-
公开(公告)号:CN110246814A
公开(公告)日:2019-09-17
申请号:CN201910467609.2
申请日:2019-05-30
申请人: 全球能源互联网研究院有限公司 , 国网山西省电力公司晋城供电公司 , 国家电网有限公司
摘要: 本发明公开了一种功率芯片预封装、封装方法及其结构、晶圆预封装结构,用于晶圆,晶圆上阵列排布有多个功率芯片,功率芯片的第一电极位于晶圆的第一表面,功率芯片的第二电极位于晶圆的第二表面,该预封装方法包括:将多个第一引出电极分别连接在功率芯片的第一电极上;利用封装材料填充各个第一引出电极之间的空间,形成包围第一引出电极的第一封装层;将多个第二引出电极分别连接在功率芯片的第二电极上;利用封装材料填充第二引出电极之间的空间,形成包围第二引出电极的第二封装层;对晶圆进行切割,形成预封装功率芯片。通过实施本发明,避免了功率芯片终端受到污染的可能,提高了功率芯片终端耐压的可靠性。
-
公开(公告)号:CN110246814B
公开(公告)日:2021-07-06
申请号:CN201910467609.2
申请日:2019-05-30
申请人: 全球能源互联网研究院有限公司 , 国网山西省电力公司晋城供电公司 , 国家电网有限公司
摘要: 本发明公开了一种功率芯片预封装、封装方法及其结构、晶圆预封装结构,用于晶圆,晶圆上阵列排布有多个功率芯片,功率芯片的第一电极位于晶圆的第一表面,功率芯片的第二电极位于晶圆的第二表面,该预封装方法包括:将多个第一引出电极分别连接在功率芯片的第一电极上;利用封装材料填充各个第一引出电极之间的空间,形成包围第一引出电极的第一封装层;将多个第二引出电极分别连接在功率芯片的第二电极上;利用封装材料填充第二引出电极之间的空间,形成包围第二引出电极的第二封装层;对晶圆进行切割,形成预封装功率芯片。通过实施本发明,避免了功率芯片终端受到污染的可能,提高了功率芯片终端耐压的可靠性。
-
公开(公告)号:CN111312586A
公开(公告)日:2020-06-19
申请号:CN202010106956.5
申请日:2020-02-20
申请人: 全球能源互联网研究院有限公司 , 国网浙江省电力有限公司 , 国家电网有限公司
IPC分类号: H01L21/265 , H01L21/04 , H01L21/67
摘要: 本发明公开了一种提高p型掺杂离子注入准确度的方法。本发明包括初步确定仿真值、根据仿真值进行离子注入、对仿真值进行校准;重复上述对仿真值进行校准的步骤,确定最终离子注入能量和剂量以获得最接近目标值的实际注入值。本发明记载了相应的缩小离子注入目标值与实际注入值之间偏差的方法,通过多次对注入碳化硅外延层的p型掺杂离子的仿真值进行校准,进而使碳化硅器件的离子注入的实际注入值与目标值更加接近,以加快器件的研制。
-
公开(公告)号:CN110211885B
公开(公告)日:2021-08-06
申请号:CN201910467610.5
申请日:2019-05-30
申请人: 全球能源互联网研究院有限公司 , 国网江西省电力有限公司 , 国家电网有限公司
摘要: 本发明公开了一种功率芯片预封装、封装方法及其结构、晶圆预封装结构,用于晶圆,晶圆上阵列排布有多个功率芯片,功率芯片的第一电极位于晶圆的第一表面,该预封装方法包括:将多个第一引出电极分别连接在功率芯片的第一电极上;利用封装材料填充各个第一引出电极之间的空间,形成包围第一引出电极的第一封装层;将多个第二引出电极分别连接在功率芯片的第二电极上;去除晶圆中各功率芯片之间预留划片槽区域,形成划片槽;利用封装材料填充划片槽及各个第二引出电极之间的空间,形成包围第二引出电极及划片槽的第二封装层;对晶圆进行切割,形成预封装功率芯片。通过实施本发明,避免了功率芯片终端受到污染的可能,提高了功率芯片的可靠性。
-
公开(公告)号:CN111579958A
公开(公告)日:2020-08-25
申请号:CN202010431615.5
申请日:2020-05-20
申请人: 全球能源互联网研究院有限公司 , 国网湖北省电力有限公司 , 国家电网有限公司
摘要: 本发明公开了一种IGBT开关特性测试电路及测试方法,测试电路包括负载电感电路和直流母线电源,所述直流母线电源与所述负载电感电路以及被测IGBT器件串联;第一开关器件,连接在所述直流母线电源的正极与所述负载电感电路的输出端之间,用于切断或者接通直流母线;电阻R1,第一端连接所述第一开关器件的低压端,第二端与负载电感电路的输入端连接,用于在所述被测IGBT器件和/或所述第一开关器件和/或所述负载电感电路失效时,吸收所述直流母线电源的电量。本发明通过增加了第一开关器件和电阻R1,实现器件测试完成后切断直流母线电容能量释放通道,以及吸收直流母线释放的能量,降低器件失效后烧毁程度,防止失效器件爆炸。
-
公开(公告)号:CN111524796A
公开(公告)日:2020-08-11
申请号:CN202010238731.5
申请日:2020-03-30
申请人: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网北京市电力公司
IPC分类号: H01L21/04 , H01L21/265 , H01L21/311
摘要: 本发明提供一种碳化硅功率器件制备中碳化硅外延片及其的处理方法,在所述碳化硅外延片正面和背面分别淀积介质层;对碳化硅外延片正面的介质层进行刻蚀,之后去除碳化硅外延片背面的介质层;对刻蚀完的碳化硅外延片正面进行离子注入。本发明大大减小了碳化硅外延片的翘曲度,且降低了拒片率,提高了光刻工艺精度和离子注入加工精度,降低了离子注入的拒片率和碎片率,大大提高了碳化硅外延片的精度和合格率;在碳化硅外延片正面和背面分步形成各自的介质层,抵消了碳化硅外延片正面直接淀积介质层带来的材料应力,为碳化硅外延片的翘曲度的改善提供基础;成本低,效率高,适用于多种规格的碳化硅外延片。
-
公开(公告)号:CN110211885A
公开(公告)日:2019-09-06
申请号:CN201910467610.5
申请日:2019-05-30
申请人: 全球能源互联网研究院有限公司 , 国网江西省电力有限公司 , 国家电网有限公司
摘要: 本发明公开了一种功率芯片预封装、封装方法及其结构、晶圆预封装结构,用于晶圆,晶圆上阵列排布有多个功率芯片,功率芯片的第一电极位于晶圆的第一表面,该预封装方法包括:将多个第一引出电极分别连接在功率芯片的第一电极上;利用封装材料填充各个第一引出电极之间的空间,形成包围第一引出电极的第一封装层;将多个第二引出电极分别连接在功率芯片的第二电极上;去除晶圆中各功率芯片之间预留划片槽区域,形成划片槽;利用封装材料填充划片槽及各个第二引出电极之间的空间,形成包围第二引出电极及划片槽的第二封装层;对晶圆进行切割,形成预封装功率芯片。通过实施本发明,避免了功率芯片终端受到污染的可能,提高了功率芯片的可靠性。
-
公开(公告)号:CN109801899A
公开(公告)日:2019-05-24
申请号:CN201811607844.7
申请日:2018-12-27
申请人: 全球能源互联网研究院有限公司 , 国家电网有限公司
IPC分类号: H01L25/07
摘要: 本发明公开一种功率半导体模块,包括:多个并列设置的功率半导体单元,每个功率半导体单元封装在管壳中,且通过管壳中的弹力单元进行弹力支撑,每个功率半导体单元相互独立设置,且安装在第一金属电极与第二金属电极之间,第一金属电极与每个功率半导体单元电连接,第一金属电极与第二金属电极分别与外部电路电连接。本发明中的功率半导体模块中的功率半导体单元相互独立设置,当某一功率半导体单元一旦发生故障,可以利用另外正常的功率半导体单元替换,因此,可以充分利用芯片子模块,进而提高芯片子模块的利用率,可以减少芯片子模块的更换成本。
-
公开(公告)号:CN111579958B
公开(公告)日:2022-04-05
申请号:CN202010431615.5
申请日:2020-05-20
申请人: 全球能源互联网研究院有限公司 , 国网湖北省电力有限公司 , 国家电网有限公司
摘要: 本发明公开了一种IGBT开关特性测试电路及测试方法,测试电路包括负载电感电路和直流母线电源,所述直流母线电源与所述负载电感电路以及被测IGBT器件串联;第一开关器件,连接在所述直流母线电源的正极与所述负载电感电路的输出端之间,用于切断或者接通直流母线;电阻R1,第一端连接所述第一开关器件的低压端,第二端与负载电感电路的输入端连接,用于在所述被测IGBT器件和/或所述第一开关器件和/或所述负载电感电路失效时,吸收所述直流母线电源的电量。本发明通过增加了第一开关器件和电阻R1,实现器件测试完成后切断直流母线电容能量释放通道,以及吸收直流母线释放的能量,降低器件失效后烧毁程度,防止失效器件爆炸。
-
公开(公告)号:CN113629131A
公开(公告)日:2021-11-09
申请号:CN202010386415.2
申请日:2020-05-09
申请人: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网福建省电力有限公司厦门供电公司
摘要: 本发明提供一种分区域渐变场限环终端结构及其设计方法,设置分区域渐变场限环终端结构的各参数的初始值;基于初始值,依次对各参数值进行调整,并实时获取各场限环和有源区主结之间的电场强度,当获取的电场强度相等且均小于临界击穿电场强度,得到最优的参数值;基于最优的参数值确定分区域渐变场限环终端结构,通过调整各区域内场限环的宽度和各相邻场限环的间距,大大提高了功率半导体器件制备过程中场限环终端结构的保护效率,提高了半导体功率器件的击穿电压,增强了半导体功率器件的可靠性和稳定性。
-
-
-
-
-
-
-
-
-