-
公开(公告)号:CN118563113A
公开(公告)日:2024-08-30
申请号:CN202410730821.4
申请日:2024-06-06
Applicant: 西北工业大学 , 西部超导材料科技股份有限公司
Abstract: 本发明属于航空材料制造技术领域,涉及一种消除钛合金铸锭锭冠的熔炼方法。根据熔炼过程中形成的锭冠高度结合坩埚直径确定自耗电极进入收弧阶段的重量,通过在收弧阶段不同的重量范围内,进行收弧电流、电压、稳弧电流、弧距及冷却条件的动态调整,抑制新的飞边产生,并控制熔池的到边情况,实现熔池的稳定抬升,利用稳定抬升的熔池填充原有正常熔炼期形成的飞边高度,实现铸锭收弧过程中飞边高度的逐步缩小,最终在跳闸时实现飞边的完全消除。进而消除铸锭熔炼完成后的机加车除飞边工序,在提高生产效率、降低物料损耗、降低铸锭制造费用的同时,避免了车削刀具的使用,从而避免铸锭车削过程中破碎刀头等高密度夹杂的引入风险,降低了制造成本。
-
公开(公告)号:CN113385625B
公开(公告)日:2023-03-03
申请号:CN202110651369.9
申请日:2021-06-10
Applicant: 西北工业大学 , 西北工业大学重庆科创中心
Abstract: 本发明公开了一种可精确控制冷速的等温模锻装置及其调控方法,其中的等温模锻装置,包括外壳体、设置在外壳体内部的保温隔热系统、位于保温隔热系统内的等温锻造模具、安装在保温隔热系统上端的总排气管、安装在保温隔热系统下端的总进气管、用于向总进气管内通入冷气的冷却气源、设置在等温锻造模具上的温度监测传感器及PLC加热和冷却控制系统;温度监测传感器用于监测等温锻造模具的温度并将温度信号传输至PLC加热和冷却控制系统,PLC加热和冷却控制系统用于根据温度信号调控等温锻造模具的冷速及加热情况。本发明可以实现等温锻造装备内模具的温度精确调控,进而控制型材的显微组织,实现组织均匀性和性能稳定性。
-
公开(公告)号:CN116397170B
公开(公告)日:2024-07-02
申请号:CN202310471666.4
申请日:2023-04-27
Applicant: 西北工业大学 , 西北工业大学重庆科创中心
IPC: C22C38/04 , C22C38/08 , C22C38/06 , C22C38/02 , C22C38/16 , C21D8/02 , C21D1/26 , C21D1/74 , C21D1/18 , C21D6/02 , C22C33/04
Abstract: 本发明涉及一种由原子团簇和纳米析出相增强的高熵合金及其制备方法,所述高熵合金化学式为:FeaMnbNicAldSieCuf,其中51 at.%≤a≤62 at.%,19 at.%≤b≤21 at.%,9 at.%≤c≤11 at.%,5 at.%≤d≤7 at.%,5 at.%≤e≤7 at.%,2.5 at.%≤f≤3.5 at.%,且a+b+c+d+e+f=100;所述的制备方法包括真空感应熔炼、均匀化退火、冷轧、固溶和时效处理步骤。本发明提供的由原子团簇和纳米析出相增强的高熵合金易于制备和加工,其所含有的大量纳米尺度富Cu原子团簇和体心立方结构的纳米尺度B2析出相能产生非常显著的强化效果,使其屈服强度达到900 MPa以上,可潜在应用于高速切削刀具、油压气压杆以及汽车用发动机缸体等。
-
公开(公告)号:CN116397170A
公开(公告)日:2023-07-07
申请号:CN202310471666.4
申请日:2023-04-27
Applicant: 西北工业大学 , 西北工业大学重庆科创中心
IPC: C22C38/04 , C22C38/08 , C22C38/06 , C22C38/02 , C22C38/16 , C21D8/02 , C21D1/26 , C21D1/74 , C21D1/18 , C21D6/02 , C22C33/04
Abstract: 本发明涉及一种由原子团簇和纳米析出相增强的高熵合金及其制备方法,所述高熵合金化学式为:FeaMnbNicAldSieCuf,其中51 at.%≤a≤62 at.%,19 at.%≤b≤21 at.%,9 at.%≤c≤11 at.%,5 at.%≤d≤7 at.%,5 at.%≤e≤7 at.%,2.5 at.%≤f≤3.5 at.%,且a+b+c+d+e+f=100;所述的制备方法包括真空感应熔炼、均匀化退火、冷轧、固溶和时效处理步骤。本发明提供的由原子团簇和纳米析出相增强的高熵合金易于制备和加工,其所含有的大量纳米尺度富Cu原子团簇和体心立方结构的纳米尺度B2析出相能产生非常显著的强化效果,使其屈服强度达到900 MPa以上,可潜在应用于高速切削刀具、油压气压杆以及汽车用发动机缸体等。
-
公开(公告)号:CN113426938B
公开(公告)日:2023-01-24
申请号:CN202110776196.3
申请日:2021-07-08
Applicant: 西北工业大学 , 西北工业大学重庆科创中心
Abstract: 本发明公开了一种热锻压和挤压一体化连续成形设备,包括成形设备主体,滑动装配在成形设备主体的上横梁上的上平台、安装在成形设备主体的下横梁上的下平台、压头、挤压模具、上锻压板及下锻压板;上平台由液压系统提供下压动力,压头上端设置压头底座,压头底座固定连接在上平台上,挤压模具固定连接在下平台上;上锻压板可拆卸地连接在压头下端,下锻压板可拆卸地连接在挤压模具上端;上平台和下平台上均设置控温加热区,从而实现上平台和下平台独立的温度设定和监控。本发明可实现高温热锻压‑挤压单独/连续成形。节约成本,工艺简单,可实现材料的一体化成形,保证材料的批次稳定性。
-
公开(公告)号:CN113426938A
公开(公告)日:2021-09-24
申请号:CN202110776196.3
申请日:2021-07-08
Applicant: 西北工业大学 , 西北工业大学重庆科创中心
Abstract: 本发明公开了一种热锻压和挤压一体化连续成形设备,包括成形设备主体,滑动装配在成形设备主体的上横梁上的上平台、安装在成形设备主体的下横梁上的下平台、压头、挤压模具、上锻压板及下锻压板;上平台由液压系统提供下压动力,压头上端设置压头底座,压头底座固定连接在上平台上,挤压模具固定连接在下平台上;上锻压板可拆卸地连接在压头下端,下锻压板可拆卸地连接在挤压模具上端;上平台和下平台上均设置控温加热区,从而实现上平台和下平台独立的温度设定和监控。本发明可实现高温热锻压‑挤压单独/连续成形。节约成本,工艺简单,可实现材料的一体化成形,保证材料的批次稳定性。
-
公开(公告)号:CN113385625A
公开(公告)日:2021-09-14
申请号:CN202110651369.9
申请日:2021-06-10
Applicant: 西北工业大学 , 西北工业大学重庆科创中心
Abstract: 本发明公开了一种可精确控制冷速的等温模锻装置及其调控方法,其中的等温模锻装置,包括外壳体、设置在外壳体内部的保温隔热系统、位于保温隔热系统内的等温锻造模具、安装在保温隔热系统上端的总排气管、安装在保温隔热系统下端的总进气管、用于向总进气管内通入冷气的冷却气源、设置在等温锻造模具上的温度监测传感器及PLC加热和冷却控制系统;温度监测传感器用于监测等温锻造模具的温度并将温度信号传输至PLC加热和冷却控制系统,PLC加热和冷却控制系统用于根据温度信号调控等温锻造模具的冷速及加热情况。本发明可以实现等温锻造装备内模具的温度精确调控,进而控制型材的显微组织,实现组织均匀性和性能稳定性。
-
公开(公告)号:CN118835116A
公开(公告)日:2024-10-25
申请号:CN202411089214.0
申请日:2024-08-09
Applicant: 西北工业大学
IPC: C22C1/04 , C22C14/00 , B22F10/28 , B22F10/366 , B33Y10/00
Abstract: 本发明属于金属增材制造技术领域,具体涉及一种通过增材制造制备具有均匀力学性能表现的亚稳β钛合金的方法。本发明首次将Ti‑7Mo‑3Nb‑3Cr‑3Al合金用于增材制造,并通过选择较低激光功率和较高扫描速度,在较低输入能量密度的基础上取消基板预热处理的方式控制成形期间的热积累,弱化成形期间热循环带来的不利影响,从而影响材料的微观组织及相结构演变,有效抑制了ω相/α相的析出以及非均匀分布,实现打印态合金均匀的拉伸性能表现。
-
公开(公告)号:CN116855753A
公开(公告)日:2023-10-10
申请号:CN202310849743.5
申请日:2023-07-12
Applicant: 西北工业大学 , 洛阳双瑞精铸钛业有限公司
Abstract: 本发明公开了一种提高钛或钛合金EB锭表面质量的方法,该方法采用结晶器区域电子束扫描图形多层叠加设计,也即在结晶器区域坩埚主图形基础上,叠加四周边部的边线图形,从而提高与水冷铜坩埚结晶器相接触部分钛液的电子束输入能量,提高边部钛液温度,降低激冷作用的影响,促进钛液更好的填充;本发明的设计同时旨在降低铸锭中心至边部的温度梯度,提高结晶区域铸锭断面的温度均匀程度,获得相对平缓的固液相线,改善铸锭质量。此外,边线叠加能量以达到改善结晶器上缘内壁冷凝物包入熔池对铸锭表面质量影响的目的。
-
公开(公告)号:CN114700406B
公开(公告)日:2023-08-15
申请号:CN202210284685.1
申请日:2022-03-22
Applicant: 西北工业大学
Abstract: 本发明公开了一种大型薄壁高温合金构件的近净旋压成形工艺,所述工艺包括:将坯料装配值尾顶和芯模之间并进行预热处理,预热温度为300~400℃;基于渐开线轨迹,进行6~8次旋压成形,旋压过程中,芯模转速为150r/min~180r/min,旋轮同步进给,进给速度为150mm/min~180mm/min;其中,渐开线的旋转角α初始设为0°,后续每道次的α设为5°;使用火焰枪跟随旋轮进给,并对旋压部位加热,使旋压温度为800~900℃。本发明通过多道次高温旋压,有效降低旋压件贴膜区的应变值,均匀应变分布,有效降低单道次的贴膜量,减少开裂风险,且通过控制旋转角从0°到5°,并选择合适的旋压运动轨迹,将渐开线轨迹向坯料一侧倾斜,减小仰角,提高旋压效果,在保证质量的同时实现了无余量/少余量成形。
-
-
-
-
-
-
-
-
-