-
公开(公告)号:CN115044973B
公开(公告)日:2023-07-07
申请号:CN202210673216.9
申请日:2022-06-14
Applicant: 哈尔滨工业大学
Abstract: 一种金刚石表面金属阵列外延生长获得局域增强色心发光的方法,本发明是为了解决现有CVD制备金刚石内杂质原子浓度过高,色心转换效率过低的问题。金刚石表面金属阵列外延生长方法:一、清洗;二、采用光刻工艺在金刚石基底上沉积复合金属膜,复合金属膜呈间隔的条纹状;三、将带有复合金属膜的金刚石放入CVD生长舱体内,启动微波发生器,升高气压和功率,使金刚石表面温度达到700~1000℃,通入甲烷和掺杂元素气体,进行外延生长。本发明通过在金刚石表面沉积金属图案,通过CVD原位沉积横向外延生长,工艺流程简单,制备得到了高杂质转换率、高荧光强度色心的样品,从而有效提升色心的自旋相干性能。
-
公开(公告)号:CN116352210A
公开(公告)日:2023-06-30
申请号:CN202310479228.2
申请日:2023-04-28
Applicant: 哈尔滨工业大学
Abstract: 一种金刚石电烙铁及其制备方法,本发明要解决现有金属制烙铁头容易在高温下产生氧化、不沾锡、被酸性助焊剂腐蚀等问题。金刚石电烙铁的制备方法:一、将金刚石块件放置在激光切割机样品台上,用激光将金刚石块件切割成条状;二、再用激光将烙铁头基体的一端切割成多棱锥状,作为电烙铁头的接触端;三、使用磨床将烙铁头基体接触端的尖棱锥磨出圆角;四、在烙铁头基体表面镀上钛膜或钨膜,然后在惰性气氛下以600~900℃原位退火处理;五、将金属化后的烙铁头基体与热单元和外壳装配组装。本发明通过使用金刚石制备电烙铁头,使电烙铁头具有抗腐蚀抗氧化、导热快热效应高、超高硬度抗磨损、易沾锡、绝缘无电感、不损伤电子元器件等优点。
-
公开(公告)号:CN116008071A
公开(公告)日:2023-04-25
申请号:CN202211576426.2
申请日:2022-12-09
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明提供了一种法向加载薄板微拉伸试验装置,其解决了现有试验装置采用螺杆机械施压,无法灵活改变法向压力大小的技术问题,其压力加载装置设有固定板框、左压力加载装置、右压力加载装置、导向装置;左压力加载装置设有左电动推杆,其左端与固定板框连接,左电动推杆、第一推板、左压头加载装置从左向右连接;右压力加载装置设有右电动推杆,其右端与固定板框连接,右电动推杆、第二推板、氮气弹簧、第三推板、压力传感器、第四推板、右压头加载装置从右向左连接;左压头加载装置与右压头加载装置正对间隔设置;导向装置设有导杆,导杆分别贯穿并与第一推板、第二推板、第三推板、第四推板滑动连接,可广泛应用于薄板力学性能测试技术领域。
-
公开(公告)号:CN114717655B
公开(公告)日:2023-04-07
申请号:CN202210422761.0
申请日:2022-04-21
Applicant: 哈尔滨工业大学
IPC: C30B25/18 , C30B25/04 , C30B29/04 , C23C14/35 , C23C14/18 , C23C14/04 , C23C28/00 , A44C17/00 , A44C27/00 , H01L21/285
Abstract: 一种用于钻石定制图案和电极的晶体内部图形化方法,本发明的目的是为了解决现有钻石内部难以定制图案和电极的问题。本发明晶体内部图形化方法如下:一、将选取所要制作于钻石晶体内部的图案转化为黑白模式,作为光刻机输入掩膜图形;二、将钻石衬底置于混酸溶液中超声清洗;三、采用光刻工艺以光刻胶作为掩模版,通过掩模在钻石表面沉积金属膜或非金属膜;四、将带有图案的钻石衬底置于等离子体化学气相沉积系统中,通入生长气体进行外延生长,得到带有定制图案的钻石。本发明利用化学气相沉积工艺再外延一层晶体,将图案覆盖于晶体内部能对图案实现很好的保护作用,满足钻石内部图案的定制需求。
-
公开(公告)号:CN115044973A
公开(公告)日:2022-09-13
申请号:CN202210673216.9
申请日:2022-06-14
Applicant: 哈尔滨工业大学
Abstract: 一种金刚石表面金属阵列外延生长获得局域增强色心发光的方法,本发明是为了解决现有CVD制备金刚石内杂质原子浓度过高,色心转换效率过低的问题。金刚石表面金属阵列外延生长方法:一、清洗;二、采用光刻工艺在金刚石基底上沉积复合金属膜,复合金属膜呈间隔的条纹状;三、将带有复合金属膜的金刚石放入CVD生长舱体内,启动微波发生器,升高气压和功率,使金刚石表面温度达到700~1000℃,通入甲烷和掺杂元素气体,进行外延生长。本发明通过在金刚石表面沉积金属图案,通过CVD原位沉积横向外延生长,工艺流程简单,制备得到了高杂质转换率、高荧光强度色心的样品,从而有效提升色心的自旋相干性能。
-
公开(公告)号:CN114989479A
公开(公告)日:2022-09-02
申请号:CN202210355944.5
申请日:2022-04-06
Applicant: 哈尔滨工业大学
IPC: C08J9/28 , C08J3/00 , C08L79/08 , C08L77/10 , C08K5/5419
Abstract: 一种聚酰亚胺/芳纶纳米纤维多功能复合隔热气凝胶的制备方法,它涉及隔热气凝胶的制备方法。本发明要解决现有聚酰亚胺隔热气凝胶加工方法复杂,隔热性能差,且无法同时兼具优异的隔热性、热稳定性、力学性能、阻燃性和疏水性的问题。制备方法:一、制备表面具有高化学活性的芳纶纳米纤维;二、制备可溶性聚酰亚胺与芳纶纳米纤维的PI/ANF复合水凝胶;三、PI/ANF复合凝胶表面功能化;四、制备PI/ANF复合气凝胶。本发明用于聚酰亚胺/芳纶纳米纤维多功能复合隔热气凝胶的制备。
-
公开(公告)号:CN114103125B
公开(公告)日:2022-06-28
申请号:CN202111160572.2
申请日:2021-09-30
Applicant: 哈尔滨工业大学(威海)
Abstract: 本申请提供了一种高导热微型器件的制备方法,其解决了现有微型器件导热性不理想的技术问题;包括:(1)根据器件尺寸和微结构定制化设计3D打印模型,并将3D打印模型导入3D打印机中,设置打印参数;(2)将3D打印浆料加入3D打印机中进行打印,获得导热器件模型;(3)将导热器件模型置于紫外灯下进行光固化反应,固化时间为10‑60分钟;(4)将步骤(3)得到的导热器件模型在室温条件下干燥24h;(5)将步骤(4)得到的导热器件模型放到水热反应釜中进行水热反应;(6)将步骤(5)得到的导热器件模型浸入高分子溶液中进行浸渍处理,取出后吸干表面的高分子,干燥后获得导热器件。本申请广泛应用于微型电子器件制作技术领域。
-
公开(公告)号:CN114657533A
公开(公告)日:2022-06-24
申请号:CN202210360654.X
申请日:2022-04-07
Applicant: 哈尔滨工业大学
IPC: C23C16/27 , C23C16/511 , C23C16/52 , C01B32/26 , B82Y30/00
Abstract: 一种在Mo衬底上制备具有规则晶型的纳米金刚石颗粒的方法,本发明是为了解决现有以金属衬底,采用CVD法制备纳米金刚石得到的纳米金刚石数量少、形状不规则的问题。制备具有规则晶型的纳米金刚石颗粒的方法:一、清洗Mo片及Mo托;二、将Mo片放置在MPCVD装置的沉积系统腔体内,Mo托放置在Mo片上,抽真空后通入H2和CH4,调节微波功率,进行气相沉积,得到带有纳米金刚石的Mo片;三、关闭沉积系统,冷却后将带有纳米金刚石的Mo片放入去离子水中超声,得到纳米金刚石分散液。本发明通过Mo托将等离子体位置提高,使等离子体边缘远离Mo片,减小H等离子体刻蚀,在Mo衬底上制备得到了具有规则晶型的纳米金刚石颗粒。
-
公开(公告)号:CN114628249A
公开(公告)日:2022-06-14
申请号:CN202210258284.9
申请日:2022-03-16
Applicant: 哈尔滨工业大学
IPC: H01L21/285 , H01L21/324
Abstract: 利用铁催化作用在本征金刚石表面制备欧姆接触的方法,本发明解决半导体器件在金属‑半导体接触处会产生较大的能量损耗等问题。制备欧姆接触的方法:在清洗后的金刚石上匀胶处理,再进行光刻处理,然后在光刻后的金刚石表面磁控溅射沉积Fe层,经过清洗去胶,将表面镀制有铁的金刚石置于石英管中密封,石英管内充有保护气体,然后转移至管式炉中,在800~950℃下退火处理,在本征金刚石表面制备欧姆接触。本发明通过控制退火温度和时间获得最小的接触电阻率,极大提高了导电性能,触点结合性能较好可以长时稳定的工作,由于Fe的存在引线难度降低易于表面形成机械稳定的接触,降低了表面整体石墨化的温度,简化了制备流程。
-
公开(公告)号:CN112876281B
公开(公告)日:2022-06-03
申请号:CN202110120677.9
申请日:2021-01-28
Applicant: 哈尔滨工业大学(威海)
IPC: C04B38/06 , C04B35/447 , C04B35/622 , B33Y10/00 , B33Y70/10
Abstract: 本发明提供一种中空微球表面微纳米结构的生物陶瓷支架的制备方法及其应用,其解决了现有技术如何实现载药微球与骨修复支架协同作用得到支架‑微球药物控释体系的技术问题,将3D打印生物陶瓷支架与六偏磷酸盐溶液放入水热反应釜中进行水热反应,水热完成后,得到具有中空微球表面微纳米结构的生物陶瓷支架,本发明还公开了一种中空微球表面微纳米结构的生物陶瓷支架的应用,可广泛应用于生物医用材料技术领域。
-
-
-
-
-
-
-
-
-