-
公开(公告)号:CN119556757A
公开(公告)日:2025-03-04
申请号:CN202411584865.7
申请日:2024-11-07
Applicant: 北京智芯微电子科技有限公司
IPC: G05F1/56
Abstract: 本发明实施例提供一种共模关联浮动电源电路及芯片,属于模拟电路领域。所述共模关联浮动电源电路,包括:共模比较器,用于进行共模电压和低压差线性稳定器LDO电压的比较;以及浮动电源轨生成电路,用于根据所述共模比较器的比较结果,选择所述共模电压和所述LDO电压中的电压更高者来生成浮动电源轨。本发明实施例在共模电压低于LDO电压时,利用LDO电压生成浮动电源轨,解决了共模电压过低而导致的浮动电源轨不能工作的问题,反之则利用共模电压生成浮动电源轨,实现了与共模电压关联的浮动电源轨。
-
公开(公告)号:CN116643193B
公开(公告)日:2024-11-19
申请号:CN202310706878.6
申请日:2023-06-14
Applicant: 北京智芯微电子科技有限公司
IPC: G01R31/392 , G01R31/387 , G01R31/388 , G01R31/367
Abstract: 本申请公开了一种电池数据估计方法、装置、存储介质及电子设备,该方法包括:检测当前时刻的端电压和电流,并获取上一时刻估计的目标电池的内部温度和荷电状态;根据上一时刻估计的内部温度和荷电状态、当前时刻的端电压和电流、以及已创建的第一离散状态方程,估计该目标电池当前时刻的内部温度;根据上一时刻估计的荷电状态、当前时刻的内部温度、端电压和电流、以及已创建的第二离散状态方程,估计该目标电池当前时刻的健康状态;根据上一时刻估计的荷电状态、当前时刻的健康状态、当前时刻的内部温度和已创建的第三离散状态方程,估计该目标电池当前时刻的荷电状态,从而实现三者的联合闭环在线估计,提高了估计结果的准确性。
-
公开(公告)号:CN118275508A
公开(公告)日:2024-07-02
申请号:CN202410193825.3
申请日:2024-02-21
Applicant: 北京智芯微电子科技有限公司 , 厦门大学
IPC: G01N27/22
Abstract: 本申请公开一种湿度传感器和湿度传感器的制备方法。湿度传感器包括晶圆及湿敏膜。晶圆包括基底和设置在基底上的电极。湿敏膜位于电极的表面,湿敏膜包括第一湿敏膜和第二湿敏膜,第一湿敏膜由未完全亚胺化的聚酰亚胺制成,第二湿敏膜由氟化聚酰亚胺制成,第二湿敏膜位于电极与第一湿敏膜之间。一方面使得在低湿度的情况下,可利用第一湿敏膜实现对水分敏感,实现低湿度感知。另一方面利用第二湿敏膜中的含氟官能团来提高第二湿敏膜的高湿稳定性和降低第二湿敏膜的迟滞性。如此,基于第一湿敏膜和第二湿敏膜的湿度传感器可在全湿度范围内完成检测,即实现宽量程,且在全湿度范围内可实现低迟滞性和高湿稳定性,从而减少湿度传感器的使用限制。
-
公开(公告)号:CN116880654A
公开(公告)日:2023-10-13
申请号:CN202310694091.2
申请日:2023-06-12
Applicant: 北京智芯微电子科技有限公司 , 福州大学
Abstract: 本发明涉及芯片技术领域,公开了一种输入偏置电流补偿电路、双极型输入轨到轨运放以及芯片。所述电路包括:采样电路,用于对轨到轨运放的输入级中的NPN输入管与PNP输入管的输入偏置电流进行采样;控制电路,用于控制在第一共模输入电平范围内导通所述NPN输入管的输入偏置电流并截止所述PNP输入管的输入偏置电流,以及控制在第二共模输入电平范围内截止所述NPN输入管的输入偏置电流并导通所述PNP输入管的输入偏置电流;以及镜像电路,用于提供所述NPN输入管的输入偏置电流的NPN镜像电流与所述PNP输入管的输入偏置电流的PNP镜像电,并输出所述NPN镜像电流与所述PNP镜像电流的叠加电流。本发明通过分段补偿来适应不同共模输入范围产生的输入偏置电流变化。
-
公开(公告)号:CN116577633A
公开(公告)日:2023-08-11
申请号:CN202310354362.X
申请日:2023-04-04
Applicant: 北京智芯微电子科技有限公司
IPC: G01R31/28 , H03L7/24 , G01R31/317
Abstract: 本发明实施例提供一种芯片的输出频率的自修调方法和装置及芯片,属于芯片测试领域。该自修调方法包括:获取在预设计数时间内所述芯片内的振荡器产生的时钟信号的第一个数;获取在所述预设计数时间内与所述芯片对应的测试机提供的时钟信号的第二个数;比较第一个数和第二个数,以确定初始比较结果;以及在第一个数与第二个数的差值的绝对值满足第一预设要求的情况下,修调所述振荡器产生所述时钟信号的振荡器频率,以使得所述芯片的所述输出频率与预设目标输出频率的差值满足第二预设要求。籍此,实现了自修调芯片的输出频率。
-
公开(公告)号:CN116405031A
公开(公告)日:2023-07-07
申请号:CN202310226260.X
申请日:2023-03-03
Applicant: 北京智芯半导体科技有限公司 , 北京智芯微电子科技有限公司 , 复旦大学
Abstract: 本发明涉及集成电路技术领域,公开一种模数转换器及芯片,所述模数转换器包括:第一、第二无源开关电容积分器;两个电容性模数转换阵列;控制逻辑电路,用于在所述阵列中的电容复位时,闭合第一无源开关电容积分器中的第一、第二开关组以输出第一残差电压,以及闭合第二无源开关电容积分器中的第三、第四开关组以使输出第二残差电压;以及双差分输入比较器,用于接收第一残差电压与当前预设周期的输入电压之和作为第一差分输入信号,接收第二残差电压作为第二差分输入信号,以及输出比较结果,所述控制逻辑电路还用于根据比较结果,输出多个开关控制信号至电容性模数转换阵列,以输出当前预设周期的数字数据,由此可有效抑制信号带内的量化噪声。
-
公开(公告)号:CN115754459A
公开(公告)日:2023-03-07
申请号:CN202211297399.5
申请日:2022-10-21
Applicant: 北京智芯半导体科技有限公司 , 北京智芯微电子科技有限公司
IPC: G01R21/06
Abstract: 本发明实施例提供一种功耗测量装置,属于测量装置技术领域。所述装置包括:转换模块、采样模块、信号放大模块和处理模块;所述转换模块串联在待测电路中,用于将所述待测电路输出的交流电流转换为直流电流;所述采样模块与所述转换模块相连,用于将所述转换模块输出的直流电流转换成直流电压;所述信号放大模块与所述采样模块相连,用于放大所述采样模块两端的直流电压;所述处理模块与所述信号放大模块连接,用于根据所述直流电压和所述信号放大模块的参数,计算所述待测电路的待测功耗。通过所述功耗测量装置可以实现交变电压输入、直流输入和直流负压输入等多场合的功耗测量。
-
公开(公告)号:CN119602791A
公开(公告)日:2025-03-11
申请号:CN202411483513.2
申请日:2024-10-23
Applicant: 北京智芯微电子科技有限公司 , 清华大学
Abstract: 本发明提供一种失调电压校准方法及电路、流水线逐次逼近型模数转换器,属于集成电路领域。所述方法包括:通过电容阵列对输入信号进行采样得到采样信号;检测放大器对采样信号进行放大后输入端的残差信号的大小,确定放大器的失调电压的大小及方向;根据放大器的失调电压的大小及方向调节比较器的失调电压的大小及方向,使比较器的失调电压的大小与放大器的失调电压的大小相等,且比较器的失调电压的方向与放大器的失调电压的方向一致;将比较器的失调电压与放大器的失调电压进行差值比较,使比较器的失调电压抵消放大器的失调电压,以使整个级电路的等效失调电压为零。本发明实现简单、校准精度高,同时实现比较器和放大器的校准。
-
公开(公告)号:CN119582609A
公开(公告)日:2025-03-07
申请号:CN202411432066.8
申请日:2024-10-14
Applicant: 北京智芯微电子科技有限公司 , 长安大学
Abstract: 本发明涉及电子电路技术领域,公开一种固定导通时间模式下的降压型开关变换器组与变换器芯片。所述变换器组包括:N个并联的降压型开关变换器,该变换器包括:主电路;触发器,输出端与主电路的上、下功率管的栅极相连;第一、第二移相电路,其时钟输入端分别与触发器的S、R端相连,移相电路的相移角度被调节为360°/N,第一个变换器还包括:脉冲调制控制电路,第一、第二输入端分别与主电路的输出端、反馈点相连,输出端与S端相连;及计时电路,输入、输出端分别与触发器的输出端、R端相连,用于控制上功率管的固定导通时间。本发明以多相位进行多相操作,能够提供工程应用所需要的足够的负载电流,且电感电流纹波得以抵消,输出电压纹波更小。
-
公开(公告)号:CN117254806B
公开(公告)日:2025-01-17
申请号:CN202311264483.1
申请日:2023-09-27
Applicant: 北京智芯微电子科技有限公司
Abstract: 本发明公开了一种模数转换器及其参考电压提供电路、处理器,其中,参考电压提供电路包括:电压提供单元,适于提供第一参考电压;缓冲单元,适于对第一参考电压进行缓冲处理,输出第二参考电压;切换单元,被配置为在模数转换器的高位电容组被切换时,切换第二参考电压向模数转换器的ADC采样通道提供电荷,并在模数转换器的低位电容组被切换时,切换第一参考电压向模数转换器的ADC采样通道提供电荷。该电路不会造成片外电容上的电压大幅下降,因此,不会造成ADC的精度下降。
-
-
-
-
-
-
-
-
-