一种引入关联关系的文本表示学习方法

    公开(公告)号:CN111708881A

    公开(公告)日:2020-09-25

    申请号:CN202010442824.X

    申请日:2020-05-22

    IPC分类号: G06F16/35 G06N20/10

    摘要: 本发明公开了一种引入关联关系的文本表示学习方法,包括以下步骤:步骤1:根据数据集中文本之间的关联关系构建关联关系网络G,并在所述关联关系网络G上随机游走,得到游走序列S;步骤2:基于步骤1中输出的游走序列S,联合学习数据集中文本之间的关联关系信息和每个文本的内容语义信息,构建引入关联关系的文本表示学习模型,所述引入关联关系的文本表示学习模型包括两个SkipGram模型;步骤3:将步骤2中两个SkipGram模型学习到的文本表示进行拼接,得到最终的文本表示。本发明的引入关联关系的文本表示学习方法同时融合文本的内容信息和结构关联关系信息,使得文本分类的准确率得到提升。