摘要:
L'invention porte sur le couplage optique d'une puce photonique à un dispositif extérieur au moyen d'un système à deux lentilles. La puce photonique (1) comprend une couche de guidage de la lumière (12) supportée par un substrat (10) et recouverte par une couche d'encapsulation (13), et une lentille (14) intégrée au niveau de l'une de ces faces avant et arrière. La couche de guidage de la lumière inclut un guide d'onde (121) couplé à un réseau de couplage surfacique (122). On prévoit un agencement d'une ou plusieurs structures réfléchissantes (151, 152) chacune sur l'une des faces avant et arrière. Cet agencement comporte une structure réfléchissante sur la face arrière et est réalisé de manière à assurer la propagation de la lumière entre le réseau de couplage surfacique et la lentille selon un trajet optique présentant au moins un repliement. L'invention couvre également le procédé de fabrication d'une telle puce photonique.
摘要:
A planar lightwave circuit may include a set of components. The set of components may include an input waveguide to couple to an optical communications transceiver. The set of components may include an output waveguide to couple to the optical communications transceiver. The set of components may include a common port to couple to an optical fiber. The set of components may include a first polarization beam splitter. The set of components may include a second polarization beam splitter. The set of components may include a third polarization beam splitter. The set of components may include a rotator assembly including a Faraday rotator and a quarter-wave plate.
摘要:
The semiconductor device comprises a substrate (1) of semiconductor material, a dielectric layer (2) above the substrate, a waveguide (3) arranged in the dielectric layer, and a mirror region (4) arranged on a surface of a mirror support (5) integrated on the substrate. A mirror is thus formed facing the waveguide. The surface of the mirror support and hence the mirror are inclined with respect to the waveguide.
摘要:
A scanning device is presented having a substrate with a first surface and an opposite, parallel second surface. A region of the substrate includes the first surface and the opposite parallel second surface, and is defined via an etching process through a thickness of the substrate, where the region remains attached to the substrate via one or more hinges. A waveguide is patterned over the first surface of the region and guides a beam of radiation along a length of the waveguide. The scanning device includes a facet located on the first surface of the region. The facet is designed to reflect at least a portion of the beam of radiation through the region. An optical element is located on the second surface of the region, and is designed to receive the reflected portion of the beam of radiation.
摘要:
A method forms a vertical output coupler for a waveguide that propagates light along a horizontal propagation direction, through a waveguide material that overlies a buried oxide layer. The method includes etching the waveguide to remove a portion of the waveguide. The etching forms at least a first plane that is at an edge of the waveguide, is adjacent to the removed portion of the waveguide, and is tilted at a vertical angle between 20 degrees and 70 degrees with respect to the propagation direction. The method further includes coating the first tilted plane with a reflective metal to form a mirror, such that the mirror reflects the light into a direction having a vertical component.
摘要:
A photonic structure can include in one aspect one or more waveguides formed by patterning of waveguiding material adapted to propagate light energy. Such waveguiding material may include one or more of silicon (single-, poly-, or non-crystalline) and silicon nitride.
摘要:
A scanning device is presented having a substrate with a first surface and an opposite, parallel second surface. A region of the substrate includes the first surface and the opposite parallel second surface, and is defined via an etching process through a thickness of the substrate, where the region remains attached to the substrate via one or more hinges. A waveguide is patterned over the first surface of the region and guides a beam of radiation along a length of the waveguide. The scanning device includes a facet located on the first surface of the region. The facet is designed to reflect at least a portion of the beam of radiation through the region. An optical element is located on the second surface of the region, and is designed to receive the reflected portion of the beam of radiation.
摘要:
Methods and apparatus for optical architectures are disclosed. An optical architecture includes first and second riser cards and first and second components carried by the first and second riser cards respectively. The optical architecture also includes a first matrix to fan-out a multi-bit optical input signal into first and second outbound signals, and first and second fiber optic cables to carry the first and second outbound signals to the first and second riser cards, respectively.
摘要:
A semiconductor photonics device (100) for coupling radiation to a semiconductor waveguide (130) is described. The photonics device comprises a semiconductor-on-insulator substrate comprising a semiconductor substrate (110), a buried oxide layer (120) positioned on top of the semiconductor substrate (110) and the semiconductor waveguide (130) on top of the buried oxide layer to which radiation is to be coupled. The device (100) also comprises a grating coupler (140) positioned on top of the buried oxide layer (120) and configured for coupling incident radiation to the semiconductor waveguide (130). The semiconductor substrate (110) has a recessed portion (110) at the backside of the semiconductor substrate (110) for receiving incident radiation to be coupled to the semiconductor waveguide (130) via the backside of the semiconductor substrate (110) and the grating coupler (140).