Abstract:
The invention relates to a spectral filter (100) comprising at least one metal layer (101) structured by a grating of traversing slots (102a to 102e, 103a to 103h). The grating consists of at least two subgratings of traversing slots (102a to 102e, 103a to 103h) intercepting one another perpendicularly.
Abstract:
To monitor light pulses from a light source, such as a laser, sense signals are provided to a photosensing component or array, causing photosensing during a series of one or more sense periods for the light pulse. Each light pulse can be provided through a transmission structure, such as a layered structure, that provides output light with an energy-dependent position on the photosensing component. A pulse's sensing results can be used to obtain a set of one or more differential quantities; for example, with a photosensing array, two cells of the array can be read out and compared. For a narrow band light pulse, a transmission structure can provide a spot on the photosensing component, and the light spot position can be sensed.
Abstract:
The present invention refers to an arrangement ('C') adapted to evaluate the spectral intensity of and/or a changing in the spectral intensity of an electro-magnetic beam (1) or a bundle of beams (2), whereby said bundle of beams is directed towards and received by a lens element (3a) and where said lens element (3a) is adapted to direct said bundle of beams towards a multitude of electro-magnetic beam to an electric signal transforming means (4), named as an opto-electric transforming means, said means adapted to generate an electric signal (5) representative to said spectral intensity of or said changing in said spectral intensity of said beam (1, 2). The invention suggests that a multitude of lens elements (3, 3a) shall expose dimensions adapted within a sub-micron scale (10-6m) and that at least one of said opto-electric transforming means (4), preferably a multitude of said means (4), is arranged adjacent to said lens element (3a).
Abstract:
A multi-spectral sensor system and methods are disclosed. One aspect of the invention comprises a multi-spectral sensor system mountable to a mobile platform. The system may comprise an image capturing system, a first translation stage affixed to the image capturing system and a stationary optics assembly, The system may further comprise a motion controller configured to move the first translation stage and image capturing system across the stationary optics along a traveling direction opposite of a traveling direction of the mobile platform and at substantially the same rate as the mobile platform is moving during a stare operation.
Abstract:
A method for creating a master and for generating an optical waveguide therefrom. The method includes creating a waveguide master having the geometrical form of at least one optical element formed therein; and generating an embossed optical waveguide from the master, the embossed optical waveguide being a negative of the master, the embossed optical waveguide having an optical element formed therein which corresponds to and is a negative of the geometrical form of the optical element formed in the master, the embossed optical waveguide being formed of a polymer material having a first index of refraction, wherein the optical element is formed in the polymer material and creates a local modification of the refractive index of the polymer material.
Abstract:
An embossed optical waveguide for light transmission and a method for creating a master and for generating the embossed optical waveguide therefrom. Optical elements (142, 143, 145) can be formed in a layer of polymer (133) after it is cured by reactive ion etching or ion beam milling. The polymer layer (133) which has an index of refraction of 1.55 or greater is bonded to a substrate (135), which is preferably polypropylene, having an index of refraction of preferably 1.50 or less. Since the refractive index of air is approximately 1.0, the polymer layer is sandwiched between two layers of low refractive material. The differences between the indices of refraction cause light projected into the polymer layer (133) to be guided in the polymer layer by total internal reflection. Furthermore, once the optical elements (142, 143, 145) have been formed in the polymer layer, it can be used as a master for generating embossments. The embossments are preferably generated by placing liquid polymer in contact with the master, curing it, and separating the cured polymer embossment from the master.
Abstract:
Disclosed is an optical spectroscopy device (1) and a method for the production thereof. The inventive device comprises at least one light source (8) and at least one integrated spectrometer (3). The optical components of the at least one spectrometer (3) are optical microcomponents (11, 13, 16, 19, 20, 21) which are integrated into the top and/or bottom side (9, 12) of a support plate (2). According to the inventive method, at least one light source (8) is arranged on a support plate (2) and at least one spectrometer (3) is monolithically produced in a three dimensionally integrated form on said support plate (2). The spectrometer produced according to the inventive method (3) is made from optical microcomponents (11, 13, 16, 19, 20, 21).
Abstract:
An apparatus and method for in situ spectral measurement is disclosed. The apparatus uses a low-resolution grating to disperse light and thereby image a spectrum thereof. The imaged spectrum is converted into a digital electrical signal and is processed in order to enhance the spectral information. The resulting spectral information is analogous to that captured using a higher resolution spectral imager with optical processing of the spectral data.
Abstract:
The present invention relates to a miniaturized optical component provided with a free jet device comprising one or more optical microstructures (21b, 22b) and one or more outer structures (23b) for light, and enabling components to be manufactured in one single step with no need for particular adjustment. For that purpose, the free jet device is located in a cavity (61) delimited by a single-piece element obtained by moulding, said element presenting on its inner surface (23b) turned to the cavity the optical microstructure (21b, 22b) and the connection structure (23b) for light. The component (60) can be a single-layer or multilayer component. According to the inventive method, a cast part is made which has, on its external face, layers complementary to the optical microstructure(s) and the connection structure for light of the optical component. The optical microstructures of the cast part can be metallized before moulding. A metal layer and/or a plastic layer is applied during the moulding process onto the cast part, from which it is later removed.
Abstract:
Ein Spektrometer umfasst eine Optikanordnung zum Auffangen von Messlicht und zur Aufspaltung desselben in Spektralanteile und eine von den Spektralanteilen des Messlichts beaufschlagte fotoelektrische Wandleranordnung zum Umwandeln der Spektralanteile in entsprechende elektrische Signale. Die Optikanordnung (O) weist einen im wesentlichen transparenten Tragkörper (T) auf, der im wesentlichen durch zwei gegenüberliegende Begrenzungsflächen (1,2) begrenzt ist und an dem ein Reflexionsbeugungsgitter (20) und die Wandleranordnung (W) angeordnet sind und dem das Messlicht über einen Lichteinlass (10) zuführbar ist. Der Lichteinlass (10), das ebene Reflexionsbeugungsgitter (20) und die Wandleranordnung (W) sind auf der Seite der ersten (1) der beiden Begrenzungsflächen (1,2) des Tragkörpers (T) angeordnet, und die zweite (2) der beiden Begrenzungsflächen (1,2) ist ganz oder teilweise als vorzugsweise rotationssymmetrischer, nach innen reflektierender Konkavspiegel ausgebildet. Der Tragkörper (T) besteht vollständig aus einem transparenten Kunststoff und umfasst drei optisch miteinander verbundene Teilkörper (T1,T2,T3), von denen ein erster Teilkörper (T1) die erste Begrenzungsfläche (1) und ein zweiter Teilkörper (T2) die zweite Begrenzungsfläche (2) des Tragkörpers (T) aufweist und ein dritter Teilkörper (T3) zwischen dem ersten und dem zweiten Teilkörper (T1,T2) angeordnet ist. An der ersten Begrenzungsfläche (1) sind optisch wirksame Mikrostrukturen vorgesehen, welche den Lichteinlass (10) und das Reflexionsbeugungsgitter (20) bilden. Die Zuführung des Messlichts erfolgt über eine oder mehrere Lichtleitfasern (F) parallel zur ersten Begrenzungsfläche (1). Das Spektrometer bietet die Voraussetzungen für eine starke Miniaturisierung und eignet sich sehr gut für eine einfache und kostengünstige Serienfertigung.