基于集群划分的高渗透率分布式能源系统智能调压方法

    公开(公告)号:CN108183488B

    公开(公告)日:2020-04-28

    申请号:CN201711403797.X

    申请日:2017-12-22

    IPC分类号: H02J3/12 H02J3/16 G06Q50/06

    摘要: 本发明针对现有高渗透率大规模分布式能源系统,在集群划分依据、划分方法、调压策略方面仍旧处于探索阶段,不便于对高渗透率大规模分布式能源系统开展后续电压调节的问题,提供一种基于集群划分的高渗透率分布式能源系统智能调压方法。该方法,包括:采用K‑means算法将电力系统中的节点划分为n个亚群落,以可控PV节点无功功率和有功功率为可调变量,并在亚群落内进行潮流运算;预设非线性调节周期,采用混合粒子群优化算法对PV节点电压进行粗调节,并确定工作点Γ;根据确定的工作点Γ,采用节点电压的线性化方程对PV节点电压进行细调节。本发明可有效的解决高渗透率可再生能源的过电压问题,并具有良好的实时性。

    一种机理模型嵌入的深度学习光伏短期预测方法

    公开(公告)号:CN117277271A

    公开(公告)日:2023-12-22

    申请号:CN202311009525.7

    申请日:2023-08-09

    摘要: 本发明涉及一种机理模型嵌入的深度学习光伏短期预测方法,包括:采用Softsign函数替换LSTM模型的tanh函数,采用CSS函数替换LSTM模型的sigmoid函数,得到改进的LSTM模型;将单二极管模型和改进的LSTM模型结合,得到Diode‑LSTM模型,使用历史数据训练Diode‑LSTM模型,得到训练好的Diode‑LSTM模型,使用训练好的Diode‑LSTM模型对未来一段时间内的光伏发电系统输出功率进行预测;将预测的输出功率与实际输出功率进行比较,评估预测的准确性,并根据需要进行调整和优化。本发明具有更好的梯度传递,Softsign函数的梯度在输入接近于0的时候更加平缓,因此可以更好地传递梯度,避免梯度消失或爆炸的问题,具有更快的收敛速度,具有更好的鲁棒性和更好的泛化能力,可以更好地适应不同的数据集和任务。