一种半金属性多铁超晶格材料

    公开(公告)号:CN109778318A

    公开(公告)日:2019-05-21

    申请号:CN201910027903.1

    申请日:2019-01-11

    Abstract: 一种半金属性多铁超晶格材料,涉及新型功能材料领域。将晶体结构为四方结构,空间群为P4mm的La0.67Sr0.33MnO3和BiCoO3沿[001]方向周期循环堆垛,从而构建出(BiCoO3)1/(La0.67Sr0.33MnO3)1超晶格。超晶格的晶胞参数为其电子结构呈现半金属特性,即在少数自旋子带的费米能级处出现带隙,而多数自旋子带则为金属性特征,具有100%自旋极化率,半金属带隙大于1.0eV。本发明所设计超晶格材料不但具有多铁性也同时具有半金属性,其在自旋电子器件、信息存储、磁电传感等领域可具有重要应用前景。

    一种基于基底晶向调控制备规则图形的等离子体刻蚀方法

    公开(公告)号:CN104979189B

    公开(公告)日:2017-12-08

    申请号:CN201510366328.X

    申请日:2015-06-29

    Abstract: 一种基于基底晶向调控制备规则图形的等离子体刻蚀方法属于微电子器件、薄膜、材料加工领域。其特征在于:刻蚀装置包括真空腔体、升温装置与等离子发生系统。通过温度场与等离子能量梯度调控实现基底刻蚀作用;真空度低于10Pa后,通入氮气在N2,气氛中升温到900‐1100℃,通入氢气,打开射频电源,将射频功率调到40‐150W,电离N2和H2,对基底进行刻蚀,此时气压为30‐100Pa,持续0.5‐2个小时;刻蚀结束后,关闭射频与停止通入氢气,冷却到室温。本发明无需使用任何模板,直接在衬底上刻蚀出具有规则取向的图案,并且图案的形貌和方向可以通过衬底的晶面取向调控。本发明在微电子器件制造、微纳米材料制备等方面具有重要意义。

    水热条件下相分离法获得Na0.5Bi0.5TiO3及Na-Ti-O纳米线的方法

    公开(公告)号:CN104986795B

    公开(公告)日:2016-09-14

    申请号:CN201510425326.3

    申请日:2015-07-19

    Abstract: 水热条件下相分离法获得Na0.5Bi0.5TiO3及Na‑Ti‑O纳米线的方法属于新型功能材料的制备技术领域。本发明通过反应原料浓度控制,同时生成了Na0.5Bi0.5TiO3及Na‑Ti‑O一维纳米结构;并首次利用物相分离技术,成功将二者分离,有利于目标产物及中间产物的单一化及结构、性能研究,推动了水热技术的实质性发展。本发明将硝酸铋在研钵里充分研磨成细的粉末;按摩尔比为Bi:Ti=1:2的化学计量关系,称取二氧化钛粉体;加入到配好的氢氧化钠溶液后200‑220℃温度下,反应60‑70h;反应结束后,以10℃/h的速率降至室温,使反应物由于密度不同发生相分离;离心、洗涤干燥,得到纯净的Na‑Ti‑O纳米线和Na0.5Bi4.5TiO3纳米粉。

    一种多孔WO3/rGO复合薄膜的Sol-Gel配制方法

    公开(公告)号:CN105839084A

    公开(公告)日:2016-08-10

    申请号:CN201510398971.0

    申请日:2015-07-08

    Abstract: 一种多孔WO3/rGO复合薄膜的Sol-Gel配制方法,属于功能材料技术领域。在WO3溶胶中加入适量所制备的还原氧化石墨烯(rGO)分散液,充分搅拌得稳定的混合溶胶。本发明配制的溶胶比较稳定,可以用于制备多孔WO3/rGO复合薄膜,工艺简单,可重复性高,而且其所制备的薄膜具有良好的电致变色和光学性能,为发展节能、高效、低成本的WO3薄膜技术提供新思路。而且有利于发展高效的电致变色器件,为电致变色材料的普及和智能建筑材料的快速发展提供动力。

    一种提高烧结钕铁硼磁体防腐性能的方法

    公开(公告)号:CN105839045A

    公开(公告)日:2016-08-10

    申请号:CN201610237819.9

    申请日:2016-04-17

    CPC classification number: C23C8/26 C23C8/02

    Abstract: 一种提高烧结钕铁硼磁体防腐性能的方法属于稀土磁性材料及表面处理领域。本发明包括预处理,将钕铁硼磁体进行打磨、清洗;把预处理后的钕铁硼磁体放入真空炉内密封,通过真空泵抽取真空,炉内气压降到20pa以下时,充入0.1~0.2Mpa氮气,再抽真空,如此反复2~3次进行洗气。然后对真空炉升温,温度达到400~750℃后,充入氮气,使其压力保持在1×103~1×105pa的范围,处理时间控制在2~24h,待完成防腐处理后,随炉冷却,会在磁体表面生成一层厚度为1~50μm含有氮元素的化合物耐腐蚀层。本发明不仅操作简单,无污染,且处理过的钕铁硼磁体耐腐蚀性能强,适合于批量生产,且对磁体的大小和形状没有限制。

Patent Agency Ranking