-
公开(公告)号:CN118887409A
公开(公告)日:2024-11-01
申请号:CN202411394782.1
申请日:2024-10-08
摘要: 本发明涉及计算机视觉技术领域,尤其是指一种基于归纳偏置和动态特征聚合的深度智能分割方法,包括:构建图像智能分割模型,包括初始层、编码器、瓶颈层、解码器、空间注意力模块以及输出层;将原始图像输入至图像智能分割模型,输出分割预测图像。所述图像智能分割模型应用DConvNeXt模块,结合具有动态特征建模能力的可变形卷积v4算子与高效局部注意力机制作为令牌混合器,在有效提升模型的特征建模能力的同时,显著增强了特征表示的灵活性和动态性。本发明能够有效处理复杂图像分割任务,显著提高了在多样化应用场景中的适应性和处理复杂图像的分割精度。
-
公开(公告)号:CN118918445A
公开(公告)日:2024-11-08
申请号:CN202411405238.2
申请日:2024-10-10
IPC分类号: G06V10/82 , G06N3/0455 , G06N3/09 , G06V10/22 , G06V10/42 , G06V10/44 , G06V10/774 , G06V10/80
摘要: 本发明涉及异常决策技术领域,公开了一种基于多尺度特征融合差分的轻量化智能异常决策方法,包括选取多个正常图像作为记忆样本;获取待检测图像;获取每个记忆样本与待检测图像的多个具有不同分辨率的阶段特征,组成每个记忆样本的样本存储信息与待检测图像的实时存储信息;计算实时存储信息与每个样本存储信息之间的欧几里得距离,获取距离最小的作为目标样本存储信息与目标记忆样本;获取目标记忆样本与待检测图像在各个分辨率下的x轴、y轴卷积阶段特征,计算各个分辨率下目标记忆样本与待检测图像之间的差分信息;获取基于金字塔结构的多尺度特征差分中每一层的差分输出,进行通道拼接后,输入解码器中,获取待检测图像中的缺陷定位结果。
-
公开(公告)号:CN118940763A
公开(公告)日:2024-11-12
申请号:CN202411377901.2
申请日:2024-09-30
IPC分类号: G06F40/295 , G06F40/216 , G06F40/284 , G06F16/35 , G06F18/2415 , G06F18/2431 , G06N3/0455
摘要: 本发明涉及自然语言处理技术领域,提供了一种基于大模型的掩码增强命名实体识别方法,该方法包括:采集待识别文本数据;预处理得到输入序列,输入训练好的识别模型得到识别结果;识别模型训练过程包括:基于设定掩码策略对训练输入序列进行掩码处理得到掩码输入序列,送入BERT模型得到实体、掩码上下文表示特征;执行命名实体识别任务和预测掩码任务且共享参数,得到实体预测值和掩码预测值;基于实体上下文表示特征和实体预测值计算第一损失函数,基于掩码预测值计算第二损失函数;更新模型参数;评估模型性能,重复训练直至性能达到设定要求。本发明能够充分理解语义,泛化能力较强,语境依赖性捕捉能力较强,误识别和漏识别情况较少。
-
公开(公告)号:CN118797448A
公开(公告)日:2024-10-18
申请号:CN202411284257.4
申请日:2024-09-13
IPC分类号: G06F18/241 , G06N3/0455 , G06N3/0464 , G06N3/096 , G06F18/10 , G06F18/2131 , G06F123/02
摘要: 本发明涉及机器故障诊断技术领域,公开了一种基于迁移学习的多尺度智能决策方法,包括:获取源域与目标域中的机械故障振动时序长信号,构建源域训练集与目标域训练集;在源域训练集中,对时序分信号进行预处理后,提取时域特征与频域特征,并映射为低维时域特征与低维频域特征;计算特征之间的互相关矩阵,构建互相关损失函数,来训练编码器,获取源域优化时域信号编码器,并迁移至目标域,与初始分类器,组成初始多尺度智能决策模型;对目标域时序分信号进行预测,与其真实标签,构建交叉熵损失函数,训练获取目标多尺度智能决策模型;将实时采集的机械故障振动时序长信号,预处理后分别输入目标多尺度智能决策模型中,获取对应的故障类别。
-
公开(公告)号:CN118468346B
公开(公告)日:2024-11-05
申请号:CN202410935056.X
申请日:2024-07-12
申请人: 江南大学 , 苏州大学 , 吉林大学 , 昆山微电子技术研究院
IPC分类号: G06F21/62 , G06F18/214 , G06F18/21 , G06F18/2433 , G06F21/64
摘要: 本发明属于区块链数据检测技术领域,涉及一种区块链多模态数据异常检测方法;包括:获取包括不同模态数据集的训练集;利用L21范数对各个模态数据集的投影矩阵进行稀疏,构建目标稀疏投影矩阵项;基于同一模态数据集的数据样本映射后近邻相似图矩阵不变性,构建第一多模态图正则项;基于不同模态数据集的数据样本映射后语义相似矩阵不变性,构建第二多模态图正则项;基于第一多模态图正则项和第二多模态图正则项得到目标多模态图正则项;构建超球目标函数和超球约束函数,并对超球目标函数和超球约束函数求解,得到超球半径、超球中心和各个模态数据集的投影矩阵,从而对区块链中的多模态数据进行检测,提高区块链数据的准确性和系统安全性。
-
公开(公告)号:CN118781298A
公开(公告)日:2024-10-15
申请号:CN202411282621.3
申请日:2024-09-13
IPC分类号: G06T17/20 , G06T15/00 , G06N3/0455 , G06N3/0464 , G06N3/08 , G06N3/0475
摘要: 本发明涉及计算机视觉技术领域,尤其是指一种基于多视图采样和渐进式生成的深度智能3D重建方法,包括:构建数据集;构建网格生成器,所述网格生成器为编码器‑解码器架构;利用数据集训练所述网格生成器;利用经过训练的网格生成器对残缺手绘图和噪声手绘图进行3D建模,得到目标网格3D模型。本发明利用2D卷积形状鉴别器训练网格生成器,并通过逐步增加2D卷积形状鉴别器的复杂度和多尺度轮廓图对的分辨率,逐步细化2D卷积形状鉴别器的判别能力,从而更有效地引导网格生成器生成高质量的预测网格3D模型,提高了预测网格3D模型的质量。
-
公开(公告)号:CN118799948A
公开(公告)日:2024-10-18
申请号:CN202411282724.X
申请日:2024-09-13
IPC分类号: G06V40/16 , G06V10/774 , G06V10/84 , G06V10/80 , G06V10/82
摘要: 本发明涉及半监督表情识别技术领域,公开了一种基于交叉融合与置信评估的情绪识别智能合约构建方法,包括获取基于区块链存储的面部图像,划分为有标签与无标签样本集;将所有面部图像分别输入初始图像分类模型,获取预测标签与标签置信度得分;基于每个有标签样本的交叉熵损失,得标签集合损失;将无标签样本划分为正确或错误样本;基于每个正确样本的交叉熵损失,获取集合无监督损失;基于每个错误样本的对比学习损失,获取集合对比损失;基于前述三种损失,构建模型总损失函数,训练初始图像分类模型,获取训练好的图像分类模型,输入待识别面部图像,获取多个置信度得分,以其中得分最高的所表示的情绪类型,作为待识别面部图像的预测标签。
-
公开(公告)号:CN118468346A
公开(公告)日:2024-08-09
申请号:CN202410935056.X
申请日:2024-07-12
申请人: 江南大学 , 苏州大学 , 吉林大学 , 昆山微电子技术研究院
IPC分类号: G06F21/62 , G06F18/214 , G06F18/21 , G06F18/2433 , G06F21/64
摘要: 本发明属于区块链数据检测技术领域,涉及一种区块链多模态数据异常检测方法;包括:获取包括不同模态数据集的训练集;利用L21范数对各个模态数据集的投影矩阵进行稀疏,构建目标稀疏投影矩阵项;基于同一模态数据集的数据样本映射后近邻相似图矩阵不变性,构建第一多模态图正则项;基于不同模态数据集的数据样本映射后语义相似矩阵不变性,构建第二多模态图正则项;基于第一多模态图正则项和第二多模态图正则项得到目标多模态图正则项;构建超球目标函数和超球约束函数,并对超球目标函数和超球约束函数求解,得到超球半径、超球中心和各个模态数据集的投影矩阵,从而对区块链中的多模态数据进行检测,提高区块链数据的准确性和系统安全性。
-
公开(公告)号:CN111998823A
公开(公告)日:2020-11-27
申请号:CN202010871215.6
申请日:2020-08-26
申请人: 吉林大学
摘要: 本发明公开了基于双目异光源测距装置的目标测距方法,涉及异光源测距技术领域,解决了现有测距精度低的问题,包括步骤一、获得可见光相机拍摄的可见光图像和近红外相机拍摄的近红外图像,根据可见光图像获得可见光测距结果Lv,根据近红外图像获得近红外测距结果Lr,根据可见光图像和近红外图像获得双目测距结果Ls;步骤二、判断可见光是否充足并采用误差函数E对Lr进行误差补偿得到最终测距结果L,若可见光充足,则E为根据多个Lr对BP神经网络进行训练获得;若可见光不充足,则E为根据多个Lr、Lv和Ls的组合对BP神经网络进行训练获得。本发明无论是光照是否充足的情况下测距精度高,测距精度相比于单目测距和双目测距均有较大的提升。
-
-
-
-
-
-
-
-
-