基于深度学习和数据融合的增程式汽车驾驶风格辨识及适应性反馈方法和能效优化方法

    公开(公告)号:CN118220175A

    公开(公告)日:2024-06-21

    申请号:CN202410462354.1

    申请日:2024-04-17

    Abstract: 本发明公开了一种增程式汽车驾驶风格辨识方法,融合WNN、CNN、LSTM以及贝叶斯融合决策技术,深入分析增程式汽车的内部运行数据和外部环境数据,实现对驾驶风格的高精度识别,这种精准的识别为驾驶行为的评估和优化提供了可靠的基础。本发明的增程式汽车驾驶风格适应性反馈方法,通过识别和分析驾驶风格,系统能够为驾驶员提供个性化的反馈和建议,帮助他们意识到并改进潜在的危险驾驶习惯,从而有效降低事故发生率,提高道路行车安全性。本发明的增程式汽车能效优化方法,能够结合驾驶风格识别结果和车辆实时状态,提供能效优化建议,如调整动力系统配置、优化路线规划等,从而降低能耗,提高能源利用效率。

    面向混合动力汽车的深度强化学习型具身智能方法

    公开(公告)号:CN119442878A

    公开(公告)日:2025-02-14

    申请号:CN202411509352.X

    申请日:2024-10-28

    Applicant: 重庆大学

    Abstract: 本发明涉及一种面向混合动力汽车的深度强化学习型具身智能方法,属于新能源汽车与人工智能的交叉领域。该方法包括:S1:自定义离线训练与建模在线测试方案;S2:构建实时驾驶环境BEV感知方案;在自动驾驶仿真软件中加载离线训练场景与自定义测试地图,并根据nuScenes数据集配置摄像机;完成场景、车辆及传感器建模后,基于BEV Fusion算法对关键交通要素进行分割与检测;S3:通过BEV Fusion算法获得高维Camera BEV张量,利用深度强化学习算法训练“Alpha HEV具身智能模型”;S4:验证“Alpha HEV具身智能模型”。

Patent Agency Ranking