-
公开(公告)号:CN112771647B
公开(公告)日:2024-09-27
申请号:CN201980065213.3
申请日:2019-10-02
Applicant: 东京毅力科创株式会社 , 国立大学法人大阪大学
IPC: H01L21/203 , C23C14/06 , C23C14/34
Abstract: 氮化物半导体膜的形成方法具备如下工序:在包含氮气和氩气的真空腔室内使氮化镓的靶间歇地溅射的工序;和,使在真空腔室内从靶飞散的氮化镓的溅射颗粒沉积在温度为560℃以上且650℃以下的对象物上的工序。将向真空腔室供给的氮气的流量相对于氮气的流量与氩气的流量之和的比率设为6%以上且18%以下。
-
公开(公告)号:CN112771647A
公开(公告)日:2021-05-07
申请号:CN201980065213.3
申请日:2019-10-02
Applicant: 东京毅力科创株式会社 , 国立大学法人大阪大学
IPC: H01L21/203 , C23C14/06 , C23C14/34
Abstract: 氮化物半导体膜的形成方法具备如下工序:在包含氮气和氩气的真空腔室内使氮化镓的靶间歇地溅射的工序;和,使在真空腔室内从靶飞散的氮化镓的溅射颗粒沉积在温度为560℃以上且650℃以下的对象物上的工序。将向真空腔室供给的氮气的流量相对于氮气的流量与氩气的流量之和的比率设为6%以上且18%以下。
-
公开(公告)号:CN113882020A
公开(公告)日:2022-01-04
申请号:CN202110740713.1
申请日:2021-06-30
Applicant: 国立大学法人大阪大学 , 松下电器产业株式会社
Abstract: 本发明提供一种多晶化被抑制并且生长速度快的III族氮化物晶体的制造方法。III族氮化物晶体的制造方法包括:准备种基板的工序、生成III族元素氧化物气体的工序、供给III族元素氧化物气体的工序、供给含氮元素气体的工序、供给含氮元素氧化性气体的工序、以及使III族氮化物晶体在种基板上生长的工序,含氮元素氧化性气体包含选自NO气体、NO2气体、N2O气体和N2O4气体中的至少一种。
-
公开(公告)号:CN107407008A
公开(公告)日:2017-11-28
申请号:CN201680013458.8
申请日:2016-02-18
Applicant: 国立大学法人大阪大学 , 住友化学株式会社
IPC: C30B29/38 , C30B25/20 , H01L21/205 , H01L21/208
Abstract: 本发明提供第III族氮化物半导体晶体衬底的制造方法,其中,将利用液相生长法生长而成的第III族氮化物单晶作为晶种衬底,利用气相生长法使第III族氮化物单晶在所述晶种衬底的主面上进行同质外延生长,所述晶种衬底的主面为+C面,在所述晶种衬底面内的整个区域中,所述晶种衬底的主面附近处的晶体中的氧原子浓度为1×1017cm-3以下。
-
公开(公告)号:CN104040039B
公开(公告)日:2016-08-31
申请号:CN201380005328.6
申请日:2013-01-10
Applicant: 国立大学法人大阪大学
IPC: C30B19/02 , C30B29/38 , H01L21/208
CPC classification number: C30B19/02 , C30B19/12 , C30B29/403 , H01L21/0242 , H01L21/0254 , H01L21/02609 , H01L21/02625 , H01L21/02639 , H01L21/02645 , H01L21/02647 , H01L29/2003 , H01L33/007
Abstract: 本发明提供可以制造大尺寸、且缺陷少并且高品质的III族氮化物结晶的III族氮化物结晶的制造方法。III族氮化物结晶(13)的制造方法包括:晶种选择步骤,选择III族氮化物结晶层(11)的多个部分,作为用于III族氮化物结晶(13)的生成及生长的晶种;接触步骤,使所述晶种的表面与碱金属熔液接触;和结晶生长步骤,在含氮的气氛下,使III族元素与所述氮在所述碱金属熔液中反应,生成III族氮化物结晶(13)并生长;所述晶种为六方晶,在所述晶种选择步骤中,以由相互邻接的所述晶种生长的各结晶的m面彼此基本不重合的方式配置所述晶种,在所述结晶生长步骤中,通过III族氮化物结晶(13)的生长,使由所述多个晶种生长的多个III族氮化物结晶(13)结合。
-
公开(公告)号:CN104831361A
公开(公告)日:2015-08-12
申请号:CN201510083163.5
申请日:2011-07-01
Applicant: 株式会社理光 , 国立大学法人大阪大学
CPC classification number: C30B19/02 , C30B9/10 , C30B19/08 , C30B19/10 , C30B29/403 , C30B29/406 , Y10T428/24942
Abstract: 本发明的实施例公开了一种氮化物晶体及其制造方法。该氮化物晶体围绕籽晶的外周,一实施例中的氮化物晶体包括:第一局部区域和第二局部区域,并且第二局部区域具有不同于第一局部区域的光学特性,且具有表明晶向的光学特性。
-
公开(公告)号:CN101851785B
公开(公告)日:2013-05-22
申请号:CN201010139890.6
申请日:2010-03-30
Applicant: 丰田合成株式会社 , 国立大学法人大阪大学 , 日本碍子株式会社
CPC classification number: C30B9/12 , C30B29/403 , C30B29/406 , H01L21/02389 , H01L21/0254 , H01L21/02576 , H01L21/02579 , H01L21/02625
Abstract: 本发明制造III族氮化物半导体的方法,本发明的一个目的是在通过Na助熔剂法制造GaN的过程中有效地添加Ge。在坩埚中,将种晶衬底放置为使得衬底的一端保持在支撑基座上,由此使种晶衬底相对于坩埚的底表面保持倾斜,并且将镓固体和锗固体放置在种晶衬底和坩埚的底表面之间的空间中。然后,将钠固体放置在种晶衬底上。通过采用这种配置,当通过Na助熔剂法在种晶衬底上生长GaN晶体时,使得锗在形成钠-锗合金之前溶于熔融镓中。因此,GaN晶体可以有效地掺杂Ge。
-
公开(公告)号:CN102492993A
公开(公告)日:2012-06-13
申请号:CN201210003531.7
申请日:2007-02-22
Applicant: 日本碍子株式会社 , 国立大学法人大阪大学
CPC classification number: C30B9/00 , C30B29/403 , C30B29/406 , Y10T117/10 , Y10T117/1096
Abstract: 本发明涉及氮化物单晶的制造方法及其装置,本发明提供一种氮化物单晶的制造方法,其为使用含有助熔剂和原料的溶液来制造氮化物单晶的方法,其特征在于,使用的生长装置包括:用于容纳所述溶液的多个坩埚、用于加热所述坩埚的发热体、容纳所述多个坩埚并由热传导性材料制成的组件以及用于至少容纳所述组件和所述发热体并填充至少包含氮气的气氛气体的压力容器;分别在所述每个坩埚内设置一个种晶,通过移动所述组件来同时搅拌所述各坩埚内的所述溶液,在所述各坩埚内由各个种晶生长成所述氮化物单晶。
-
公开(公告)号:CN101415867B
公开(公告)日:2012-03-28
申请号:CN200780011616.7
申请日:2007-04-05
Applicant: 丰田合成株式会社 , 日本碍子株式会社 , 国立大学法人大阪大学
CPC classification number: C30B29/403 , C30B9/00 , Y10S117/90 , Y10T117/10 , Y10T117/1024
Abstract: 在熔剂方法中,在将源氮气供给到Na-Ga混合物之前将其充分加热。本发明提供一种用于制造第III族氮化物基化合物半导体的设备。该设备包括:反应器,该反应器保持熔融状态的第III族金属和与该第III族金属不同的金属;用于加热反应器的加热装置;用于容纳反应器和加热装置的外部容器;和用于将至少包含氮的气体从外部容器的外面供给到反应器中的进料管。进料管具有通过加热装置与反应器一起被加热的区域,其中,该区域在外部容器内部和反应器外部被加热。
-
公开(公告)号:CN101851785A
公开(公告)日:2010-10-06
申请号:CN201010139890.6
申请日:2010-03-30
Applicant: 丰田合成株式会社 , 国立大学法人大阪大学 , 日本碍子株式会社
CPC classification number: C30B9/12 , C30B29/403 , C30B29/406 , H01L21/02389 , H01L21/0254 , H01L21/02576 , H01L21/02579 , H01L21/02625
Abstract: 本发明制造III族氮化物半导体的方法,本发明的一个目的是在通过Na助熔剂法制造GaN的过程中有效地添加Ge。在坩埚中,将种晶衬底放置为使得衬底的一端保持在支撑基座上,由此使种晶衬底相对于坩埚的底表面保持倾斜,并且将镓固体和锗固体放置在种晶衬底和坩埚的底表面之间的空间中。然后,将钠固体放置在种晶衬底上。通过采用这种配置,当通过Na助熔剂法在种晶衬底上生长GaN晶体时,使得锗在形成钠-锗合金之前溶于熔融镓中。因此,GaN晶体可以有效地掺杂Ge。
-
-
-
-
-
-
-
-
-