Abstract:
This invention is directed to a polymer having a polyvalent core that is covalently bonded to at least two ordered dendritic (tree-like) branches which extend through at least two generations according to the general formula wherein G is the number of generations and N c represents the valency of the core compound and the Repeat Unit has a valency of N r + 1 wherein N r is the Repeating Unit multiplicity which is at least 2.
Abstract:
This invention is directed to dense star polymers and to a process for producing dense star polymers. The star polymers of this invention have at least one core branch eminating from a core,each core branch having at least oneterminal group provided that (1) the ratio of terminal groups to the core branches is greater than 1 : 1, (2) the density of terminal groups per unit volume in the polymer is at least 1.5 times that of conventional star polymer having similar core and monomeric moieties and a comparable molecular weight and number of core branches, each of such branches of the conventional star polymer bearing only one terminal group and (3) a molecular volume that is no more than 60 percent of the molecular volume of said conventional star polymer. Such star polymers are useful as demulsifiers for oil/water emulsions, wet strength agents in the manufacture of paper and agents for modifying viscosity in aqueous formulations such as paints.
Abstract:
A film-forming composition including a triazine ring-containing hyperbranched polymer with a repeating unit structure indicated by formula (1), and inorganic micro particles is provided. This enables the provision of a film-forming composition capable of hybridizing without reducing dispersion of the inorganic micro particles in a dispersion fluid, capable of depositing a coating film with a high refractive index, and suitable for electronic device film formation. (In the formula, R and R' are mutually independent and indicate a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group, and Ar indicates a divalent organic group including either an aromatic ring or a heterocyclic ring, or both.)
Abstract:
To provide a photochromic coating composition comprising (A) a polyrotaxane having a composite molecular structure formed by an axial molecule and a plurality of cyclic molecules clathrating the axial molecule, (B) a photochromic compound and (C) a polyurethane resin and/or precursor thereof. This composition provides a laminate which exhibits excellent photochromic properties (color optical density and fading speed), moldability and surface hardness.
Abstract:
The present disclosure relates to a hybrid nanoparticle comprising a metallic core and at least one lipophilic dendron attached to the surface of the metallic core, and methods of producing such hybrid nanoparticles. The present disclosure also relates to films containing the hybrid nanoparticles described herein.
Abstract:
Disclosed is an encapsulation barrier stack, capable of encapsulating a moisture and/or oxygen sensitive article and comprising a multilayer film, wherein the multilayer film comprises: one or more barrier layer(s) having low moisture and/or oxygen permeability, and one or more sealing layer(s) arranged to be in contact with a surface of the at least one barrier layer, thereby covering defects present in the barrier layer, wherein the one or more sealing layer(s) comprise(s) a plurality of dendrimer encapsulated nanoparticles, the nanoparticles being reactive in that they are capable of interacting with moisture and/or oxygen to retard the permeation of moisture and/or oxygen through the defects present in the barrier layer.
Abstract:
An article, comprising a substrate and a polymer film attached to the substrate is provided, the polymer film comprising a first layer of a first polymer functionalized by a first functionalization compound covalently bound to said first polymer and bearing at least one catecholic group being present on a surface of the first layer. The polymer film is a layered film, a top layer of which is formed by the first layer, the layered film comprising at least one further layer of at least one further polymer functionalized by a further functionalization compound covalently bound to said further polymer and bearing at least one catecholic group being present on a surface of the at least one further layer, wherein an average ratio of catecholic groups per polymer molecule is equal to or less than 1 in case of the first polymer and greater than 1 in case of the further polymer.
Abstract:
Negative working lithographic printing plate precursors are described wherein the imageable layer comprises a hyperbranched binder material having a Tg above 30°C and a number average molecular weight of 500 to 15000 g/mol and comprising urethane and/or urea linkages as well as ethylenically unsaturated groups.
Abstract:
The present disclosure relates to an aqueous dispersible polymer composition comprising: (a) at least one of:(i) a dendritic polymer in admixture with a hydrophilic functionalizing agent; and (ii) a hydrophilic functionalized dendrimer; and (b) a non-dendritic polymer capable of forming bonds with said dendritic polymer to thereby form a dendrimer-non-dendrimer (DND) polymer hybrid that is dispersible in the aqueous phase, methods of forming the same and uses thereof.
Abstract:
A fullerene film and a fullerene polymer both produced from a fullerene derivative are provided which can be easily formed by a wet process and can retain the intact properties inherent in the fullerene. Also provided are processes for producing the film and polymer. A solution of a fullerene derivative decomposing at a temperature lower than the pyrolysis temperature of the fullerene, e.g., the fullerene derivative represented by the following formula, is applied to a substrate. The resultant coating film is heated at a temperature higher than the pyrolysis temperature of the fullerene derivative and lower than a pyrolysis temperature of a fullerene. Thus, a fullerene film and a fullerene polymer are obtained which retain the properties inherent in the fullerene.