-
公开(公告)号:CN112326726B
公开(公告)日:2023-12-29
申请号:CN202011192129.9
申请日:2020-10-30
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G01N25/20
Abstract: 防隔热设计提供了有效支撑。本发明公开了一种树脂基复合材料热解引射因子测试装置,包括送进导轨和双联水冷送进支架。双联水冷送进支架通过转接段与送进导轨连接,双联水冷送进支架在电信号驱动下沿送进导轨移动;双联水冷送进支架上设置有两个连通的空腔,空腔周边设置有水冷槽,与外部冷却水连接,用于通过不断循环的冷却水为空腔降温。两个空腔分别用于放置原始树脂基复合材料和经过碳化的树脂基复合材料。本发明同时公开了(56)对比文件CN 111426719 A,2020.07.17梁军 等《.三维编织复合材料力学性能分析方法》.哈尔滨工业大学出版社,2014,(第一版),第241-245页.Li Weijie 等.A nonlinear pyrolysislayer model for analyzing thermalbehavior of charring ablator.《International Journal of ThermalSciences》.2015,第98卷第104-112页.Rivier Mickaël 等.Ablative thermalprotection system under uncertaintiesincluding pyrolysis gas composition.《Aerospace Science and Technology》.2019,第84卷第1059-1069页.Suzuki Toshiyuki 等.Calculation ofthermal response of ablator under arcjetflow condition《.Journal of thermophysicsand heat transfer》.2012,第21卷(第2期),第257-266页.Owiti Bernard O. 等.Thermal Responseof Low Density Ablative MaterialsSubjected To High Temperature《.AIAAScitech 2019 Forum》.2019,第1页.郭梅梅 等.树脂基复合材料的分解防热效率《.宇航材料工艺》.2012,(第2期),第58-60页.程杰 等.次口径非对称鸭舵对弹道修正弹气动特性的影响《.北京理工大学学报》.2015,第35卷(第2期),第133-138页.邓代英 等.二氧化碳介质气动加热环境下碳化热解类防热材料烧蚀机理分析《.装备环境工程》.2020,第17卷(第1期),第43-50页.于明星 等.非平衡气动加热条件下的材料热响应差异研究《.材料科学与工程》.2017,第25卷(第6期),第16-21页.
-
公开(公告)号:CN115643664A
公开(公告)日:2023-01-24
申请号:CN202211177046.1
申请日:2022-09-26
Applicant: 北京临近空间飞行器系统工程研究所
IPC: H05H1/00
Abstract: 本发明公开了一种等离子体密度采样系统,电源变换模块将由供电模块输入的第一电压信号转换为预定峰值的第二电压信号;三角波变换模块将第二电压信号转换为用于驱动探针的三角波驱动电压信号,并驱动探针产生探测电流,将探针的探测电流转换为电压信号,将转换后的电压信号输出至信号调理模块;信号调理模块将探测电流转换后的电压信号调理为1~5V的第三电压信号;采集及频率调节模块对第三电压信号按照设定的采样频率进行采样,得到采样电流信号。本发明还公开了一种等离子密度采样方法,根据探测电流调整采样频率。本发明应用于真实飞行环境下的等离子体密度测量,可以适应10e10cm‑3至10e14cm‑3范围的等离子体密度测量。
-
公开(公告)号:CN111780948B
公开(公告)日:2022-01-04
申请号:CN202010525480.9
申请日:2020-06-10
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G01M9/06
Abstract: 本发明提供一种高超声速飞行试验中飞行器边界层转捩过程特性的测量方法,步骤如下:1)对飞行器周围流场进行仿真计算,获取飞行器表面流动特性;2)确定飞行器表面适合进行边界层转捩过程测量的区域;3)对飞行器的表面热流和结构热响应进行仿真计算,获取沿整个飞行剖面的飞行器表面热流和结构温度计算结果,对热流传感器和温度传感器进行选型;4)评估转捩测量区域内传感器安装的可行性;5)根据飞行器表面流动和转捩特性的分析结果,确定传感器位置、传感器测点个数和传感器测点间距;6)对步骤1)‑5)确定的转捩过程测量方案获取的飞行试验数据进行分析,并画出表面热流或温度沿流向变化的曲线;7)对热流或温度沿流向变化曲线的变化规律进行分析,确定边界层转捩过程特性。
-
公开(公告)号:CN107977491B
公开(公告)日:2021-09-03
申请号:CN201711117139.4
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F30/23 , G06F30/15 , G06F119/08 , G06F119/02
Abstract: 一种非稳态情况下飞行器空气舵缝隙的气动热评估方法,包括步骤如下:一、通过数值求解飞行器流场的N-S方程,获得飞行器外壁表面热流;二、对舵缝隙内是否存在非定常效应进行判断并相应处理;三、获得若干周期内舵缝隙区域特征点处定常方法的平均热流;四、获得若干周期内特征点处非定常方法的平均热流并和定常方法结果比较,根据情况相应处理;五、获得舵缝隙区域干扰因子,利用曲线拟合方法获得干扰因子随舵偏变化的分段解析函数曲线;六、将干扰因子的分段函数曲线嵌入到气动热工程计算程序,获得飞行器在设定弹道时间段的舵缝隙区域热环境结果。本发明在保证空气舵缝隙气动热评估结果可靠性的同时能够有效减小评估结果的冗余度。
-
公开(公告)号:CN112287611A
公开(公告)日:2021-01-29
申请号:CN202011026832.2
申请日:2020-09-25
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G06F30/28 , G06F30/15 , G06F111/10 , G06F119/08
Abstract: 本发明提供了一种降低凸起物气动热干扰的局部外形优化方法,包括以下步骤:获得凸起物及附近舱体处的空间流场分布及表面热流分布;针对舱体凸起物处的流动结构开展分析,获得分离涡的大小并提取分离涡的尺寸特征;针对分离涡的尺寸特征在凸起物前方与舱体连接处进行外形优化;对优化后的流场结果和表面热流分布进行分析;若二维简化外形优化结果满足要求,使用真实三维外形验证结果也满足要求,则优化结束;若二维简化外形的优化不满足要求,则重新开始优化。本发明采用局部外形优化的方法对舱体局部高热流区域的热流量进行优化,可以大幅优化局部气动热环境,在根本上解决局部气动加热严酷的问题,减轻材料/结构的防隔热压力。
-
公开(公告)号:CN111780948A
公开(公告)日:2020-10-16
申请号:CN202010525480.9
申请日:2020-06-10
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G01M9/06
Abstract: 本发明提供一种高超声速飞行试验中飞行器边界层转捩过程特性的测量方法,步骤如下:1)对飞行器周围流场进行仿真计算,获取飞行器表面流动特性;2)确定飞行器表面适合进行边界层转捩过程测量的区域;3)对飞行器的表面热流和结构热响应进行仿真计算,获取沿整个飞行剖面的飞行器表面热流和结构温度计算结果,对热流传感器和温度传感器进行选型;4)评估转捩测量区域内传感器安装的可行性;5)根据飞行器表面流动和转捩特性的分析结果,确定传感器位置、传感器测点个数和传感器测点间距;6)对步骤1)-5)确定的转捩过程测量方案获取的飞行试验数据进行分析,并画出表面热流或温度沿流向变化的曲线;7)对热流或温度沿流向变化曲线的变化规律进行分析,确定边界层转捩过程特性。
-
公开(公告)号:CN110823494A
公开(公告)日:2020-02-21
申请号:CN201911198435.0
申请日:2019-11-29
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明涉及电弧风洞试验技术领域,尤其涉及一种防隔热材料热响应电弧风洞试验装置及方法。该防隔热材料热响应电弧风洞试验装置包括风洞、转动连接件、水冷工装和旋转驱动机构,旋转驱动机构的动力输出轴与转动连接件相连,水冷工装安装在转动连接件上,水冷工装与风洞的出口相对应。本发明提供的防隔热材料热响应电弧风洞试验装置及方法,能够改变平板试验模型的测量表面与风洞的出口内侧壁下表面之间的夹角,实现连续改变加载到平板试验模型的测量表面热流的目的,进而实现在长时间条件下对防隔热材料热响应的精细化、连续化操作,极大地提高了电弧风洞试验中防隔热材料热响应的真实性,为长时间飞行条件下飞行器防隔热设计提供有效支撑。
-
公开(公告)号:CN110806300A
公开(公告)日:2020-02-18
申请号:CN201910969230.1
申请日:2019-10-12
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G01M9/06
Abstract: 一种适用于高超声速飞行试验转捩研究的测点布置方法,通过下述方式实现:S1、根据测量需求,确定是测量自然转捩还是强制转捩,若为测量自然转捩,则转S2;若为强制转捩,则转S3;S2、根据测量需求测量主流转捩情况和或横流效应的转捩情况,其中测量主流转捩情况时,测点布置高超声速飞行器主流方向的流线上;测量横流效应的转捩情况时,将测点布置于侧向具有横流速度的位置上;所述的主流方向为飞行器中心流线方向及与其夹角不超过3°的流线方向;S3、在所述飞行器上预先确定的位置设置粗糙元,并将测点布置在粗糙元所在流线的下游;上述测点位置通过安装传感器实现飞行试验过程中飞行器表面物理量的测量。
-
公开(公告)号:CN106184811B
公开(公告)日:2018-05-22
申请号:CN201610587103.1
申请日:2016-07-22
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Inventor: 王颖 , 陈敏 , 闵昌万 , 王毓栋 , 黄兴李 , 肖振 , 陈安宏 , 刘全军 , 刘秀明 , 周禹 , 孙超逸 , 姜智超 , 闫颖鑫 , 李欣 , 肖文 , 陈瞳 , 王少慧
Abstract: 本发明公开了一种放宽偏航静稳定度的飞行器气动特性和控制设计方法,属于高速面对称飞行器控制领域。通过飞行器气动特性和控制策略的一体化设计,能够在降低对偏航静稳定特性要求的同时,实现飞行器横侧向通道的稳定控制。本发明降低了对偏航静稳定特性的要求,简化了飞行器侧向布局设计,降低了侧向防隔热设计压力,提高了飞行可靠性。
-
公开(公告)号:CN107933951A
公开(公告)日:2018-04-20
申请号:CN201711117142.6
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: B64F5/60
Abstract: 本发明公开了一种基于摩阻变化规律的飞行试验流态判别方法,该方法包括下列步骤:(1)、采用气动辨识的方法,计算飞行器飞行全程每一个飞行时刻对应的飞行器轴向力系数CA_辨识;(2)、根据飞行器的气动数据表,计算得到飞行器飞行全程每个飞行时刻波阻Cap_计算;(3)、将飞行器飞行全程每个飞行时刻飞行器轴向力系数CA_辨识与波阻Cap_计算相减,得到飞行器飞行全程的摩阻Caf_辨识变化曲线;(4)、以摩阻曲线中极小值点为界将摩阻曲线分成两段,并将每段摩阻曲线分成多个子区间,计算每个子区间内的摩阻变化量ΔCaf_辨识;(5)、找出对ΔCaf_辨识影响最大的因素,如果是流态变化引起的摩阻变化量ΔCaf-tran对ΔCaf_辨识占主导,则可判定飞行器表面流态发生了变化,即出现从层流到湍流的转捩。
-
-
-
-
-
-
-
-
-