wavelength as a peak of the intensity difference curve located near a peak of reflectance of the parent and child patterns, to obtain an overlay measurement value.
US11955383B2

A semiconductor device manufacturing method includes: providing a semiconductor base; patterning the first medium layer to form a groove extending along the base in the base; forming a first auxiliary layer and a first metal layer sequentially in the groove, where the first metal layer is located on the side of the first auxiliary layer towards the first medium layer; thinning the base on the second surface of the base to expose the first auxiliary layer; removing the first auxiliary layer to form a first opening; and forming a second metal layer on the second surface of the base, where the second metal layer fills the first opening.
US11955381B2

Methods for pre-cleaning substrates having metal and dielectric surfaces are described. A temperature of a pedestal comprising a cooling feature on which a substrate is located is set to less than or equal to 100° C. The substrate is exposed to a plasma treatment to remove chemical residual and/or impurities from features of the substrate including a metal bottom, dielectric sidewalls, and/or a field of dielectric and/or repair surface defects in the dielectric sidewalls and/or the field of the dielectric. The plasma treatment may be an oxygen plasma, for example, a direct oxygen plasma. Processing tools and computer readable media for practicing the method are also described.
US11955369B2

An approach for creating a buried local interconnect around a DDB (double diffusion break) to reduce parasitic capacitance on a semiconductor device is disclosed. The approach utilizes a metal, as the local interconnect, buried in a cavity around the DDB region of a semiconductor substrate. The metal is disposed by two dielectric layers and the substrate. The two dielectric layers are recessed beneath two gate spacers. The buried local interconnect is recessed into the cavity where the top surface of the interconnect is situated below the top surface of the surrounding S/D (source/drain) epi (epitaxy). The metal of the local interconnect can be made from W, Ru or Co.
US11955367B2

A film deposition apparatus reduces hillock formation while yielding uniform film thickness distribution. A film deposition apparatus of a present embodiment includes: a chamber; a rotary table that circulates and carries a workpiece W along a circumferential transfer path L; multiple targets that contain a film deposition material, and that are provided in positions at different radial distances from a center of rotation of the rotary table; a shield member that forms a film deposition chamber surrounding a region where the film deposition material scatters, and that has an opening on the side facing the circulated and carried workpiece; and a plasma generator that includes a sputter gas introduction unit for introducing a sputter gas into the film deposition chamber, and a power supply unit for applying power to the target, and that generates plasma in the sputter gas G1 in the film deposition chamber.
US11955362B2

Embodiments of substrate supports and process chambers equipped with the same are provided. In some embodiments, a substrate support includes: a support body having a first surface; one or more receptacles extending through the first surface and into the support body; and one or more protrusions respectively disposed within corresponding ones of the one or more receptacles and projecting from the first surface, wherein the one or more protrusions at least partially define a substantially planar support surface above the first surface. Methods of eliminating backside wafer damage are also disclosed.
US11955357B2

The present disclosure relates to an in-situ temperature control platform, including an independent sample holder, a sample holder fixing cartridge, a customized sample stage and an anode contact pin. The independent sample holder includes a sample loading spot and a sample holder grip. The sample holder fixing cartridge includes a fixing cartridge body, the fixing cartridge body is provided with a sample holder slot, the bottom surface of the sample holder slot is provided with a heating element slot, and the sample holder slot is aligned with the sample loading spot. The bottom surface of the heating element slot is provided with a heating element fixing pinhole. The customized sample stage includes a sample stage body, the sample stage body is provided with a heating element support, and the heating element support is provided with a heating element.
US11955354B2

Provided is a semiconductor substrate manufacturing device which is capable of uniformly heating the surface of a semiconductor substrate that has a relatively large diameter or major axis. The semiconductor substrate manufacturing device includes a container body for accommodating a semiconductor substrate and a heating furnace that has a heating chamber which accommodates the container body, and the heating furnace has a heating source in a direction intersecting the semiconductor substrate to be disposed inside the heating chamber.
US11955353B2

A temperature adjustment device includes a flow path plate that includes a flow path groove, a heat transfer plate that faces the flow path groove, and a thermoelectric module plate that is connected to the heat transfer plate. A surface roughness of the flow path plate is 0.20 μm or more and 0.25 μm or less.
US11955346B2

A semiconductor device includes a substrate including traces, wherein the traces protrude above a top surface of the substrate; a prefill material over the substrate and between the traces; a die attached over the substrate; and a wafer-level underfill between the prefill material and the die.
US11955340B2

A method of manufacturing a semiconductor device includes forming a stack in which first material layers and second material layers are alternately stacked, forming a channel structure passing through the stack, forming openings by removing the first material layers, forming an amorphous blocking layer in the openings, and performing a first heat treatment process to supply deuterium through the openings and substitute hydrogen in the channel structure with the deuterium.
US11955337B2

A substrate processing method includes: providing a substrate including a mask; forming a film on the mask; forming a reaction layer on a surface layer of the film; and removing the reaction layer by applying energy to the reaction layer.
US11955335B2

In a method of coating a photo resist over a wafer, dispensing the photo resist from a nozzle over the wafer is started while rotating the wafer, and dispensing the photo resist is stopped while rotating the wafer. After starting and before stopping the dispensing the photo resist, a wafer rotation speed is changed at least 4 times. During dispensing, an arm holding the nozzle may move horizontally. A tip end of the nozzle may be located at a height of 2.5 mm to 3.5 mm from the wafer.
US11955329B2

A method of forming a semiconductor device includes forming a first conductive feature on a bottom surface of an opening through a dielectric layer. The forming the first conductive feature leaves seeds on sidewalls of the opening. A treatment process is performed on the seeds to form treated seeds. The treated seeds are removed with a cleaning process. The cleaning process may include a rinse with deionized water. A second conductive feature is formed to fill the opening.
US11955316B2

A substrate processing method includes: providing a substrate including a first region and a second region into a chamber; forming a deposit film on the first region and the second region of the substrate by generating a first plasma from a first processing gas, and selectively etching the first region with respect to the second region by generating a second plasma from the second processing gas containing an inert gas. The first processing gas is a mixed gas including a first gas containing carbon atoms and fluorine atoms and a second gas containing silicon atoms.
US11955308B1

Methods and systems for realizing a high speed, rotating anode based x-ray illumination source suitable for high throughput x-ray metrology are presented herein. A high speed rotating anode includes a water cooled rotating platen supported by radial and thrust air bearings employing cascaded differential pumping. A very high bending stiffness of the rotating assembly is achieved by spacing radial air bearings far apart and locating a rotary motor and thrust bearings between the radial air bearings. The high bending stiffness increases the mechanical stability of the rotating assembly during high speed operation, and thus decreases vibration at the location of impingement of the electron beam on the rotating anode material. In some embodiments, magnetic thrust bearings are employed and the air gap is controlled to maintain a desired gap over an operational range of up to three millimeters.
US11955305B1

A remote-control holder includes one or more elongated trays having a bottom wall, two spaced upstanding sidewalls and an open top in communication with an interior chamber for holding one or more remote units. A restraining strap is positioned across the operating face of the remote unit, between rows of keys, and is secured to a desired position on the tray bottom wall. Multiple trays are securable to a storage rack that allows the remote units to be operated in the stored position.
US11955301B2

In an embodiment a switching device includes at least one stationary contact, a movable contact, an armature, a first permanent magnet, a second permanent magnet and a magnetic switch, wherein the movable contact is movable by the armature, wherein the first permanent magnet is attached to the armature, and wherein the second permanent magnet is arranged in a fixed position relative to the magnetic switch.
US11955300B2

A vacuum circuit breaker serving as a switch includes a pair of electrodes that serve as a stationary electrode and a movable electrode, a handler including a movable shaft and a housing that operate as a first mover in withdrawing the movable electrode from the stationary electrode and closing the movable electrode toward the stationary electrode, a movable shaft that is connected as a second mover to the movable electrode, a coil spring that is connected as an elastic between the first mover and the second mover to press the movable electrode against the stationary electrode, and a shock absorber that attenuates as an attenuator contraction of the elastic when the movable electrode is withdrawn from the stationary electrode.
US11955295B2

According to one embodiment, a photoelectric conversion element includes a first conductive layer, a second conductive layer, a photoelectric conversion layer located between the first conductive layer and the second conductive layer. The photoelectric conversion layer includes Sn and Pb. The photoelectric conversion layer includes a first partial region, a second partial region between the first partial region and the second conductive layer, and a third partial region between the second partial region and the second conductive layer. The first partial region includes a first Sn concentration and a first Pb concentration. The second partial region includes at least one of a second Sn concentration or a second Pb concentration. The second Sn concentration is less than the first Sn concentration. The second Pb concentration is greater than the first Pb concentration. The third partial region includes Sn, oxygen, and Pb.
US11955289B2

A multilayer capacitor includes a body including a stack structure in which at least one first internal electrode and at least one second internal electrode are alternately stacked in a first direction with at least one dielectric layer interposed therebetween; and first and second external electrodes spaced apart from each other and disposed on the body to be respectively connected to the at least one first internal electrode and the at least one second internal electrode, wherein each of the first and second external electrodes includes a first conductive layer including a first conductive material and glass; and an oxide layer including an oxide and disposed on at least a portion of an external surface of the first conductive layer.
US11955288B2

A multilayer electronic component includes a body including a dielectric layer and first and second internal electrodes disposed to oppose each other with the dielectric layer interposed therebetween and including a capacitance forming portion, by which capacitance of the multilayer electronic component is defined, having the first and second internal electrodes disposed to oppose each other with the dielectric layer interposed therebetween, cover portions disposed on two opposing surfaces of the capacitance forming portion in a first direction, and margin portions disposed on two opposing surfaces of the capacitance forming portion in a second or third direction, in which −3.0<{1−(Hc/H1)}×100≤0.4, where an average hardness of the cover portions is Hc and an average hardness of the first margin portions is H1.
US11955285B2

Capacitors, apparatus including a capacitor, and methods for forming a capacitor are provided. One such capacitor may include a first conductor a second conductor above the first conductor, and a dielectric between the first conductor and the second conductor. The dielectric does not cover a portion of the first conductor; and the second conductor does not cover the portion of the first conductor not covered by the dielectric.
US11955283B2

A dielectric ceramic composition includes a barium titanate, an oxide of an R element, an oxide of an M element, and an oxide containing Si. The R element is one or more elements selected from Eu, Gd, Tb, Dy, Y, Ho, and Yb. The M element is one or more elements selected from Mg, Ca, Mn, V, and Cr. A ratio of an amount of the oxide of the R element in terms of R2O3 to an amount of the oxide containing Si in terms of SiO2 is 0.8:1 to 2.2:1. A ratio of an amount of the oxide of the M element in terms of MO to the amount of the oxide containing Si in terms of SiO2 is 0.2:1 to 1.8:1.50% or more of the number of dielectric particles constituting the dielectric ceramic composition is core-shell dielectric particles having a core-shell structure.
US11955279B2

A nanocomposite electrode and a supercapacitor device including said nanocomposite electrode. The nanocomposite electrode includes a mixture of at least one binding compound, at least one conductive additive, and at least one molybdenum doped carbon material coated onto a substrate. The supercapacitor device includes two nanocomposite electrodes disposed facing one another, wherein the substrate of each nanocomposite electrode is coated with the mixture on an inside facing surface and the outer surfaces of the nanocomposite electrodes are not coated with the mixture, and the inside facing surfaces are separated by at least one electrolyte.
US11955274B2

A receiver unit of a wireless power transfer system is presented. The receiver unit includes a main receiver coil, a plurality of auxiliary receiver coils disposed about a central axis of the main receiver coil, and a receiver drive subunit. The receiver drive subunit includes a main converter operatively coupled to the main receiver coil and having a main output terminal. The receiver drive subunit may include a plurality of auxiliary converters operatively coupled to the plurality of auxiliary receiver coils. The plurality of auxiliary converters may be operatively coupled to each other to form an auxiliary output terminal coupled in series to the main output terminal to form a common output terminal. In some implementations, the receiver drive unit may be formed on a substrate of an integrated electronic component. The integrated electronic component may further include a communication subunit and a controller disposed.
US11955273B2

A low-voltage DC-DC converter includes a switch configured to convert a high voltage supplied from a high-voltage battery to an alternating current (AC) voltage, a transformer including an air gap in a core region and configured to lower the AC voltage to a low voltage using an adjusted turns ratio, and a power supply configured to rectify the low voltage and supply the rectified low voltage to a load.
US11955271B2

A radio frequency (RF) weak magnetic field detection sensor includes a ferromagnetic core, a pickup coil disposed to surround the ferromagnetic core, a substrate that includes an opening, a core pad connected to the ferromagnetic core and a coil pad connected to the pickup coil, and an insulating tube interposed between the ferromagnetic core and the pickup coil. The insulating tube includes a bobbin around which the pickup coil is wound, and a core hole formed to pass through the bobbin and configured to accommodate the ferromagnetic core.
US11955267B2

A reactor includes a first and second winding, a coupling core portion, and a first and second core portion. The coupling core portion forms a coupling magnetic path, through which a magnetic flux generated by the first winding when the first winding is energized and a magnetic flux generated by the second winding when the second winding is energized pass, which magnetically couples the first winding and the second winding together. The first core portion forms a first magnetic path, through which the magnetic flux generated by the first winding when the first winding is energized passes and is aligned with a first plane. The second core portion forms a second magnetic path, through which the magnetic flux generated by the second winding when the second winding is energized passes and is aligned with a second plane. The coupling plane intersects at right angles with the first and second plane.
US11955265B2

The present invention provides an inductive component (1a) in several illustrative embodiments and a method for producing such an inductive component. The inductive component (1a) comprises a bus bar (4a) and at least one magnetic core (6a) which is formed along a section of the bus bar (4a) and surrounds the bus bar (4a) in that section at least in part, wherein the at least one magnetic core (6a) is formed as a plastic-bonded magnetic core or a core made of magnetic cement.
US11955264B2

A coil component includes an element and a coil disposed in the element. The element includes a plurality of first magnetic layers and second magnetic layers laminated. The coil includes a plurality of coil conductive layers laminated. Each of the coil conductive layers is disposed between a corresponding one of the first magnetic layers and a corresponding one of the second magnetic layers. A pore area proportion in the second magnetic layers is smaller than a pore area proportion in the first magnetic layers. A void is present between the coil conductive layer and the corresponding one of the second magnetic layers.
US11955254B2

The present disclosure describes methods of manufacture and implementations of hybrid separators for data cables having conductive and non-conductive or metallic and non-metallic portions, and data cables including such hybrid separators. A hybrid separator comprising one or more conductive portions and one or more non-conductive portions may be positioned within a data cable between adjacent pairs of twisted insulated and shielded or unshielded conductors so as to provide physical and electrical separation of the conductors. The position and extent (laterally and longitudinally) of each conductive portion and each non-conductive portion may be selected for optimum performance of the data cable, including attenuation or rejection of cross talk, reduction of return loss, increase of stability, and control of impedance.
US11955253B2

A conducting shear thinning gel composition and methods of making such a composition are disclosed. The conducting shear thinning gel composition includes a mixture of a eutectic gallium alloy and gallium oxide, wherein the mixture of eutectic gallium alloy and gallium oxide has a weight percentage (wt %) of between about 59.9% and about 99.9% eutectic gallium alloy, and a wt % of between about 0.1% and about 2.0% gallium oxide. Also disclosed are articles of manufacture, comprising the shear thinning gel composition, and methods of making article of manufacture having a shear thinning gel composition. Also disclosed are sensors and multiplexed systems utilizing deformable conductors.
US11955252B2

A cable is composed of a cable core including one or more electric wires, a shield layer covering around the cable core, and a sheath covering around the shield layer. The shield layer includes a braided shield braided in such a manner that first metal wires composed of aluminum or an aluminum alloy intersect with second metal wires composed of copper or a copper alloy. An outer diameter of each of the second metal wires is larger than an outer diameter of each of the first metal wires.
US11955248B2

A method and apparatus of limiting power of a boiling water nuclear reactor system includes a reactor pressure vessel, a reactor core disposed in the reactor pressure vessel, a core shroud surrounding the reactor core, a downcomer region disposed between an inner surface of the reactor pressure vessel and the core shroud, a steam line connected to an upper end of the reactor pressure vessel and a condenser system that receives steam from the reactor pressure vessel. A portion of the condenser system condensate is returned to the reactor pressure vessel of the boiling water reactor inside the core barrel above the core rather than into the downcomer. Returning the condensate in this way increases the effectiveness of an isolation condenser system or if the condensate is a portion of the feedwater from the main condenser it provides an effective means to regulate core flow and core power.
US11955244B2

There is a need for more accurate and more efficient predictive data analysis steps/operations. This need can be addressed by, for example, techniques for efficient predictive data analysis steps/operations. In one example, a method includes generating, by a processor, utilizing a risk determination machine learning model and based at least in part on one or more hidden features of the first predictive entity, the predicted risk measure, and performing one or more prediction-based actions based at least in part on the predicted risk measure.
US11955238B2

Systems and methods for personalizing medicine utilizing the true state of the patient are provided. A number of medical records for a patient are subjected to predictive modeling for various conditions (known as patient ‘true state’). The patient personal information, previous care, and true state may be provided into a state machine in order to determine the resources needed for the patient. The medical resources may be any of laboratory services, diagnostics, therapies and medications. Using the true state information, and number of activities may be performed for the patient based upon the patient's needs. These activities include scheduling lab or diagnostic procedures in advance of an appointment, filling in documentation gaps, identifying items that require additional documentation using the true state, and tracking follow-up. It may also be beneficial to validate the true state.
US11955221B2

A computer-implemented system includes a processing device configured to receive a plurality of user and blood vessel characteristics associated with a user, generate a selected set of user and blood vessel characteristics, determine, based on the selected set of the user and blood vessel characteristics, a probability that angiogenesis will occur, and generate, based on the probability and the selected set of the user and blood vessel characteristics, a treatment plan that includes one or more exercises directed to modifying the probability that angiogenesis will occur, and a treatment apparatus configured to implement the treatment plan while the treatment apparatus is being manipulated by the user.
US11955215B2

Disclosed is a computing architecture and method for operating and managing a health care plan from a mobile device or web browser. The present invention provides an architecture that facilitates customer access to affordable, personalized health care, along with the efficient processing of claims.
US11955213B2

In clinical documentation, mere documentation of a condition in a patient's records may not be enough. To be considered sufficiently documented, the patient's record needs to show that no documentation drop-offs (DDOs) have occurred over the course of the patient's stay. However, DDOs can be extremely difficult to detect. To solve this problem, the invention trains time-sensitive deep learning (DL) models on a per condition basis using actual and/or synthetic patient data. Utilizing an ontology, grouped concepts can be generated on the fly from real-time hospital data and used to generate time-series data that can then be analyzed by trained time-sensitive DL models to determine whether a DDO for a condition has occurred during the stay. Non-time-sensitive models can be used to detect all the conditions documented during the stay. Outcomes from the models can be compared to determine whether to notify a user that a DDO has occurred.
US11955212B2

The locations of electronic devices in an institutional facility are determined based on interaction with the wireless mobile devices of users who roam though the facility and interact with (or are detected by) the devices.
US11955210B2

A method for automatically configuring a medical device with user-specific configuration data includes obtaining, by a charger device from one or more server computing devices, user-specific configuration data stored on a first medical device that is configured to provide therapy to a patient in accordance with the user-specific configuration data, and causing, by the charger device, configuration of a second medical device based on communicating the user-specific configuration data to the second medical device while the second medical device is being charged by the charger device, wherein the second medical device is a replacement device for the first medical device.
US11955204B2

Apparatuses and methods for performing concurrent memory access operations for different memory planes are disclosed herein. An example apparatus may include a memory array having a plurality of memory planes. Each of the plurality of memory planes comprises a plurality of memory cells. The apparatus may further include a controller configured to receive a group of memory command and address pairs. Each memory command and address pair of the group of memory command and address pairs may be associated with a respective memory plane of the plurality of memory planes. The internal controller may be configured to concurrently perform memory access operations associated with each memory command and address pair of the group of memory command and address pairs regardless of page types associated with the pairs of the group (e.g., even if two or more of the memory command and address pairs may be associated with different page types).
US11955192B2

A semiconductor device or the like with a novel structure that can change the orientation of the display is provided. A semiconductor device or the like with a novel structure, in which a degradation in transistor characteristics can be suppressed, is provided. A semiconductor device or the like with a novel structure, in which operation speed can be increased, is provided. A semiconductor device or the like with a novel structure, in which a dielectric breakdown of a transistor can be suppressed, is provided. The semiconductor device or the like has a circuit configuration capable of switching between a first operation and a second operation by changing the potentials of wirings. By switching between these two operations, the scan direction is easily changed. The semiconductor device is configured to change the scan direction.
US11955191B2

A memory device and a method of operating a memory device are disclosed. In one aspect, the memory device includes a plurality of non-volatile memory cells, each of the plurality of non-volatile memory cells is operatively coupled to a word line, a gate control line, and a bit line. Each of the plurality of non-volatile memory cells comprises a first transistor, a second transistor, a first diode-connected transistor, and a capacitor. The first transistor, second transistor, first diode-connected transistor are coupled in series, with the capacitor having a first terminal connected to a common node between the first diode-connected transistor and the second transistor.
US11955183B2

A non-volatile memory includes a memory cell region including an outer region proximate a first end of the memory cell region and an inner region separated from the first end by the outer region, first and second bit lines, an outer memory cell string including memory cells connected to an outer pillar extending vertically upward through the outer region, and an inner memory cell string including memory cells connected to an inner pillar extending vertically upward through the inner region, and a data input/output (I/O). The data I/O circuit includes a page buffer circuit that connects the first bit line during a first read operation directed to memory cells of the outer memory cell string, and connects the second bit line during a second read operation directed to memory cells of the inner memory cell string, and a read voltage determination unit that selects a first optimal read voltage used during the first read operation, and a second optimal read voltage used during the second read operation.
US11955171B2

An integrated circuit device that has improved write margin at low operating voltages is disclosed. The integrated circuit device can include an SRAM array that has end power select circuits that can include selection circuits that provide a controllable impedance path between a power supply potential and an array power line. A power supply detection circuit may provide an assist enable signal when a power supply potential is low enough that write assist is needed. A power control circuit may provide end power control signals to end power select circuits to selectively control an impedance path between a power supply potential and an array power line to provide an I-R drop to a selected memory cell. In this way, write margins may be improved at low operating voltages.
US11955170B2

A static random-access memory is set forth comprising: a word line circuit for generating a word line signal on a word line; a plurality of six-transistor memory cells arranged between a first bitline, a second bitline and the word line for simultaneously selecting one of either all or a portion of the plurality of six-transistor memory cells for data reading or writing, and wherein each memory cell includes first and second n-channel transistors and a bitline precharge circuit for precharging the first bitline and second bitline to a voltage of Vdd/2 prior to the first and second n-channel transistors receiving the word line signal.
US11955158B2

Embodiments of the disclosure are drawn to apparatuses and methods for scheduling targeted refreshes in a memory device. Memory cells in a memory device may be volatile and may need to be periodically refreshed as part of an auto-refresh operation. In addition, certain rows may experience faster degradation, and may need to undergo targeted refresh operations, where a specific targeted refresh address is provided and refreshed. The rate at which targeted refresh operations need to occur may be based on the rate at which memory cells are accessed. The memory device may monitor accesses to a bank of the memory, and may use a count of the accesses to determine if an auto-refresh address or a targeted refresh address will be refreshed.
US11955146B2

According to one embodiment, in a magnetic disk, a plurality of first servo sectors is arranged at intervals in the circumferential direction. Each of the plurality of first servo sectors includes a first area and a second area. First information including a preamble, a servo mark, and a Gray code is written in the first area. The second area is disposed after the first area in a write and read direction along the circumferential direction, and second information including a burst pattern is written in the second area. The plurality of first servo sectors includes a plurality of second servo sectors and a plurality of third servo sectors. The circumferential length of a first area included in each of the plurality of third servo sectors is longer than the circumferential length of a first area included in each of the plurality of second servo sectors.
US11955138B2

Methods, devices, and systems for voice activity detection. An audio signal is received by receiver circuitry. A pitch analysis is performed on the received audio signal by pitch analysis circuitry. A higher-order statistics analysis is performed on the audio signal by statistics analysis circuitry. Logic circuitry determines, based on the pitch analysis and the higher-order statistics analysis, whether the audio signal includes a voice region. The logic circuitry outputs a signal indicating that the audio signal includes voice if the audio signal was determined to include a voice region or indicating that the audio signal does not include voice if the audio signal was determined not to include a voice region.
US11955134B2

A method of phrase extraction for ASR models includes obtaining audio data characterizing an utterance and a corresponding ground-truth transcription of the utterance and modifying the audio data to obfuscate a particular phrase recited in the utterance. The method also includes processing, using a trained ASR model, the modified audio data to generate a predicted transcription of the utterance, and determining whether the predicted transcription includes the particular phrase by comparing the predicted transcription of the utterance to the ground-truth transcription of the utterance. When the predicted transcription includes the particular phrase, the method includes generating an output indicating that the trained ASR model leaked the particular phrase from a training data set used to train the ASR model.
US11955128B2

An electronic device may include: a memory; a sound sensor; and a processor, wherein the processor is configured to: receive, from the sound sensor, sound data including a first piece of data corresponding to a first frequency band and a second piece of data corresponding to a second frequency band different from the first frequency band; receive voice data related to a voice of a registered user from the memory; perform voice identification by comparing the first piece of data and the second piece of data with the voice data related to the voice of the registered user; and determine an output based on a result of the voice identification.
US11955127B2

An embodiment extracts a set of designated entities and a set of relationships between designated entities from speech content of an audio feed of a plurality of participants of a current web conference using a machine learning model trained to classify parts of speech content. The embodiment generates a list of current action items based on the extracted set of designated entities and relationships between designated entities. The embodiment identifies a first current action item that is an updated version of an ongoing action item on a progress list of ongoing action items from past web conferences. The embodiment also identifies a second current action item that is unrelated to any of the ongoing action items on the progress list. The embodiment updates the progress list to include updates for the first current action item and by adding the second current action item.
US11955119B2

A speech recognition method includes receiving speech data, obtaining, from the received speech data, a candidate text including at least one word and a phonetic symbol sequence associated with a pronunciation of a target word included in the received speech data, using a speech recognition model, replacing the phonetic symbol sequence included in the candidate text with a replacement word corresponding to the phonetic symbol sequence, and determining a target text corresponding to the received speech data based on a result of the replacing.
US11955117B2

A system and method are provided for analyzing and reacting to interactions between entities using electronic communication channels. The method includes receiving, via the communications module, data captured from a conversational exchange between a first entity communicating with a second entity using an electronic communication channel. The method also includes analyzing the captured data to detect an indication that the first entity is or was distracted during the conversational exchange, is or was disinterested in a portion of the conversational exchange or missed the portion of the conversational exchange. The method also includes determining based on the indication an action to address the distraction during, disinterest in, or missing of, the portion of the conversational exchange; and providing, via the communications module, an automated message to at least one of the first entity and the second entity for executing the action.
US11955104B2

An accompaniment sound generating device includes a specifier, an accompaniment sound generator, and an accompaniment sound outputter. The specifier specifies a plurality of musical performance parts for which accompaniment sounds are generated based on an input musical performance sound. The accompaniment sound generator generates the accompaniment sounds that belong to the plurality of specified musical performance parts for each musical performance sound. The accompaniment sound outputter outputs the accompaniment sounds generated for the plurality of musical performance parts with timing for generating the accompaniment sounds aligned with timing for generating musical performance sounds.
US11955101B2

A display control device and a display control method capable of displaying a desired image regardless of a state of wireless communication are provided. A wireless control unit causes an external apparatus to draw a first image in accordance with input information. A first unit acquires the first image via the wireless communication and displays the first image on a display apparatus. A second unit causes a GPU to draw a second image in accordance with the unput information and displays the second image on the display apparatus. A switching unit determines whether a received radio wave is in a good state or a bad state, select the first unit when a determination result is that the received radio wave is in the good state, and select the second unit when the determination result is that the received radio wave is in the bad state.
US11955099B2

Various implementations disclosed herein include methods, electronic devices, and systems for performing perceptual-based color correction based on chromaticity values. To that end, in some implementations, a method is performed at an electronic device with one or more processors, a non-transitory memory, and a see-through display. The method includes determining a chromaticity value associated with ambient light from a physical environment. The chromaticity value quantifies the ambient light. The method includes determining a set of color correction values based on a function of the chromaticity value and image data. The set of color correction values and the chromaticity value together satisfy one or more perceptual criteria. The method includes modifying the image data in order to generate display data based on a function of the set of color correction values. The method includes displaying the display data on the see-through display.
US11955094B2

In a head-mounted display 100, an input information acquisition unit 140 receives selection of content by a user. A frame rate information acquisition unit 144 acquires information relating to a frame rate of the content, and a luminance adjustment unit 146 determines display luminance according to the frame rate. A content reproduction unit 142 reproduces an image of the content, and a display unit 150 displays the image at the determined luminance.
US11955093B2

An agricultural work vehicle for operating in a field includes a chassis, a cab mounted to the chassis for an operator to control the work vehicle, a controller for controlling operation of the work vehicle, a lighting system of the work vehicle comprising at least one array field light, and a light control module disposed in electrical communication with the controller. The light control module operably controls the at least one array field light. The controller transmits a signal to the light control module indicative of information about the work vehicle. The at least one array field light projects the information onto the field at a location visible to the operator while operating the work vehicle.
US11955092B2

A display device includes a sensing circuit and a controller which selects a pixel row in a frame period. A vertical blank period of the frame period includes a sensing time in which the sensing circuit performs a sensing operation for the selected pixel row. The sensing circuit measures a first source voltage of a driving transistor of a pixel in the selected pixel row at a first time point of the sensing time, and measures a second source voltage of the driving transistor at a second time point of the sensing time. The controller calculates a threshold voltage parameter and a mobility parameter based on the first and second source voltages, predicts a saturated source voltage of the driving transistor based on the threshold voltage parameter and the mobility parameter, and calculates a threshold voltage of the driving transistor based on the saturated source voltage.
US11955083B2

A display device is disclosed that includes a display panel including a pixel and a scan driver to provide a first scan signal to a third scan signal to the pixel. The pixel includes a light emitting element, a first transistor connected between a first voltage line and the light emitting element, a second transistor connected between a data line and a first node, a gate electrode of the second transistor to receive a first scan signal, a third transistor connected between the second node and the first transistor, a gate electrode of the third transistor to receive a second scan signal, and a fourth transistor connected between a first initialization voltage line, which is to receive a first initialization voltage, and the second node, a gate electrode of the fourth transistor to receive a third scan signal. The first to third scan signals include first to third activation sections, and the first to third activation sections have an equal duration.
US11955079B2

A pixel includes a display element, a driving transistor, a storage capacitor, a scan transistor, and a gate control circuit. The display element may emit light for an emission period, wherein the display element includes an anode and a cathode. The driving transistor may control an amount of a driving current flowing through the display element, wherein the driving transistor includes a first gate and a second gate. The storage capacitor is electrically connected to the first gate of the driving transistor. The scan transistor may be turned on for a data-write period for transferring a data voltage to the driving transistor. The lower gate control circuit may electrically connect the second gate of the driving transistor to the anode of the display element for the emission period, and may apply a bias voltage to the second gate of the driving transistor for the data-write period.
US11955075B2

An array substrate has a display area and a non-display area including a first bonding region. The array substrate includes: a plurality of pixel columns disposed in the display area, each of the plurality of pixel columns including a plurality of light-emitting units that are arranged in a second direction, the second direction being perpendicular to a direction in which an edge of the display area proximate to the first bonding region extends; and at least three first power supply input terminals disposed in the first bonding region, each first power supply input terminal being connected to at least one pixel column of the plurality of pixel columns, so as to provide a first power supply signal to the at least one pixel column.
US11955071B2

A pixel circuit, a display panel and a method for driving the pixel circuit. The pixel circuit includes a first light emission control module and a gate initialization module. The first light emission control module includes a control terminal, a first terminal and a second terminal, where the control terminal of the first light emission control module is electrically connected with a first light emission control signal, the first terminal of the first light emission control module is electrically connected with a first power signal, and the second terminal of the first light emission control module is electrically connected to the first electrode of the drive transistor.
US11955061B2

Provided is a pixel driving circuit configured to provide a signal to a to-be-driven element. The pixel driving circuit includes: a current control sub-circuit, configured to transmit a current signal; a time length control sub-circuit, configured to transmit a time signal; and an output sub-circuit, electrically connected with the time length control sub-circuit and the current control sub-circuit, respectively; where the time length control sub-circuit is further configured to control the output sub-circuit to be turned on or off based on the time signal; the output sub-circuit is configured to, when turned on, control a current applied to the to-be-driven element based on the current signal, where duration of two adjacent turn-ons of the output sub-circuit is same and duration of two adjacent turn-offs of the output sub-circuit is same.
US11955060B2

A display substrate and a display panel are provided. The display substrate includes a base substrate; the base substrate includes a display region and a peripheral region on at least one side of the display region; the peripheral region includes a first peripheral sub-region and a second peripheral sub-region, the display region includes a first display sub-region corresponding to the first peripheral sub-region and a second display sub-region corresponding to the second peripheral sub-region, and the second display sub-region is different from the first display sub-region; the second peripheral sub-region includes a first gate driving circuit, and the first gate driving circuit is configured to be connected to a plurality of gate scanning signal lines in the first display sub-region through a plurality of connecting lines in the display region, to respectively providing a gate scanning signal to a plurality of rows of pixel units in the first display sub-region.
US11955052B2

An electronic shelf label, which comprises: a display unit, which is designed for displaying image content, and a communication module, which is designed for wireless communication for the purpose of receiving image data, which represent the image content, and for transferring the image data to the display unit, characterized in that a detector unit is provided, which is designed for detecting an incorrect positioning, which differs from a desired positioning, of the electronic shelf label, and for outputting an action signal when the incorrect positioning is detected, and in that the electronic shelf label is designed to change the image content when the action signal is present.
US11955049B2

A display panel and a corresponding driving method are provided, including at least an N−1th stage demultiplexing subcircuit and an Nth stage demultiplexing subcircuit. The N−1th stage demultiplexing subcircuit includes at least M N−1th stage demultiplexing units, wherein M and N are both integers not less than 2. By disposing at least two stages of the demuxing subcircuits in cascade, one signal can time-sharingly multiplex to a plurality of signals and correspondingly exponentially reduce a number of signal wirings.
US11955046B2

The present invention includes systems and methods for a six-primary color system for display. A six-primary color system increases the number of primary colors available in a color system and color system equipment. Increasing the number of primary colors reduces metameric errors from viewer to viewer. The six-primary color system includes Red, Green, Blue, Cyan, Yellow, and Magenta primaries. The systems of the present invention maintain compatibility with existing color systems and equipment and provide systems for backwards compatibility with older color systems.
US11955041B1

The control circuit for controlling a display panel is provided. The control circuit includes a first driving circuit and a second driving circuit for driving the display panel. The first driving circuit includes first output terminals and first input terminals. The first driving circuit outputs a plurality of test signals to the first output terminals sequentially during different periods in a diagnosis stage. The second driving circuit includes second input terminals and second output terminals. The second driving circuit receives the test signals through the second input terminals in the diagnosis stage, and outputs a plurality of response signals to the second output terminals sequentially during different periods in response to the test signals. The first driving circuit receives the response signals through the first input terminals, and judges a connecting status of the first driving circuit and the second driving circuit according to the response signals.
US11955040B2

A display device is disclosed. The display device includes an array substrate and at least two driving units. The array substrate includes a peripheral region and a display region, the array substrate further includes a peripheral grounding line and a test line, wherein the peripheral grounding line is located in the peripheral region, and the test line is located in the peripheral region. The at least two driving units are located on at least one side of the array substrate, the driving unit includes at least two grounding pins, a grounding pin of at least one of the driving units is connected to the peripheral grounding line, and each of at least one grounding pin of one of two adjacent driving units is electrically connected to a corresponding grounding pin of the other adjacent driving unit.
US11955038B1

An electronic device may include a lenticular display. The lenticular display may have a lenticular lens film formed over an array of pixels. The display may have a number of independently controllable viewing zones. Each viewing zone displays a respective two-dimensional image. Each eye of the viewer may receive a different one of the two-dimensional images, resulting in a perceived three-dimensional image. The electronic device may include display pipeline circuitry that generates and processes content to be displayed on the lenticular display. Content generating circuitry may generate content that includes a plurality of two-dimensional images, each two-dimensional image corresponding to a respective viewing zone. Pixel mapping circuitry may be used to map the two-dimensional images to the array of pixels in the lenticular display. The array of pixels may have a diagonal layout. An offset map may be used by the pixel mapping circuitry to account for the diagonal layout.
US11955026B2

A method, computer program product, and computer system for public speaking guidance is provided. A processor retrieves speaker data regarding a speech made by a user. A processor separates the speaker data into one or more speaker modalities. A processor extracts one or more speaker features from the speaker data for the one or more speaker modalities. A processor generates a performance classification based on the one or more speaker features. A processor sends to the user guidance regarding the speech based on the performance classification.
US11955019B2

Boundary information associated with a three-dimensional (3D) flying space is obtained, including a boundary of the 3D flying space. Location information associated with an aircraft is obtained, including a location of the aircraft. Information is presented based at least in part on the boundary information associated with the 3D flying space and the location information associated with the aircraft, including by presenting, in a display, the boundary of the 3D flying space and an avatar representing the aircraft at the location of the aircraft.
US11955016B2

An interface system for flight deck communications includes a chatbot configured to perform a conversation with a pilot. The conversation includes speech communications, visual communications using a display, or both. The interface system also includes a dynamic conversational graph generator. The dynamic conversational graph generator is configured to perform a set of functions including determining a flight operational procedure from the conversation with the pilot. The set of functions also include providing information associated with the flight operational procedure to the chatbot for communicating to the pilot. The set of functions also include responding to any requests received from the pilot by the chatbot during the conversation with the pilot.
US11955008B2

A device receives a first message indicating that a base station transmitted content relating to vehicle operation to a telemetry device associated with a first vehicle. The device processes the content to affect driving behavior of the first vehicle. The device generates a second message that includes a link to the content. The device sends the second message to a remote device, associated with a second vehicle. The device, by sending the second message to the remote device, causes the remote device to download the content via the link and send the second message to a neighbor device, associated with a third vehicle, which causes the neighbor device to download the content via the link. By downloading the content, the remote device and the neighbor device process the content to affect driving behavior of the second vehicle and the third vehicle.
US11954994B2

A method includes receiving, from a plurality of magnetic field receivers including magnetic sensors, data characterizing samples obtained by the plurality of magnetic field receivers, the samples of a combination of a first magnetic field and a second magnetic field resulting from interaction of the first magnetic field and an object; determining, using the received data, a polarizability index of the object, the polarizability index characterizing a magnetic polarizability property of the object; classifying, using the determined polarizability index, the object as threat or non-threat; and providing the classification. Related apparatus, systems, techniques, and articles are also described.
US11954991B2

Example apparatus, methods, circuitry, and computer program products are provided for use in impact detection. Example apparatus comprises a plurality of sensors. The apparatus is configured to determine whether a user is wearing an item in which the apparatus is comprised, and in response to a positive determination, operate the apparatus in an active operating mode. The active operating mode comprises operating one or more sensors in the plurality of sensors to generate data associated with motion of the user at a first sampling rate.
US11954987B2

The present disclosure describes a system and method designed to protect the contents of a region or space within a facility (e.g., building, home, vehicle, outdoor space, etc.). The system is configured to identify an area to be protected (e.g., nightstand, medicine cabinet, safe), monitor surroundings, and manage and deploy response(s) to threats to the region or space under protection. The system may also be configured to provide incremental warnings, interventions, or countermeasures to deter people or animals from accessing the Protected Space.
US11954971B2

Systems and methods that dynamically assign, responsive to different events occurring, the location of an electronic record associated with an amount of funds accessed from a gaming establishment credit system.
US11954967B2

A system for configuring a digital wallet application for implementing a casino player loyalty program includes a memory storing reward configuration data associated with digital wallet awards and a processor configured to: (a) provide an award type user interface for receiving player loyalty award types; (b) receive award type data corresponding to one or more selected player loyalty award types; (c) provide an award threshold user interface for receiving at least one indication corresponding to player loyalty award thresholds; (d) receive award threshold data corresponding to one or more selected player loyalty award thresholds; (e) provide an award trigger user interface for receiving player loyalty award triggers; (f) receive award trigger data corresponding to selected player loyalty award triggers; and (g) configure a rules engine for a mobile wallet based, at least in part, on the award type data, the award threshold data and the award trigger data.
US11954965B2

Technology for managing a player session at a gaming table is disclosed. A table management system receives identifying information of a player seated at the gaming table transmitted by a mobile device associated with the player. The identifying information includes a seating position of the player at the gaming table, the seating position determined by the mobile device through interaction with a locating device placed at the seating position at the gaming table. The table management system generates the player session for the player for playing a wagering game at the gaming table using the identifying information of the player transmitted by the mobile device.
US11954953B2

A refuse vehicle comprising a chassis, a body assembly coupled to the chassis, the body assembly defining a refuse compartment, and a thermal event monitoring system including an air sampling line configured to capture air from the refuse compartment of the refuse vehicle and transport the air to a sensor positioned outside of the refuse compartment and a processing circuit operatively coupled to the sensor and configured to detect a thermal event indicating at least one of a fire or an overheating component based on a signal from the sensor.
US11954947B2

A monitoring system for a working machine, includes a first communicator to communicate in wireless, the first communicator being provided on the working machine including a working device and a traveling device, a second communicator to communicate with the first communicator in wireless, the second communicator being provided on a monitoring device installed in an agricultural field, a monitor to monitor the agricultural field, the monitor being provided on the monitoring device, a judgment analyzer to judge whether the working machine is in a monitoring area based on intensities of signals of the first communicator and the second communicator, and an instruction controller to instruct the monitor to start monitoring when the judgment analyzer determines that the working machine is in the monitoring area of the monitor.
US11954940B2

Methods, systems and computer readable medium for liveness detection authentication of a facial image are provided. The method includes acquiring a first image of the facial image illuminated with a first color, acquiring a second image of the facial image illuminated with a second color, and determining if the facial image is consistent with a three-dimensional (3D) structure in response to a combination of the first and second images. The method further includes authenticating the facial image if the facial image is consistent with a 3D structure and the facial image matches a face of user to be authenticated.
US11954937B2

A fingerprint sensing system is configured to receive an illumination beam which is reflected by a finger and then transmitted to the fingerprint sensing system to generate a fingerprint image. The fingerprint sensing system includes a plurality of microlenses, a sensor, a first light filter layer, and a second light filter layer. The microlenses are arranged in an array. The sensor has a plurality of sensing pixels arranged in an array. The first light filter layer is disposed between the microlenses and the sensor and has a plurality of first openings. The second light filter layer is disposed between the first light filter layer and the sensor and has a plurality of second openings. The illumination beam passes through the first openings or the second openings, so that the sensor receives the illumination beam.
US11954934B2

Systems for item validation and image evaluation are provided. In some examples, a system may receive an instrument and associated data. The instrument may be received and at least one of a bill pay profile and a user profile may be retrieved. The bill pay profile and user profile may each include a plurality of previously processed instruments that have been determined to be valid and/or authentic. The instrument may be compared to the plurality of previously processed instruments to determine whether one or more elements of the instrument being evaluated match one or more corresponding elements of the plurality of previously processed instruments. Matching or non-matching elements may be identified. In some examples, one or more user interfaces may be generated displaying the instruments and including any highlighting or enhancements identifying matching or non-matching elements.
US11954917B2

A present disclosure is a method of segmenting an abnormal robust for complex autonomous driving scenes and a system thereof, specifically relates to the technical field of an image segmenting system. The system includes: a segmentation module, configured to transmit an obtained input image to the segmentation network to obtain a segmentation prediction image, and then quantify the uncertainty of a segmentation prediction by means of calculating two different discrete metrics; a synthesis module, configured to match a generated data distribution with a data distribution of the input image by utilizing a conditional generative adversarial network; a difference module, configured to model and calculate the input image, an generated image, the semantic feature map and the uncertainty feature map based on an encoder, a fusion module and a decoder, to generate the segmentation prediction images for the abnormal objects; a model training module; and an integrated prediction module.
US11954915B2

A method for detecting a guard-rail on a road, which is performed by a guard-rail detection device, is provided. The method includes acquiring points around a lidar sensor from the lidar sensor, detecting ground points based on the acquired points, arranging, among the acquired points, first points that are different from the detected ground points in voxels forming a sphere, and detecting the guard-rail based on the voxels and the first points.
US11954908B2

The communication support device includes a position acquisition unit, an imaging unit, a storage, a category ranking setting unit, a counterpart detector, and a notification unit. The position acquisition unit acquires position information indicating a position of a user. The imaging unit captures an image of a surrounding environment of the user to acquire a captured image. The storage stores the counterpart database. In the counterpart database, an image of a counterpart and a category indicating a property of the counterpart are associated with the counterpart. The category ranking setting unit sets a priority to the category according to the position information acquired by the position acquisition unit. The counterpart detector detects a counterpart belonging to the category in the captured image in order of the priority set by the category ranking setting unit. The notification unit notifies the user of information regarding the counterpart detected by the counterpart detector.
US11954903B2

This application relates to a system for automatically recognizing geographical area information provided on an item. The system may include an optical scanner configured to capture geographical area information provided on an item, the geographical area information comprising a plurality of geographical area components. The system may also include a controller in data communication with the optical scanner and configured to recognize the captured geographical area information by running a plurality of machine learning or deep learning models separately and sequentially on the plurality of geographical area components of the captured geographical area information.
US11954895B1

The present disclosure discloses a method for automatically identifying south troughs by improved Laplace and relates to the technical field of meteorology. The method includes the following steps: acquiring grid data of a geopotential height field; calculating a gradient field of the geopotential height field in an x direction; searching for a turning point where a gradient value turned from being negative to being positive, and cleaning the gradient field; calculating a divergence of the x direction to obtain an improved Laplacian numerical value L′; performing 0,1 binarization processing on the L′ to obtain a black-and-white image and a plurality of targets of potential troughs, merging the black-and-white image and the plurality of targets of the potential troughs by expansion, recovering original scale through erosion, and selecting an effective target through an angle of direction of a contour and an axial ratio.
US11954893B2

The technology described herein is directed to systems, methods, and software for indexing video. In an implementation, a method comprises identifying one or more regions of interest around target content in a frame of the video. Further, the method includes identifying, in a portion of the frame outside a region of interest, potentially empty regions adjacent to the region of interest. The method continues with identifying at least one empty region of the potentially empty regions that satisfies one or more criteria and classifying at least the one empty region as a negative sample of the target content. In some implementations, the negative sample of the target content in a set of negative samples of the target content, with which to train a machine learning model employed to identify instances of the target content.
US11954892B1

Disclosed is a system and associated methods for compressing motion within an animated point cloud. The resulting compressed file encodes different transforms that recreate the motion of different sets of points across different point clouds or frames of the animation in place of the data for the different sets of points from the different point clouds. The compression involves detecting a motion that changes positioning of a set of points between a first point cloud and subsequent point clouds of an uncompressed encoding of two or more frames of an animation. The compression further involves defining a transform that models the motion, and generating a compressed animated point cloud by encoding the data of the first point cloud in the compressed animated point cloud, and by replacing the data for the set of points in the one or more subsequent point clouds with the transform.
US11954888B2

A device includes an image processing unit configured to calculate color information of at least one cell in a captured image and a determination unit configured to determine a cultured state of the cell on the basis of the color information calculated by the image processing unit.
US11954887B2

Method and system for determining the angle of anteversion of for example bone fragments of a fractured bone are disclosed. Supported by artificial intelligence, a first object is classified in a first X-ray projection image. A second object is classified in a second X-ray projection image. A spatial arrangement of the objects relative to each other can be determined based on a respective determination of a representation and a localization of both objects.
US11954880B2

The method includes receiving data representing a first frame of video content including a plurality of frames and determining, for at least one object in a first frame, an object type and position in the first frame. The method further includes determining a number of frames N to skip over based on the type and position of the object in the first frame and the type and position of one or more objects in one or more prior frames, and for providing the N+1 frame, and not the skipped-over frames.
US11954879B2

Methods, apparatus, systems, and articles of manufacture to optimize pipeline execution are disclosed. An example apparatus includes at least one memory, machine readable instructions, and processor circuitry to execute the machine readable instructions to determine a value associated with a first location of a first pixel of a first image and a second location of a second pixel of a second image by calculating a matching cost between the first location and the second location, generate a disparity map including the value, and determine a minimum value based on the disparity map corresponding to a difference in horizontal coordinates between the first location and the second location.
US11954878B2

A device to determine a height disparity between features of an image includes a memory including instructions and processing circuitry. The processing circuitry is configured by the instructions to obtain an image including a first repetitive feature and a second repetitive feature. The processing circuitry is further configured by the instructions to determine a distribution of pixels in a first area of the image, where the first area includes an occurrence of the repetitive features, and to determine a distribution of pixels in a second area of the image, where the second area includes another occurrence of the repetitive features. The processing circuitry is further configured by the instructions to evaluate the distribution of pixels in the first area and the distribution of pixels in the second area to determine a height difference between the first repetitive feature and the second repetitive feature.
US11954875B2

A method for determining a height of a plant, an electronic device, and a storage medium are disclosed. In the method, a target image is obtained by mapping an obtained color image with an obtained depth image. The electronic device processes the color image by using a pre-trained mobilenet-ssd network, obtains a detection box appearance of the plant, and extracts target contours of the plant to be detected from the detection box. The electronic device determines a depth value of each of pixel points in the target contour according to the target image. Target depth values are obtained by performing a de-noising on depth values of the pixel points, and a height of the plant to be detected is determined according to the target depth value. The method improves accuracy of height determination of a plant.
US11954869B2

A motion recognition-based interaction method includes the steps of: providing a first motion image as a reference to a user terminal, obtaining a second motion image of the motion of a user from the user terminal, extracting a reference motion from the first motion image, extracting the user motion from the second motion image, and evaluating the motion state of the user by comparing the reference motion with the user motion, and providing feedback to the user based on the evaluation of the motion state. The feedback includes visual feedback.
US11954866B2

An image processing apparatus includes a movement estimation unit that estimates, on the basis of a first timestamp provided to an image captured by synchronous scanning, an event signal generated corresponding to an intensity change of light at one or a plurality of pixels of the image, and a second timestamp that is provided to the event signal and is in synchronism with the first timestamp, a movement of an imaging target in the image, an inverse filter generation unit that generates an inverse filter on the basis of the movement, and a filter application unit that applies the inverse filter to the image.
US11954862B2

A neural network system leverages dual attention, specifically both spatial attention and channel attention, to jointly estimate heart rate and respiratory rate of a subject by processing images of the subject. A motion neural network receives images of the subject and estimates heart and breath rates of the subject using both spatial and channel domain attention masks to focus processing on particular feature data. An appearance neural network computes a spatial attention mask from the images of the subject and may indicate that features associated with the subject's face (as opposed to the subject's hair or shoulders) to accurately estimate the heart and/or breath rate. Channel-wise domain attention is learned during training and recalibrates channel-wise feature responses to select the most informative features for processing. The channel attention mask is learned during training and can be used for different subjects during deployment.
US11954859B2

The present disclosure provides methods and systems using machine learning to assess one or more of a patient's biomarkers to analyze various conditions, including cancers, such as breast cancer. The present systems and methods can be trained to analyze patient's biomarker data to form prognoses, diagnoses, and treatment suggestions. Further, the present systems and methods can use biomarker feature data and clinical feature data to create novel correlations in order to provide more accurate, patient-specific diagnoses, prognoses, and treatment suggestions.
US11954858B2

A CPU acquires a distance image which indicates a distance to an imaging target and is captured by a TOF camera that captures the distance image using, as the imaging target, a mammography apparatus which is an abnormality determination target. In addition, the CPU acquires reference distance image as reference distance information related to a reference value of a distance between the abnormality determination target in a reference state and the TOF camera. Further, the CPU performs determination on an abnormality appearing in an outward appearance of the abnormality determination target on the basis of the distance image and the reference distance image.
US11954853B2

This disclosure proposes to speed up computation time of a convolutional neural network (CNN) by leveraging information specific to a pre-defined region, such as a breast in mammography and tomosynthesis data. In an exemplary embodiment, a method for an image processing system is provided, comprising, generating an output of a trained convolutional neural network (CNN) of the image processing system based on an input image, including a pre-defined region of the input image as an additional input into at least one of a convolutional layer and a fully connected layer of the CNN to limit computations to input image data inside the pre-defined region; and storing the output and/or displaying the output on a display device.
US11954847B2

An image identification method is provided, including: storing at least one normal state image of at least one test object; an automatic codec receiving the at least one normal state image to become a trained automatic codec; at least one camera device capturing at least one state image of the at least one test object; a computer device receiving the at least one state image, and the trained automatic codec performing feature extraction and reconstruction on the at least one state image to generate at least one reconstructed state image; and the computer device comparing the at least one state image and the at least one reconstructed state image, and determining whether the at least one state image is a normal state image. The present invention also provides an image identification system.
US11954840B2

A wellhead alignment system includes a visual marker configured to be placed at a wellhead and a camera configured to capture an image that includes the visual marker. The wellhead alignment system also includes one or more processors configured to apply computer vision algorithms to identify the visual marker in the image and to calculate an offset between the wellhead and a drilling rig based on a position of the visual marker in the image.
US11954836B2

A method, electronic device and storage medium for processing an image using depth-of-field information is disclosed. The method includes obtaining a weight matrix and a weight image based on depth-of-field data of an input image; obtaining a first horizontal summed area table corresponding to the weight matrix and a second horizontal summed area table corresponding to the weight image by performing horizontal summing operation on the weight matrix and the weight image; obtaining a first weighted blurring image corresponding to the weight matrix based on the first horizontal summed area table, and obtaining a second weighted blurring image corresponding to the weight image based on the second horizontal summed area table; and obtaining a pixel value of the pixel in a target image based on the first and second weighted blurring images.
US11954835B2

An image fusion method based on image and LiDAR point cloud is provided. The method comprises: acquiring a first image and sparse point cloud data, point cloud data in each channel of the sparse point cloud data corresponding to pixels in the first image respectively, and the sparse point cloud data and the first image having space and time synchronicity; obtaining a target gradient value corresponding to at least one target pixel in the first image according to the first image, the target pixel being a non-edge pixel of the first image; up-sampling the sparse point cloud data based on at least one target gradient value to obtain dense point cloud data, the target gradient value being determined according to a corresponding target pixel between adjacent channels of the sparse point cloud data; and obtaining a target fusion image based on the first image and the dense point cloud data.
US11954834B2

An endoscopic system includes an endoscopic imager configured to capture image frames of a target site within a living body and a processor configured to apply a spatial transform to a preliminary set of image frames, the spatial transform converting the image frames into cylindrical coordinates; calculate a map image from the spatially transformed image frames, each pixel position in the map image being defined with a vector of fixed dimension; align a current image frame with the map image and apply the spatial transform to the current image frame; fuse the spatially transformed current image frame to the map image to generate a fused image; and apply an inverse spatial transform to the fused image to generate an enhanced current image frame having a greater spatial resolution than the current image frame. The system also includes a display displaying the enhanced current image frame.
US11954827B2

Example methods, apparatuses, and/or articles of manufacture are disclosed that may be implemented, in whole or in part, techniques to select between and/or among multiple available alternative approaches to perform a temporal anti-aliasing operation in processing an image.
US11954826B2

This disclosure provides methods, devices, and systems for neural network inferencing. The present implementations more specifically relate to performing inferencing operations on high dynamic range (HDR) image data in a lossless manner. In some aspects, a machine learning system may receive a number (K) of bits of pixel data associated with an input image and subdivide the K bits into a number (M) of partitions based on a number (N) of bits in each operand operated on by an artificial intelligence (AI) accelerator, where N
US11954817B2

A method of plane tracking comprising: capturing by a camera a reference frame of a given plane from a first angle; capturing by the camera a destination frame of the given plane from a second angle different than the first angle; defining coordinates of matching points in the reference frame and the destination frame; calculating, using the first and second angles, first and second respective rotation transformations to a simulated plane parallel to the given plane; applying an affine transformation between the reference frame coordinate on the simulated plane and the destination frame coordinate on the simulated plane; and applying a projective transformation on the simulated plane destination frame coordinate to calculate the destination frame coordinate.
US11954814B1

A computer graphics production control system is configured to generate scenes (including three-dimensional, deformable characters (“3DD characters”)) that can be manipulated to produce still images and/or animated videos. Such control systems may utilize 3DD characters that are controlled by a series of control points that are positioned and/or moved under the control of the artist. Body characteristics of 3DD characters are modeled as a series of inter-related points (e.g., skin triangles) that can be manipulated under the control of the model and the reference points (e.g., bones) of the body.
US11954809B2

The present disclosure relates to display systems and, more particularly, to augmented reality display systems. In one aspect, a method of fabricating an optical element includes providing a substrate having a first refractive index and transparent in the visible spectrum. The method additionally includes forming on the substrate periodically repeating polymer structures. The method further includes exposing the substrate to a metal precursor followed by an oxidizing precursor. Exposing the substrate is performed under a pressure and at a temperature such that an inorganic material comprising the metal of the metal precursor is incorporated into the periodically repeating polymer structures, thereby forming a pattern of periodically repeating optical structures configured to diffract visible light. The optical structures have a second refractive index greater than the first refractive index.
US11954805B2

In one embodiment, a method includes by one or more computing devices, accessing an image including a hand of a user of a head-mounted display at a first time. The method includes generating, from at least the image, a virtual object representation of the hand, defined in a virtual environment that includes at least one other virtual object. The method includes rendering a first image of the virtual environment comprising a first portion of the hand of the user at a first frame rate, and determining a second viewpoint of the user at a second time. The method includes rendering a second image of the virtual environment comprising a second portion of the hand of the user at a second frame rate. The method includes providing, to a set of light emitters of the head-mounted display, instructions to display the second image.
US11954800B2

A computer-implemented method, medium, and system for converting borehole images into three dimensional structures for numerical modeling and simulation applications are disclosed. In one computer-implemented method, multiple CT-scan images of a core sample of a rock are received, where the core sample includes a borehole, and the multiple CT-scan images are cross-section images of the core sample at multiple depths of the borehole. A triangulation process is performed on pixels of each CT-scan image and with respect to each of multiple circumferential position angles. Multiple radii of the borehole corresponding to the multiple circumferential position angles are determined for each CT-scan image. Multiple nodal coordinates of 3D numerical model mesh of the borehole are generated based on the multiple radii of the borehole. An advisory on drilling window limits of mud weight is provided based on the multiple nodal coordinates of the 3D numerical model mesh of the borehole.
US11954795B2

A method and related software are disclosed for processing imagery related to three dimensional models. To display new visual data for select portions of images, an image of a physical structure such as a building with a façade is retrieved with an associated three dimensional model for that physical structure according to common geolocation tags. A scaffolding of surfaces composing the three dimensional model is generated and regions of the retrieved image are registered to the surfaces of the scaffolding to create mapped surfaces for the image. New image data such as texture information is received and applied to select mapped surfaces to give the retrieved image the appearance of having the new texture data at the selected mapped surface.
US11954791B2

Approaches in accordance with various embodiments provide for fluid simulation with substantially reduced time and memory requirements with respect to conventional approaches. In particular, various embodiments can perform time and energy efficient, large scale fluid simulation on processing hardware using a method that does not solve for the Navier-Stokes equations to enforce incompressibility. Instead, various embodiments generate a density tensor and rigid body map tensor for a large number of particles contained in a sub-domain. Collectively, the density tensor and rigid body map may represent input channels of a network with three spatial-dimensions. The network may apply a series of operations to the input channels to predict an updated position and updated velocity for each particle at the end of a frame. Such approaches can handle tens of millions of particles within a virtually unbounded simulation domain, as compared to classical approaches that solve for the Navier-Stokes equations.
US11954787B2

The disclosure provides image rendering methods and apparatuses. One example method includes that a foreground image is first rendered, and then a panoramic image used as a background is rendered. A pixel corresponding to the foreground image has a corresponding depth value. When the panoramic image is rendered, content corresponding to the panoramic image may be rendered at a pixel corresponding to a depth standard value based on a depth value of a pixel on a canvas. The depth reference value is a depth value of a pixel other than the pixel corresponding to the foreground image.
US11954780B2

A first video generator generates first information for displaying, as a first video, a character object of a first user and a first object. A second video generator displays the first object and a third object different from the second object. An association portion associates the character object of the first user with a fourth object associated with the third object when the character object of the first user and the third object have a predetermined relationship. The second video generator displays the fourth object in association with the character object of the first user when the fourth object is associated with the character object of the first user by the association portion.
US11954775B2

A method, computer program product, and computer system for artboard element positioning in a series of computer-based artboards. The method includes providing multiple target artboards and identifying a common element in at least some of the target artboards, where a common element has at least some consistent attributes. The method includes determining a reference position for the common element. The method includes, in each target artboard containing the common element, comparing an existing position of the common element with the reference position and determining whether to adjust the existing position to match the reference position.
US11954769B2

The invention refers to providing a system that allows to reduce the computational costs when using an iterative reconstructional algorithm. The system (100) comprises a providing unit (110) for providing CT projection data, a base image generation unit (120) for generating a base image based on the projection data, a modifying unit (130) for generating a modified image, wherein an image value of a voxel of the base image is modified based on the image value of the voxel, and an image reconstruction unit (140) for reconstructing an image using an iterative reconstruction algorithm that uses the modified image as a start image. Since the modifying unit is adapted to modify the base image, the base image can be modified such as to form an optimal start image for the chosen iterative reconstruction such that a faster convergence of the iterative reconstruction can be accomplished.
US11954766B2

A method for correcting a shading in a digital image of a three-dimensional observation object obtained by at least one image sensor of an optical observation device is provided. The three-dimensional observation object is illuminated by illumination light and an intensity distribution, and an inhomogeneity in an image brightness is present in the digital image of the three-dimensional observation object. The method includes ascertaining a topography of the three-dimensional observation object, correcting the inhomogeneity in the image brightness of the digital image based on the topography of the three-dimensional observation object and the intensity distribution of the illumination light. In addition, an optical observation system is provided to perform the method.
US11954760B2

A method including rendering graphics for an application using graphics processing units (GPUs). Responsibility for rendering of geometry is divided between GPUs based on screen regions, each GPU having a corresponding division of the responsibility which is known. First pieces of geometry are rendered at the GPUs during a rendering phase of a previous image frame. Statistics are generated for the rendering of the previous image frame. Second pieces of geometry of a current image frame are assigned based on the statistics to the GPUs for geometry testing. Geometry testing at a current image frame on the second pieces of geometry is performed to generate information regarding each piece of geometry and its relation to each screen region, the geometry testing performed at each of the GPUs based on the assigning. The information generated for the second pieces of geometry is used when rendering the geometry at the GPUs.
US11954759B2

A tile-based graphics system has a rendering space sub-divided into a plurality of tiles which are to be processed. Graphics data items, such as parameters or texels, are fetched into a cache for use in processing one of the tiles. Indicators are determined for the graphics data items, whereby the indicator for a graphics data item indicates the number of tiles with which that graphics data item is associated. The graphics data items are evicted from the cache in accordance with the indicators of the graphics data items. For example, the indicator for a graphics data item may be a count of the number of tiles with which that graphics data item is associated, whereby the graphics data item(s) with the lowest count(s) is (are) evicted from the cache.
US11954748B1

Computing device(s) are configured for managing the reunification of students with parents during an emergency or a drill for a simulated emergency. The reunification of students with guardians may be managed through the operations of various user interfaces (UIs) presented on the device(s). Different UIs may be configured to support different personnel performing different roles in the reunification process. The UIs may include one or more of a student supervisor UI, a location supervisor UI, a runner UI, a guardian greeter UI, a reunification officer UI, or an incident commander UI. The various UIs enable different personnel to track the location and status of individuals, such as students and guardians, during various stages of a reunification process, enable personnel to dynamically update a centralized database with current information regarding the location and status of individuals, and view real time information regarding the location and status of individuals.
US11954746B1

In an illustrative embodiment, an automated system assesses risks associated with real estate entities. The system may include computing systems and devices for extracting data attributes for real estate entities from received source data, and the extracted data attributes may each be associated with a particular data level for a real estate entity. The system can link data attributes in adjacent data levels with unique linkage information and compute metrics for each of the real estate entities from the data attributes where each computed metric may be associated with one of the data levels. The system can assess an amount of risk associated with each of the real estate entities based on the computed metrics and present the assessed amount of risk for one or more real estate entities to a remote computing device of a user responsive to receiving a risk assessment request.
US11954742B2

Systems and methods for sharing the information of an individual under care across at least two organizations in an integrated manner are described. These include systems and methods of data collection from multiple sources relating to the individual's care, where the data collection is driven by one or more preset orders. The preset orders may be preset by a user. A physical node may receive a request for authorization for a user in an organization to access an individual's information in another organization. The request may be logged. The physical node may determine whether the user is authorized to access the individual's information and, if it is, provide appropriate access.
US11954731B2

Embodiments of a system and method are described for generating a finance attribute. In one embodiment, the systems and methods retrieve raw tradeline data from a plurality of credit bureaus, retrieve industry code data related to each of the plurality of credit bureaus, determine one or more tradeline leveling characteristics that meet at least one pre-determined threshold, and generate a finance attribute using the selected leveling characteristics.
US11954726B1

The present embodiments relate to an Augmented Reality (AR) vehicle buying experience. A client can provide a series of client information, such as characteristics of a desired vehicle. A specified vehicle can be identified and characteristics of that vehicle can be identified. The characteristics of the vehicle can then be compared with the desired vehicle characteristics provided by the client to determine whether the vehicle corresponds to the desired vehicle of the client. Responsive to determining that the specified vehicle corresponds to the desired vehicle of the client, the client AR display can be updated to highlight the specified vehicle depicted in the display. Alternatively, responsive to determining that the specified vehicle does not correspond to the desired vehicle of the client, the client AR display can be updated to obfuscate (e.g., grey out) the specified vehicle in the display.
US11954724B2

A system for use with a handheld electronic device for coordinating retrieval of diagnostic information from a vehicle includes computer readable instructions downloadable onto the handheld electronic device for configuring the handheld electronic device to receive a request signal from a scheduling server. The request signal includes vehicle information of a third-party vehicle for which retrieval of diagnostic information has been requested. The computer readable instructions further configure the handheld electronic device to display information related to the received request signal on the handheld electronic device and receive user input representative of the user agreeing to retrieve the diagnostic information from the third-party vehicle. The computer readable instructions additionally configure the handheld electronic device to send an accept signal to the scheduling server in response to receipt of the user input.
US11954717B2

A labor marketplace exchange (LME) computing system and method are provided. The LME computing system communicates with communications devices of service providers and service users. The LME computing system receives service provider profile data from the service providers. Service users can submit service queries to the LME computing system. Based on the parameters of the service query, service providers are identified by the LME computing system. A service request is then sent to a service provider identified by the LME computing system and selected by the service user.
US11954713B2

A variable refrigerant flow system for a building includes a plurality of indoor units, a first outdoor unit, an outdoor meter, and a variable refrigerant flow management system. The plurality of indoor units configured to generate activation requests. The first outdoor unit is configured to receive the activation requests and, in response to the activation requests, provide a refrigerant to the plurality of indoor units. The outdoor meter is configured to provide an outdoor unit electricity consumption measurement. The variable refrigerant flow management system is configured to receive the outdoor unit electricity consumption measurement and activation data indicating the activation requests and apportion an outdoor share of the outdoor electricity consumption measurement to each of the plurality of indoor units based on the activation data.
US11954706B2

The present disclosure relates to an online platform for out of home advertising. The online platform may allow various advertisers to search for advertising panels (e.g., digital billboards), select available time periods for an advertising panel, upload an advertisement (“ad”), and have the ad displayed on the advertising panel. An advertiser can search for advertising panels using one or more search parameters (e.g., geographical location and demography of target audience). The online platform may also allow advertising panel owners to publish their advertising panels, manage availability, and approve or reject ads for display. The online platform may generate reports relating to the advertising panels.
US11954700B2

The present disclosure relates to a question recommendation system that intelligently optimizes a survey being created by a user by providing customized suggestions. For example, in one or more embodiments, the question recommendation system provides a suggested question based on questions previous added by a user while creating a survey. In particular, the question recommendation system provides various recommendations to the user to further optimize a survey being created. For instance, the question recommendation system provides recommendations with respect to improving question ordering, question phrasing, and question type as well as recommends removing potentially inefficient questions.
US11954687B2

A method includes monitoring patterns of commands provided by a self-service terminal controller, identifying potential fraud in the monitored patterns of commands, and suspending operation of a dispenser of the self-service terminal responsive to the identification of potential fraud.
US11954670B1

A method, user device, and computer-readable storage media for registering and activating accounts is provided. One method includes transmitting a first input from a user regarding opening an account at an institution, establishing a communication session based on exchanging encryption keys between the user device and the computing system, in response to establishing the communication session, automatically installing a client application, displaying, via the client application, a graphical user interface (GUI) including a request for a user verification, transmitting, via the communication session, a received user verification, receiving a second input to add the account a mobile wallet on the user device, prompting the user for a value regarding the account, and receiving and storing, via the communication session, a payment token for transactions via the mobile wallet before a physical card associated with the account of the computing system is received.
US11954668B2

A system includes a customer authentication system and an automatic teller machine (ATM). The ATM includes a display, one or more memory devices storing software instructions, and one or more processors configured to: execute the software instructions to perform operations to display an item on display; store information regarding the item; receive from a customer device captured information regarding the item; receive from the customer device identifying information of a customer; send the identifying information to the customer authentication system; compare the captured information with the information stored in the one or more memory devices; authenticate the customer device based on the comparison; and allow access to the customer account via the ATM after the authentication.
US11954666B2

A method for identifying a funds transfer opportunity in an electronic media accessed by a mobile device may include monitoring the electronic media for the funds transfer opportunity, identifying the funds transfer opportunity in the electronic media, and outputting indication for the funds transfer opportunity in the electronic media. The method may further include receiving confirmation to instantiate a funds transfer based on the indicated funds transfer opportunity on the mobile device and instantiating the funds transfer based on the received confirmation.
US11954663B2

Embodiments provide a method and a system for conducting merchant-industry mapping based on ambient noise. The method includes receiving a payment transaction request and an audio signal comprising ambient noise in surrounding of a merchant terminal of a merchant. The ambient noise is recorded by the merchant terminal and includes a plurality of sounds. The method includes determining whether the merchant is an aggregated merchant or a non-aggregated merchant. The method includes processing the ambient noise to determine a type of the merchant upon determining that the merchant is the non-aggregated merchant. The method includes mapping the merchant to an industry from a plurality of industries available in the server system based on the type of the merchant. The method further includes storing the mapping of the industry and the merchant in a database associated with the server system.
US11954657B2

A transmission pairing system may include a transmission pairing stored in a secure database. The system may generate a transmission pairing by receiving a selection of a destination for the secure information from the secure database and determining a transmission type corresponding to the selected destination. The system may populate a list of available sources of the secure information based on the transmission type. A selected source may be received and paired with the selected destination to generate the transmission pairing. The transmission pairing may be used to initiate an electronic transmission based on a parameter that is modifiable to determine the secure information transmitted from the source to the destination.
US11954656B1

An example method includes identifying provider systems each configured to perform a function requested by a device, wherein the provider systems are associated with vendors that provide one or more of services, goods, or device skills, responsive to selecting a provider system, sending, to the provider system, the request to perform the function, after sending the request to the provider system, receiving, by the management system and from the provider system, provider response information associated with performance of the function, sending, by the management system and to the device, the provider response information associated with performance of the function, and initiating a payment of funds from a first financial system associated with the device to a second financial system associated with the provider system.
US11954634B2

A method for managing a delivery item in the absence of a recipient invention includes the operations in which a delivery item management system determines whether or not an unloading request has been made by a client terminal with respect to a delivery robot which has arrived at a place of delivery; and the delivery item management system enables the delivery robot to automatically unload a delivery item at the place of delivery, on the basis of the determination result.
US11954633B2

The information processing device acquires load information of a load to be transported by UGV 1; acquires environmental information obtained by sensing an environment around the UGV by a sensor mounted on the UGV at a transport destination of the load; and determines a place where the load is placed by the UGV at the transport destination on the basis of the load information and the environmental information.
US11954631B2

A business process is enacted in a production facility employing a computer managed manufacturing execution system or manufacturing operation management system. The MES/MOM systems operate in an event-driven environment based on handlers orchestrated by events. The method includes: providing and parsing a business process model; creating precompiled, closed source command handlers and event handlers; creating entities of a work process model in an operational domain of the system; and, based on the work process model, running a work process, instancing the business process, by using the precompiled, closed source command handlers and event handlers, the command handlers working on tokens that are differentiated for the different types of elements, are created by the command handlers for each element in a run provided for by the enactment and, for each element, are differentiated according to whether the run to which the token belongs is actually executed or skipped.
US11954628B2

The embodiment of the present disclosure provides a method and Internet of Things system for smart gas safety inspection route based on a Geographic Information System (GIS). The method is executed by a smart gas safety management platform of the Internet of Things system, comprising: determining track information of an inspector according to location data of the inspector; in response to the track information satisfying a preset requirement, determining a recommended inspection route based on the track information and gas monitoring data, and prompt the recommended inspection route through a display screen based on a first display parameter; in response to the track information not satisfying the preset requirement, determining a display condition of the display screen based on a second display parameter.
US11954620B2

The techniques herein include an inquiry controller determining whether timing criteria have been met for sending an inquiry to a particular user account. In response to determining that the timing criteria for sending an inquiry to the particular user account is satisfied, the inquiry is sent to and received by a particular user device associated with the particular user account. When a response is received, a response analyzer analyzes it and selects a first follow-up action, with associated first digital content, for the system to perform for the particular user account based on the analysis. The chosen action may include automatically creating a calendar item in a digital calendar associated with the user account, updating a digital task list for the user account, generating and transmitting a second inquiry to the particular user device, and the like. The follow-up action is then performed.
US11954619B1

Apparatuses, systems, and methods described include receiving data related to an availability for a shift, automatically triggering initiation of a communications session related to the shift, conducting the communications session, and receiving and storing a plurality of audio or audio and visual signals from the communications session. Machine learning (ML) sentiment analysis is performed on data of the communications session and based on the sentiment analysis, a reliability score is determined.
US11954615B2

A method of improving at least one of quality and yield of a physical process comprises: obtaining values, from respective performances of the physical process, for a plurality of variables associated with the physical process; determining at least one Gaussian mixture model (GMM) representing the values for the variables for the performances of the physical process; based at least in part on the at least one GMM, computing at least one anomaly score for at least one of the variables for at least one of the performances of the physical process; based on the at least one anomaly score, identifying the at least one of the performances of the physical process as an outlier; and, based at least in part on the outlier identification, modifying the at least one of the variables for one or more subsequent performances of the physical process.
US11954612B2

A method includes receiving a first query by a computing device and assigning the first query to a plurality of cognitive engines, wherein each of the plurality of cognitive engines include different characteristics for processing data. The method also includes, responsive to receiving a response from each of the plurality of cognitive engines for the first query, comparing the received responses from the plurality of cognitive engines. The method also included responsive to determining a difference between a first response from a first cognitive engine and a second response from a second cognitive engine is above a predetermined threshold value, performing a response mediation process until the difference is below the predetermined threshold value. The method also includes selecting a first final response from the received responses for the first query and the second query and displaying the first final response to a user.
Patent Agency Ranking