一种基于因子‑主属性模型的中长期电力负荷预测方法

    公开(公告)号:CN104200283B

    公开(公告)日:2017-06-13

    申请号:CN201410428808.X

    申请日:2014-08-27

    IPC分类号: G06Q10/04 G06Q50/06

    摘要: 本发明公开了一种基于因子‑主属性模型的中长期电力负荷预测方法,所述方法包括:步骤1:建立(n‑1)个影响因子指标X1‑Xn‑1和1个预测对象Xn的原始矩阵,采用Z标准化,对影响因子指标数据X1‑Xn‑1和Xn进行预处理,将指标数据无量纲化,得到指标矩阵Aon;步骤2:根据因子分析方法,确定选择的公因子,并计算相应的因子得分,建立因子预测模型;步骤3:根据主属性算法,筛选得到主属性m1,…,mr,主属性模型为其中v是特征向量;步骤4:根据公式建立因子‑主属性的中长期电力负荷预测模型,计算得到归一化后的预测变量值,经过Z标准化公式变换,重新计算得到相应的原变量实际值。

    基于粒子群优化算法改进的神经网络模型用于数据预测方法

    公开(公告)号:CN104361393B

    公开(公告)日:2018-02-27

    申请号:CN201410451866.4

    申请日:2014-09-06

    IPC分类号: G06N3/02

    摘要: 本发明涉及计算机应用工程技术领域,是一种基于粒子群优化算法改进的神经网络模型用于数据预测方法,按照下述步骤进行:步骤1:数据样本的表示;步骤2:数据的预处理;步骤3:RBF神经网络参数初始化;步骤4:利用二元粒子群优化算法确定隐含层神经元的数目和隐含层径向基核函数的中心;步骤5:初始化局部粒子群优化算法的各个参数。本发明所述的基于粒子群优化算法改进的神经网络模型用于数据预测方法能够易于确定RBF神经网络模型隐含层神经元的数目,从而改善了RBF神经网络性能,提高了数据预测的精确度,同时,本发明中的基于粒子群优化算法改进的神经网络模型具有模型复杂度低,鲁棒性强,可扩展性好的特点。

    一种基于因子-主属性模型的中长期电力负荷预测方法

    公开(公告)号:CN104200283A

    公开(公告)日:2014-12-10

    申请号:CN201410428808.X

    申请日:2014-08-27

    IPC分类号: G06Q10/04 G06Q50/06

    摘要: 本发明公开了一种基于因子-主属性模型的中长期电力负荷预测方法,所述方法包括:步骤1:建立(n-1)个影响因子指标X1-Xn-1和1个预测对象Xn的原始矩阵,采用Z标准化,对影响因子指标数据X1-Xn-1和Xn进行预处理,将指标数据无量纲化,得到指标矩阵Aoxn;步骤2:根据因子分析方法,确定选择的公因子,并计算相应的因子得分,建立因子预测模型步骤3:根据主属性算法,筛选得到主属性m1,…,mr,主属性模型为其中v是特征向量;步骤4:根据公式建立因子-主属性的中长期电力负荷预测模型,计算得到归一化后的预测变量值,经过Z标准化公式变换,重新计算得到相应的原变量实际值。

    基于粒子群优化算法改进的神经网络模型用于数据预测方法

    公开(公告)号:CN104361393A

    公开(公告)日:2015-02-18

    申请号:CN201410451866.4

    申请日:2014-09-06

    IPC分类号: G06N3/02

    摘要: 本发明涉及计算机应用工程技术领域,是一种基于粒子群优化算法改进的神经网络模型用于数据预测方法,按照下述步骤进行:步骤1:数据样本的表示;步骤2:数据的预处理;步骤3:RBF神经网络参数初始化;步骤4:利用二元粒子群优化算法确定隐含层神经元的数目和隐含层径向基核函数的中心;步骤5:初始化局部粒子群优化算法的各个参数。本发明所述的基于粒子群优化算法改进的神经网络模型用于数据预测方法能够易于确定RBF神经网络模型隐含层神经元的数目,从而改善了RBF神经网络性能,提高了数据预测的精确度,同时,本发明中的基于粒子群优化算法改进的神经网络模型具有模型复杂度低,鲁棒性强,可扩展性好的特点。