摘要:
A method of cutting a strengthened glass plate includes irradiating a laser beam 20 on a front surface 12 of a strengthened glass plate 10 and moving an irradiation area 22 of the laser beam 20 on the front surface 12 of the strengthened glass plate 10. The laser beam has a wavelength from 800 to 1100 nm and 70.00% to 99.8% of the laser beam 20 injected into the front surface 12 of the strengthened glass plate 10 is transmitted. Further, the strengthened glass plate 10 is cut by heating an intermediate layer 17 at the irradiation area 22 at a temperature less than or equal to an annealing point while moving the irradiation area 22 of the laser beam 20 at a speed greater than or equal to 1.0 mm / sec so that a crack that penetrates the strengthened glass plate 10 in the thickness direction follows the irradiation area 22.
摘要:
A substrate processing method for forming a space extending along a predetermined line in a silicon substrate includes a first step of converging a laser light which is an elliptically-polarized light having an ellipticity other than 1 at the substrate so as to form a plurality of modified spots within the substrate along the line and construct a modified region including the modified spots, and a second step of anisotropically etching the substrate so as to advance an etching selectively along the modified region and form the space in the substrate. In the first step, the light is converged at the substrate such that a moving direction of the light with respect to the substrate and a direction of polarization of the light form an angle of less than 45° therebetween, and the modified spots are made align in a plurality of rows along the line.
摘要:
A substrate processing method for forming a space extending along a predetermined line in a silicon substrate includes a first step of converging a laser light which is an elliptically-polarized light having an ellipticity other than 1 at the substrate so as to form a plurality of modified spots within the substrate along the line and produce a modified region including the modified spots, and a second step of anisotropically etching the substrate so as to advance an etching selectively along the modified region and form the space in the substrate. In the first step, the light is converged at the substrate such that a moving direction of the light with respect to the substrate and a direction of polarization of the light form an angle of 45° or greater therebetween, and the modified spots are made align in one row along the line.
摘要:
A variable astigmatic focal beam spot is formed using lasers with an anamorphic beam delivery system. The variable astigmatic focal beam spot can be used for cutting applications, for example, to scribe semiconductor wafers such as light emitting diode (LED) wafers. The exemplary anamorphic beam delivery system comprises a series of optical components, which deliberately introduce astigmatism to produce focal points separated into two principal meridians, i.e. vertical and horizontal. The astigmatic focal points result in an asymmetric, yet sharply focused, beam spot that consists of sharpened leading and trailing edges. Adjusting the astigmatic focal points changes the aspect ratio of the compressed focal beam spot, allowing adjustment of energy density at the target without affecting laser output power. Scribing wafers with properly optimized energy and power density increases scribing speeds while minimizing excessive heating and collateral material damage.
摘要:
A thermal processing apparatus and method in which a first laser source, for example, a CO 2 emitting at 10.6 mum is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO 2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
摘要:
In order to obtain epitaxial growth according to state of the art, a plurality of strips often need to be regularly produced on a plane in order to form a repairing area. This leads to an overlapping and incorrect orientation of crystalline structures. According to the inventive method, the strip is wide enough to prevent an overlapping since the width of the contour is adapted to the area which is to be repaired.
摘要:
An object of the present application is to obtain an even energy distribution of a laser beam in one direction, thereby conducting a uniform laser annealing on a film. This is achieved by providing a laser irradiation apparatus comprising: a lens (703) for dividing a laser beam (701) in one direction; and an optical system (704) for overlapping the divided laser beam, wherein the shape of the laser beam (701) entering into the lens (703) has edges vertical to the above-mentioned direction either by providing a shielded lens (703) or by providing a lens (703) narrower than the laser beam (701) before dividing.
摘要:
A laser-based system for processing target material within a microscopic region without causing undesirable changes in electrical or physical characteristics of at least one material surrounding the target material, the system includes a seed laser, an optical amplifier, and a beam delivery system. The seed laser for generating a sequence of laser pulses having a first pre-determined wavelength. The optical amplifier for amplifying at least a portion of the sequence of pulses to obtain an amplified sequence of output pulses. The beam delivery system for delivering and focusing at least one pulse of the amplified sequence of pulses onto the target material. The at least one output pulse having a pulse duration in the range of about (10) picoseconds to less than (1) nanosecond. The pulse duration being within a thermal processing range. The at least one focused output pulse having sufficient power density at a location within the target material to reduce the reflectivity of the target material and efficiently couple the focused output into the target material to remove the target material.
摘要:
A variable astigmatic focal beam spot is formed using lasers with an anamorphic beam delivery system. The variable astigmatic focal beam spot can be used for cutting applications, for example, to scribe semiconductor wafers such as light emitting diode (LED) wafers. The exemplary anamorphic beam delivery system comprises a series of optical components, which deliberately introduce astigmatism to produce focal points separated into two principal meridians, i.e. vertical and horizontal. The astigmatic focal points result in an asymmetric, yet sharply focused, beam spot that consists of sharpened leading and trailing edges. Adjusting the astigmatic focal points changes the aspect ratio of the compressed focal beam spot, allowing adjustment of energy density at the target without affecting laser output power. Scribing wafers with properly optimized energy and power density increases scribing speeds while minimizing excessive heating and collateral material damage.