一种利用石墨烯阻挡层制备氮化物垂直结构LED的方法

    公开(公告)号:CN110323308A

    公开(公告)日:2019-10-11

    申请号:CN201910491149.7

    申请日:2019-06-06

    申请人: 北京大学

    IPC分类号: H01L33/00 H01L33/44 H01L33/64

    摘要: 本发明公开了一种利用石墨烯阻挡层制备氮化物垂直结构LED的方法。本发明通过在单晶金属衬底上表面引入高晶体质量的、具有六方晶体结构对称性的石墨烯阻挡层,利用石墨烯阻挡层的层内强共价键阻挡单晶金属衬底与氮化物LED的界面反应和金属原子的扩散,利用石墨烯阻挡层的层间弱分子力结合弛豫金属衬底和氮化物LED结构的晶格失配和热失配,通过表面活化处理石墨烯阻挡层提供氮化物LED的成核位点,进而得到高晶体质量、高发光效率的大功率氮化物垂直结构LED;本发明具有简化氮化物垂直结构LED制备工艺、提高氮化物LED的晶体质量和发光效率、提高氮化物LED散热能力、成本低、成品率高、设备简单易操作、适合产业化生产等优点。

    利用过渡金属氮化物牺牲层制备氮化物单晶衬底的方法

    公开(公告)号:CN110172732A

    公开(公告)日:2019-08-27

    申请号:CN201910468538.8

    申请日:2019-05-31

    申请人: 北京大学

    IPC分类号: C30B25/18 C30B25/20 C30B29/40

    摘要: 本发明公开了一种利用过渡金属氮化物牺牲层制备氮化物单晶衬底的方法。本发明通过在氮化物单晶厚膜与氮化物模板之间引入六方晶体结构对称性的β相过渡金属氮化物牺牲层,利用过渡金属氮化物牺牲层与氮化物单晶厚膜的晶向匹配、晶格失配小、能够选择性刻蚀的特点,采用选择性刻蚀方法实现氮化物单晶厚膜与氮化物模板的分离,得到大尺寸、高质量的自支撑氮化物单晶衬底;本发明易于在过渡金属氮化物牺牲层上直接成核生长高质量氮化物单晶厚膜,无需引入额外工序辅助氮化物单晶厚膜成核,简化工艺流程;无需采用复杂的激光剥离技术,氮化物模板可重复使用,降低剥离工艺难度及成本,提高成品率;设备简单,能耗低,易操作,适合产业化生产。

    一种氮化物量子阱红外探测器及其制备方法

    公开(公告)号:CN104733561B

    公开(公告)日:2017-05-03

    申请号:CN201510127695.4

    申请日:2015-03-23

    申请人: 北京大学

    CPC分类号: Y02P70/521

    摘要: 本发明公开了一种新型氮化物量子阱红外探测器及其制备方法。本发明的量子阱红外探测器,在衬底上的掩膜层具有周期性排布的孔洞结构,纳米柱阵列从孔洞中生长出来,多量子阱生长在纳米柱阵列的顶部和侧面,分别对应为半极性面和非极性面多量子阱。其中,多量子阱生长于位错密度极低的纳米柱阵列上,可实现极高晶体质量的多量子阱结构;半极性面和非极性面多量子阱的极化场强度远低于传统极性面多量子阱的极化场强度,可实现高效光电流信号的提取;正面入射探测器表面即可有光电响应,省去传统量子阱红外探测器制备表面光栅结构或端面45°抛光的工艺;多量子阱材料采用第三代半导体材料,可实现全红外光谱窗口的光子探测,具有广阔的应用前景。

    一种利用二维晶体过渡层制备半导体单晶衬底的方法

    公开(公告)号:CN109585269A

    公开(公告)日:2019-04-05

    申请号:CN201811330967.0

    申请日:2018-11-09

    申请人: 北京大学

    IPC分类号: H01L21/02 H01L21/78

    摘要: 本发明公开了一种利用二维晶体过渡层制备半导体单晶衬底的方法。本发明通过在半导体单晶厚膜结构与异质衬底之间引入二维晶体过渡层,利用原子层间分子力结合弱、易于破坏分离的特点,采用剥离方法实现半导体单晶厚膜结构与异质衬底的分离,得到大尺寸、高质量的自支撑半导体单晶衬底;能够根据二维晶体的厚度自主选择自剥离或机械剥离的方式,增加剥离工艺可控性,不会对半导体单晶厚膜结构造成损伤,成品率高,可重复性好;通过二维晶体层间弱分子力键合,部分释放异质衬底和半导体单晶厚膜结构间的失配应力,避免生长及降温时开裂;异质衬底可重复使用,工艺稳定,成本低廉;设备简单,易操作,适合产业化生产。

    一种双组分渐变结构太阳能电池及其制备方法

    公开(公告)号:CN105428448B

    公开(公告)日:2018-06-08

    申请号:CN201510751121.4

    申请日:2015-11-06

    申请人: 北京大学

    IPC分类号: H01L31/065 H01L31/18

    CPC分类号: Y02E10/50 Y02P70/521

    摘要: 本发明公开了一种双组分渐变结构太阳能电池及其制备方法。本发明的太阳能电池包括:衬底、底电极接触层、底组分渐变层、吸收增强层、顶组分渐变层、顶电极接触层、顶电极、底电极以及钝化层;其中,在衬底上生长底电极接触层;在底电极接触层的一部分上依次为底组分渐变层、吸收增强层、顶组分渐变层、顶电极接触层和顶电极;在底电极接触层的一部分上为底电极;在各个层的侧面覆盖有钝化层;顶组分渐变层对全太阳光谱均有吸收,可有效提升光电转换效率;部分透过顶组分渐变层的太阳光可进一步被吸收增强层吸收;底组分渐变层既可消除电子(空穴)输运势垒,又可调控晶格应力以提高材料生长质量。

    一种氮化物复合势垒量子阱红外探测器及其制备方法

    公开(公告)号:CN104409556B

    公开(公告)日:2017-01-04

    申请号:CN201410738690.0

    申请日:2014-12-05

    申请人: 北京大学

    IPC分类号: H01L31/111 H01L31/18

    CPC分类号: Y02P70/521

    摘要: 本发明公开了一种氮化物复合势垒量子阱红外探测器及其制备方法。本发明的量子阱红外探测器的多量子阱为包含多个周期的复合势垒和势阱,其中,复合势垒为包括平带势垒和尖峰势垒的双层结构;通过极化调制的方法形成平带势垒,平带势垒以上的能级相互耦合形成准连续态,进而形成光电流的通路;通过增加平带势垒的厚度,可以在光电流信号强度基本不变的情况下,抑制暗电流的背景噪声,进而提高信噪比。本发明利用低温精细外延设备控制有源区界面以及各层厚度,可以获得高质量的外延晶片;多量子阱采用III族氮化物材料,可以实现全红外光谱窗口的光子探测;本发明的探测器在液氦温区成功探测到光电流信号,具有广阔的应用前景。

    一种双组分渐变结构太阳能电池及其制备方法

    公开(公告)号:CN105428448A

    公开(公告)日:2016-03-23

    申请号:CN201510751121.4

    申请日:2015-11-06

    申请人: 北京大学

    IPC分类号: H01L31/065 H01L31/18

    摘要: 本发明公开了一种双组分渐变结构太阳能电池及其制备方法。本发明的太阳能电池包括:衬底、底电极接触层、底组分渐变层、吸收增强层、顶组分渐变层、顶电极接触层、顶电极、底电极以及钝化层;其中,在衬底上生长底电极接触层;在底电极接触层的一部分上依次为底组分渐变层、吸收增强层、顶组分渐变层、顶电极接触层和顶电极;在底电极接触层的一部分上为底电极;在各个层的侧面覆盖有钝化层;顶组分渐变层对全太阳光谱均有吸收,可有效提升光电转换效率;部分透过顶组分渐变层的太阳光可进一步被吸收增强层吸收;底组分渐变层既可消除电子(空穴)输运势垒,又可调控晶格应力以提高材料生长质量。

    一种宽波段高效紫外光源及其制备方法

    公开(公告)号:CN109787088B

    公开(公告)日:2021-03-02

    申请号:CN201910004608.4

    申请日:2019-01-03

    申请人: 北京大学

    IPC分类号: H01S5/323 H01S5/327 H01S5/028

    摘要: 本发明公开了一种宽波段高效紫外光源及其制备方法。本发明通过控制多个顺次排列的多量子阱的厚度或元素组分,精确调控有源区的结构及发光波段,实现宽波段高效紫外光源;激励源采用电子束泵浦激励方式,该结构无需多结欧姆接触层,与传统LED结构相比结构简单,有效提高空穴注入效率;原子层或亚原子层的超薄势阱有效提高辐射复合几率,进而实现在深紫外波段的高光效输出;同时通过调控量子阱的周期数及势阱厚度,优化多量子阱的总厚度,既能保证电子束不会穿透光源的有源区,又能保证有源区的材料质量;采用III‑V族或II‑VI族半导体材料,实现几乎覆盖UVC、UVB全波段的高效紫外光源。

    一种利用二维晶体过渡层制备半导体单晶衬底的方法

    公开(公告)号:CN109585269B

    公开(公告)日:2020-06-26

    申请号:CN201811330967.0

    申请日:2018-11-09

    申请人: 北京大学

    IPC分类号: H01L21/02 H01L21/78

    摘要: 本发明公开了一种利用二维晶体过渡层制备半导体单晶衬底的方法。本发明通过在半导体单晶厚膜结构与异质衬底之间引入二维晶体过渡层,利用原子层间分子力结合弱、易于破坏分离的特点,采用剥离方法实现半导体单晶厚膜结构与异质衬底的分离,得到大尺寸、高质量的自支撑半导体单晶衬底;能够根据二维晶体的厚度自主选择自剥离或机械剥离的方式,增加剥离工艺可控性,不会对半导体单晶厚膜结构造成损伤,成品率高,可重复性好;通过二维晶体层间弱分子力键合,部分释放异质衬底和半导体单晶厚膜结构间的失配应力,避免生长及降温时开裂;异质衬底可重复使用,工艺稳定,成本低廉;设备简单,易操作,适合产业化生产。

    一种纳米线耦合量子点结构及其制备方法

    公开(公告)号:CN109524511B

    公开(公告)日:2019-11-01

    申请号:CN201811248128.4

    申请日:2018-10-25

    申请人: 北京大学

    IPC分类号: H01L33/00 H01L33/06

    摘要: 本发明公开了一种纳米线耦合量子点结构及其制备方法。本发明采用在生长衬底上生长纳米线形成纳米线基板,然后生长量子点结构,再通过原位热蒸发处理从侧壁缩小横向尺度,得到再构量子点结构,最后原位生长修复层;本发明的量子点的纵向尺寸能够在初始外延生长中得到精确控制,而横向尺寸则能够在基于各向异性热蒸发的再构过程中得到有效控制;再构量子点的横向尺寸,通过各向异性热蒸发调控,能够突破纳米线横向尺寸的禁锢,甚至实现极端尺寸(