Abstract:
A system and method for standoff detection of explosives and explosive residue. A laser light source illuminates a target area having an unknown sample producing luminescence emitted photons, scattered photons and plasma emitted photons. A first optical system directs light to the target area. A video capture device outputs a dynamic image of the target area. A second optical system collects photons, and directs collected photons to a first two-dimensional array of detection elements and/or to a fiber array spectral translator device which device includes a two-dimensional array of optical fibers drawn into a one-dimensional fiber stack. A spectrograph is coupled to the one-dimensional fiber stack of the fiber array spectral translator device, wherein the entrance slit of the spectrograph is coupled to the one dimensional fiber stack.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
The disclosure generally relates to a method and apparatus for multi-wavelength imaging spectrometer. More specifically, in one embodiment, the disclosure relates to an optical filter for passing photons therethrough. The filter includes a first filter stage and a second filter stage. The first filter stage may include a first retarder element (450) and a first liquid crystal cell (455). The first element may include an input face and an output face. One of the first element faces is not oriented substantially normal to the trajectory of photons passing through the filter.
Abstract:
Systems, methodologies, media, and other embodiments associated with color measuring are described. One exemplary system embodiment includes a spectrophotometer (100), one or more light sources (110) for illuminating an interior of the spectrophotometer (100), and a digital camera (105) configured at a port (125) of the spectrophotometer and being configured to measure light components from a sample (115). In the present invention, segmentation logic is provided for the spectrophotometer that is configured to employ computational image segmentation to characterize specular reflection from a sample and to characterize a selected patch or portion from the test sample, such as a selected color in a multicolor pattern. In accordance with the present invention, the spectrophotometer (100) and the included digital camera (105) may be color-characterized in situ.
Abstract:
Systems and methods are disclosed for positioning or storing an electro-optical instrument (e.g., spectrophotometer) within a printing device to facilitate calibration or maintenance of the instrument. In various embodiments, the electro-optical instrument may be pivoted or moved to an inclined position to facilitate calibration of the instrument relative to one or more calibration references. The electro-optical instrument may also be moved or inclined along a travel path in the printing device to a position or positions adjacent to various calibration references.
Abstract:
A method and system for effecting an appearance model correction for a display unit, e.g., a CRT, using a polynomial-based algorithm is described. The correction may be effected in real time and is based on gamma values associated with the display. Strong correlations with the CIECAM02 specification are achieved according to the present disclosure. The correction functionality may be implemented using a colorimeter that includes a plurality of sensors/filter systems with non overlappng spectral responses, adequate for providing data capable of translation into standard coordinates system such as, CIE XYZ, CIE L* a* b*, or CIE Luv, as well as non-standard operable coordinate systems. The field of view of the colorimeter is chosen to closely track the response of the human eye using an optical path configured to select and limit the field of view in a manner that is insensitive to placement of the colorimeter on the source image. The optical path from the source image to the sensor is configured to select preferred light rays while rejecting undesirable light rays to maximize the signal/noise ratio. A rearward facing sensor channel is included to simultaneously measure ambient light impinging on the source image and feedback means to provide status and/or change of information.
Abstract:
An auto-tracking spectrophotometer has a moveable look-ahead sensor for scanning at least a portion of a color matrix. The look-ahead sensor finds a portion of the color matrix for measurement by an optical system. The optical system for measuring the color matrix is then guided using the information provided by the look-ahead sensor.
Abstract:
A method of identifying at least one color for a user, for example, a color-vision impaired observer, includes allowing the user to capture an image with a camera; displaying the captured image on a display screen; identifying a set of at least one color parameter associated with the selected position or region, in response to the user selecting a position or region in the displayed image; mapping the set of at least one color parameter to one or more reference colors and identifying the one or more reference colors for the user, in a form perceptible to the user.
Abstract:
A patient's dental prosthesis (e.g., a prosthesis tooth, crown, veneer, or bridge) is made by acquiring an image (42) of the patient's teeth that contains black (54) and white (58) normalization references. These references are black, and white porcelain, for example, that allow software of the invention to determine absolute black and absolute white within the image. The image is then normalized in accordance with normalization references, which corrects the image for variations in lighting conditions and image source. The normalized image (60) is then standardized by matching the pixels of the normalized image (60) to selected shade standards (62). The dental prosthesis can then be manufactured by a lab technician by referring to the standardized image (66). The tooth shade analysis, and matching system is also applicable to direct restorations of natural teeth, such as repair of chipped or broken teeth.