Abstract:
The present invention relates to shaped bodies of compositions comprising a porous aromatic covalent framework polymer, wherein the polymer comprises at least one monomer unit, the at least one monomer unit comprising at least one aromatic ring and the at least one monomer unit having at least three binding sites to adjacent monomer units in the polymer and a core, wherein the at least three binding sites are located on at least one atom of the core and wherein the at least one atom is free of covalent bonds to hydrogen; and at least one binder additive. The invention also relates to methods for the preparation of said shaped bodies and their uses.
Abstract:
A process for producing a carbon-comprising composite is provided, wherein a porous metal-organic framework comprising at least one at least bidentate organic compound coordinated to at least one metal ion is pyrolyzed under a protective gas atmosphere and the at least one at least bidentate organic compound is nitrogen-free. Composites which can be obtained in this way and sulfur electrodes comprising these and also their uses are further provided.
Abstract:
The present invention relates to a pillared silicate compound comprising a layered silicate structure, and bridging metal atoms located between adjacent silicate layers of the silicate structure, wherein said bridging metal atoms form at least one covalent bond to each of the adjacent silicate layers, as well as a process for the preparation of a pillared silicate compound, and further includes a pillared silicate compound obtainable and or obtained according to said process, as well as a method of catalyzing a chemical reaction comprising the step of contacting one or more chemical compounds with the any of the aforementioned pillared silicate compounds.
Abstract:
Zeolitic materials of the LEV-type structure and methods for their production are provided. The method for producing of the zeolitic material having an LEV-type structure comprising Y0 2 and optionally comprising X 2 O 3 comprises the steps of: (1) preparing a mixture comprising one or more sources for Y0 2 , one or more solvents, and optionally comprising seed crystals; and (2) crystallizing the mixture obtained in step (1), wherein Y is a tetravalent element, and X is a trivalent element, the mixture crystallized in step (2) contains 3 wt.-% or less of one or more metals M based on 100 wt-% of Y0 2 , even more preferably contains no metal M, wherein M stands for sodium or potassium.
Abstract:
The present invention discloses an electrode material which is suitable for a lithium ion accumulator and comprises a porous metal-organic framework, wherein the framework comprises lithium ions, optionally at least one further metal ion and at least one at least bidentate organic compound, and the at least one at least bidentate organic compound is based on a dihydroxydicarboxylic acid which can be reversibly oxidized to a quinoid structure. The present invention further discloses such a porous metal-organic framework, the use thereof and also lithium ion accumulators comprising such electrode materials.
Abstract:
A process for the preparation of a catalyst for the use in a hydrocarbon conversion reaction, said catalyst containing a titanium zeolite and carbonaceous material, the catalyst containing said carbonaceous material in an amount of from 0.01 to 0.5 % by weight based on the total weight of titanium zeolite contained in the catalyst, the process comprising (i) preparing a catalyst containing the titanium zeolite and (ii) depositing carbonaceous material on the catalyst according to (i) in an amount of from 0.01 to 0.5 % by weight based on the total weight of titanium zeolite contained in the catalyst by contacting said catalyst, prior to using the catalyst in said hydrocarbon conversion reaction, with a fluid containing at least one hydrocarbon in an inert atmosphere, to obtain the carbonaceous material containing catalyst, wherein in (ii), the catalyst is not contacted with an oxygen containing gas.
Abstract:
The present invention relates to a method for technical extraction of propene from a gas stream containing at least propene and propane, the step comprising bringing the gas stream into contact with an adsorbent material comprising a porous metal-organic structural material containing at least one at least bidentate organic compound that is coordinatively bonded to at least one metal ion, wherein the adsorbent material becomes loaded up with propane and the gas stream thereby exhibits an elevated propene content, wherein the at least bidentate organic component is an imidazolate that is unsubstituted or that contains one or more substituents independently selected from the group consisting of halogen, C 1-6 alkyl, phenyl, NH 2 , NH(C 1-6 alkyl), N(C 1-6 alkyl) 2 , OH, O-phenyl and O-C 1-6 alkyl. The present invention also relates to the use of such a porous metal-organic structural material for technical extraction of propene from a gas stream containing at least propene and propane by way of propane depletion of the gas stream.